导航:首页 > 装置知识 > 驱动装置课程设计

驱动装置课程设计

发布时间:2022-05-21 20:44:35

1. 急求课程设计带式输送机的驱动装置CAD图

至少少了一个参数
电机转速

应该不难,如果不要求齿轮箱的细节

2. 跪求:机械设计课程设计---设计电动绞车驱动装置

别说的那么发杂,不就是卷扬机么?

3. 螺旋输送机驱动装置的二级减速器设计

二级减速器设计 有的。

4. 求带式输送机传动装置课程设计F=2300 v=1.5,滚筒直径D=400,哪位大神以前有的 你能不能发给我

一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW

3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.

六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm

II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N?m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm

(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N?m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危险截面C的强度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。

主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N?m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够

(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min

(1)已知nII=121.67(r/min)

两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够

二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够

七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=7943.2N
挤压强度: =56.93<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =36.60<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。

5. 课程设计 带式输送机传动装置

可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,它与普通胶带输送机相比增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。
结构概述

伸缩胶带输送机分为固定部分和非固定部分两大部分。固定部分由机头传动装置、储带装置、收放胶带装置等组成;非固定部分由无螺栓连接的快速可拆支架、机尾等组成。

1、 机头传动装置由传动卷筒、减速器、液力联轴器、机架、卸载滚筒、清扫器组成。

n 机头传动装置是整个输送机的驱动部分,两台电机通过液力联轴器、减速器分别传递转距给两个传动滚筒(也可以用两个齿轮串联起来传动)。用齿轮传动时,应卸下一组电机、液力联轴器和减速器。

n 液力联轴器为YL-400型,它由泵轮、透平轮、外壳、从动轴等构成,其特点是泵轮侧有一辅助室,电机启动后,液流透过小孔进入工作室,因而能使负载比较平衡地启动而电机则按近于坚载启动,工作时壳体内加20号机械油,充油量为14m3,减速器采用上级齿轮减速,第一级为圆弧锥齿轮,第二、第三级为斜齿和直齿圆柱齿轮,总传动比为25.564,与SGW-620/40T型刮板输送机可通用互换,减速器用螺栓直接与机架连接。

n 传动卷筒为焊接结构,外径为Φ500毫米,卷筒表面有特制的硫化胶层,因此对提高胶带与滚筒的eua值,防止打滑、减少初张力,具有较好的效果。

n 卸载端和头部清扫器,带式逆止器,便于卸载,机头最前部有外伸的卸载臂,由卸载滚筒和伸出架组成,滚筒安装在伸出架上,其轴线位置可通过轴承两侧的螺栓进行调节,以调整胶带在机头部的跑偏,在卸载滚筒的下部装有两道清扫器,由于清扫器刮板紧压在胶带上,故可除去粘附着的碎煤,带式逆止器以防止停车时胶带倒转。

n 机架为焊接结构,用螺栓组装,机头传动装置所有的零部件均安装在机架上。电动机和减速器可根据具体情况安装在机架的左侧或右侧。

2、 储带装置包括储带转向架、储带仓架、换向滚筒、托辊小车、游动小车、张紧装置、张紧绞车等。

n 储带装置的骨架由框架和支架用螺栓连接而成,在机头传动装置两具转框架上装有三个固定换向滚筒与游动小车上的两个换向滚筒一起供胶带在储带装置中往复导向,架子上面安装固定槽形托辊和平托辊,以支撑胶带,架子内侧有轨道,供托辊不画和游动小车行走。

n 固定换向滚筒为定轴式,用于储带装置进行储带时,用以主承胶带,使其悬垂度不致过大,托辊小车随游动小车位置的变动,需要用人力拉出或退回。

n 游动小车由车架、换向滚筒、滑轮组、车轮等组成,滑轮组装在车身后都与另一滑轮组相适应,其位置可保证受力时车身不被抬起,这样,对保持车身稳定,防止换向滚筒上的胶带跑偏效果较好,车身下部还装着止爬钩,用以防止车轮脱轨掉道。

n 游动小车向左侧移动时,胶带放出,机身伸长,游动小车向右侧移动时,胶带储存,机身缩短,通过钢丝绳拉紧游动小车可使胶带得到适当的张紧度。

n 在储带装置的后部,设有张紧绞车,胶带张力指示器和张力缓冲器,张力缓冲器的作用是使输送机(在起动时让胶带始终保持一定的张力,以减少空载胶带的不适度和胶带层间的拍打)。

3、 收放胶带装置位于张紧绞车的后部,它由机架、调心托辊、减速器、电动机、旋杆等组成,其作用是将胶带增补到输送机机身上或从输送机机身取下,机架的两端和后端,各装一旋杆,当增加或减少胶带时用以夹紧主胶带,调心托辊组供卷筒收放胶带时导向,工作时将卷筒推进机架的一端用尾架顶起,另一端顶在减速器出轴的顶尖上,开动电动机通过减速器出轴的拨盘带动卷筒,收卷胶带,放出胶带,放出胶带时不开电机由外拖动卷筒反转,在不工作时活动轨可用插销挂在机架上,以缩小宽度,在活动轨上方应设置起重装置悬吊卷筒,巷道宽度可视具体情况适当拓宽,以利胶带收入时操作。

4、 中间架由无螺栓连接的快速可拆支架,由H型支架、钢管、平托辊和挂钩式槽形托辊、“V”型托辊等组成,是机器的非固定部分,钢管可作为拆卸的机身,用柱销固装在钢管上,用小锤可以打动,挂钩式槽形托辊胶接式,槽形角30°,用挂钩挂在钢管的柱销上,挂钩上制动的圆弧齿槽,托辊就是通过齿槽挂在柱销上的,可向前向后移动,以调节托辊位置控制胶带跑偏。

5、 上料装置、下料装置;上料装置安装在收放装置后边,由转向转导向接上料段,运送的物料从此段装上运至下料段,下料装置由下料段一组斜托辊将物料卸下,下料段直接极为,机尾由导轨(Ⅰ、Ⅱ、Ⅲ)和机尾滚筒座组成,导轨一端用螺栓固定在中支座上,并与另一导轨的前端用柱销胶接,藉以适应底板的不平,机尾滚筒与储带装置中的滚筒结构相同,能互换,其轴线位置可用螺栓调节,以调整胶带中在机尾的跑偏,机尾滚筒前端设有刮煤板,可使滚筒表面的碎煤或粉煤刮下,并收集泥槽中,用特制的拉泥板取出,机尾加上装有缓冲托辊组,受料时,可降低块煤对胶带的冲击,有利于提高胶带寿命

6. 基于单片机的步进电机驱动器课程设计

看一看这个http://www.xuehi.com/docs/110506.html#downaddress,看一下

7. 设计已螺旋输送机的驱动装置设计说明书

计算内容 计算结果
一, 设计任务书
设计题目:传送设备的传动装置
(一)方案设计要求:
具有过载保护性能(有带传动)
含有二级展开式圆柱齿轮减速器
传送带鼓轮方向与减速器输出轴方向平行
(二)工作机原始数据:
传送带鼓轮直径___ mm,传送带带速___m/s
传送带主动轴所需扭矩T为___N.m
使用年限___年,___班制
工作载荷(平稳,微振,冲击)
(三)数据:
鼓轮D 278mm,扭矩T 248N.m
带速V 0.98m/s,年限 9年
班制 2 ,载荷 微振
二.电机的选择计算
1. 选择电机的转速:
a. 计算传动滚筒的转速
nw= 60V/πd=60×0.98/3.14×0.278=67.326 r/min
b.计算工作机功率
pw= nw/9.55×10³=248×67.326/9.55×10³=1.748Kw
2. 工作机的有效功率
a. 传动装置的总效率
带传动的效率η1= 0.96
弹性联轴器的效率η2= 0.99

滚筒的转速
nw=67.326 r/min
工作机功率
pw=1.748Kw

计算内容 计算结果
滚动轴承的效率 η3=0.99
滚筒效率 η4=0.96
齿轮啮合效率 η5=0.97
总效率 η=η1×η2×η34×η4×η5²=
0.95×0.99×0.994×0.96×0.97²=0.816
c. 所需电动机输出功率Pr=Pw/η=1.748/0.816=2.142kw
3. 选择电动机的型号:
查参考文献[10] 表16-1-28得 表1.1
方案
号 电机
型号 电机
质量
(Kg) 额定
功率
(Kw) 同步
转速(r/min) 满载
转速
(r/min) 总传
动比
1 Y100L1-4 34 2.2 1500 1420 21.091
2 Y112M-6 45 2.2 1000 940 13.962
根据以上两种可行同步转速电机对比可见,方案2传动比小且质量价格也比较合理,所以选择Y112M-6型电动机。
三.运动和动力参数的计算
1. 分配传动比取i带=2.5
总传动比 i=13.962
i减=i/i带=13.962/2.5=5.585
减速器高速级传动比i1= =2.746
减速器低速级传动比i2= i减/ i1=2.034
2. 运动和动力参数计算:

总效率
η=0.816

电动机输出功率
Pr=2.142kw

选用三相异步电动机Y112M-6
p=2.2 kw
n=940r/min
中心高H=1112mm,外伸轴段D×E=28×60

i=13.962
i12=2.746
i23=2.034

P0=2.142Kw

计算内容 计算结果
0轴(电动机轴):
p0=pr=2.142Kw
n0=940r/min
T0=9.55103P0/n0=9.551032.119/940=21.762N.m
Ⅰ轴(减速器高速轴):
p1=p.η1=2.1420.95=2.035Kw
n1= n0/i01=940/2.5=376
T1=9.55103P1/n1=51.687 N.m
Ⅱ轴(减速器中间轴):
p2=p1η12=p1η5η3=2.0350.970.99
=1.954 Kw
n2= n1/i12=376/2.746=136.926 r/min
T2=9.55103 P2/n2=136.283N.m

Ⅲ轴(减速器低速轴):
p3=p2η23= p2η5η3=1.876 Kw
n3= n2/i23=67.319 r/min
T3=9.55103 P3/n3=266.133 N.m
Ⅳ轴(鼓轮轴):
p4=p3η34=1.839 Kw
n4= n3=67.319 r/min
T4=9.55103 P4/n4=260.884 N.m
四.传动零件的设计计算
(一)减速器以外的传动零件
1.普通V带的设计计算
(1) 工况系数取KA=1.2
确定dd1, dd2:设计功率pc=KAp=1.22.2=2.64Kw n0=940r/min
T0=21.762N.m
p1=2.035Kw
n1=376r/min
T1=51.687N.m
p2=1.954Kw
n2=136.926 r/min
T2=136.283 N.m
p3=1.876Kw
n3=67.319 r/min
T3=266.133N.m

p4=1.839 Kw
n4=67.319r/min
T4=260.884 N.m

小带轮转速n1= n0=940 r/min
选取A型V带 取dd1=118mm
dd2=(n1/n2)dd1=(940/376) 118=295mm
取标准值dd2=315mm
实际传动i=dd1/ dd2=315/118=2.669
所以n2= n1/i=940/2.669=352.192r/min(误差为6.3%>5%)
重取 dd1=125mm,
dd2=(n1/n2)dd1=(940/376)125=312.5mm
取标准值dd2=315mm
实际传动比i= dd1/ dd2=315/125=2.52
n2= n1/i=940/2.52=373.016
(误差为8% 允许)
所选V带带速v=πdd1 n1/(601000)=3.14
125940/(601000)=6.152m/s
在5 ~25m/s之间 所选V带符合
(2)确定中心距
①初定a0 :0.7(dd1 +dd2)≤a0≤ 2(dd1 +dd2)

308≤a0≤880 取a0=550mm
②Lc=2 a0+(π/2)( dd1 +dd2)+( dd2 -dd1)²/4 a0
=2550+(3.14/2) (315+125)+(315-125)²/4550=1807.559
③取标准值:Ld=1800mm
④中心距:a=a0+ (Ld­Lc)/2=550+(1800-1807.559)/2

计算内容 计算结果
=546.221mm
取a=547mm,a的调整范围为:
amax=a+0.03 Ld=601mm
amin=a-0.015Ld=520mm

(2)验算包角:
α≈180°-(dd2-dd1) 60° /a=180°-(315-125) 60°/547=159°>120°,符合要求。
(3)确定根数:z≥pc/p0’
p0’=Kα(p0+Δp1+Δp2)
Kα=1.25(1- )=0.948
对于A型带:c1=3.7810-4,c2=9.8110-3,
c3=9.610-15,c4=4.6510-5
L0=1700mm
ω1= = =98.437rad/s
p0= dd1ω1[c1- - c3 (dd1ω1)²- c4lg(dd1ω1)]
=12598.437[3.7810-4- -9.6
10-15 (12598.437)²- 4.6510-5
lg(12598.437)]=1.327
Δp1= c4dd1ω1 =0.148
Δp2=c4dd1ω1 =0.0142
p0’=0.948 (1.327+0.149+0.0142)=1.413 Kw

确定根数:z≥ ≤Zmax
z= = 取z=2
(4)确定初拉力F0
F0=500 =500×
=175.633KN
(5)带对轴的压力Q
Q=2 F0zsin =2 =690.768KN
(二)减速器以内的零件的设计计算
1.齿轮传动设计
(1)高速级用斜齿轮
① 选择材料
小齿轮选用40Cr钢,调质处理,齿面硬度250~280HBS大齿轮选用ZG340~ 640,正火处理,齿面硬度170 ~ 220HBS
应力循环次数N:
N1=60n1jLh=60×376×(9×300×16)=9.74×108
N2= N1/i1=9.74×108 ÷2.746=3.549×108
查文献[2]图5-17得:ZN1=1.02 Z N2=1.11(允许有一点蚀)
由文献[2]式(5-29)得:ZX1 = ZX2=1.0,取SHmin=1.0,Zw=1.0,ZLVR=0.92
按齿面硬度250HBS和170HBS由文献[2]图(5-16(b))得:σHlim1=690Mpa, σHlim2=450 Mpa
许用接触应力[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=647.496 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=459.540 Mpa
因[σH]2〈[σH]1,所以计算中取[σH]= [σH]2 =459.540 Mpa
②按接触强度确定中心距
初定螺旋角β=12° Zβ= =0.989
初取KtZεt2=1.12 由文献[2]表5-5得ZE=188.9 ,减速传动u=i1 =2.746,取Φa=0.4
端面压力角αt=arctan(tanαn/cosβ)=arctan(tan20°/cos12°)=20.4103°
基圆螺旋角βb= arctan(tanβ×cosαt)= arctan(tan12°×cos20.4103°)=11.2665°
ZH= = =2.450
计算中心距a:

计算内容 计算结果
a≥
=
=111.178mm
取中心距 a=112mm
估算模数mn=(0.007~0.02)a=(0.007~0.02)×=
0.784~2.24
取标准模数mn=2
小齿轮齿数

实际传动比: 传动比误差 在允许范围之内
修正螺旋角β=
10°50′39〃
与初选β=12°相近,Zβ,ZH可不修正。
齿轮分度圆直径

圆周速度
由文献[2]表5-6 取齿轮精度为8级
③验算齿面接触疲劳强度
按电机驱动,载荷平稳,由文献[2]表5-3 取 KA=1.25
由文献[2]图5-4(b),按8级精度和
取KV=1.023
齿宽 ,取标准b=45mm
由文献[2]图5-7(a)按b/d1=45/61.091=0.737,取Kβ=1.051
由文献[2]表5-4,Kα=1.2
载荷系数K= KAKVKβKα=
计算重合度:
齿顶圆直径
端面压力角:
齿轮基圆直径: mm
mm
端面齿顶压力角:

高速级斜齿轮主要参数:
mn=2
z1=30, z2=80
β=
10°50′39〃
mt= mn/cosβ=2.036mm
d1=61.091mm
d2=162.909mm
da1=65.091mm
da2=166.909mm
df1= d1-2(ha*+ c*) mn=56.091mm
df2= d2-2(ha*+ c*) mn=157.909mm
中心距a=1/2(d1+d2)=112mm
齿宽b2=b=
45mm
b1= b2+(5~10)=50mm

计算内容 计算结果

齿面接触应力
安全
④验算齿根弯曲疲劳强度
由文献[2]图5-18(b)得:
由文献[2]图5-19得:
由文献[2]式5-23:

计算许用弯曲应力:

计算内容

计算结果

由文献[2]图5-14得:
由文献[2]图5-15得:
由文献[2]式5-47得计算

由式5-48: 计算齿根弯曲应力:

均安全。
⑵低速级直齿轮的设计
①选择材料
小齿轮材料选用40Cr钢,齿面硬度250—280HBS,大齿轮材料选用ZG310-570,正火处理,齿面硬度162—185HBS
计算应力循环次数N:同高速级斜齿轮的计算 N1=60 n1jL h=1.748×108
N2= N1/i1=0.858×108
计算内容

计算结果
查文献[2]图5-17得:ZN1=1.12 Z N2=1.14
按齿面硬度250HBS和162HBS由文献[2]图(5-16(b))得:σHlim1=690Mpa, σHlim2=440 Mpa
由文献[2]式5-28计算许用接触应力:
[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=710.976 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=461.472 Mpa
因[σH]2〈[σH]1,所以取[σH]= [σH]2 =461.472 Mpa
②按接触强度确定中心距
小轮转距T1=136.283N.m=136283N.m
初取KtZεt2=1.1 由文献[2]表5-5得ZE=188.9 ,减速传动u=i23=2.034,取Φa=0.35

计算中心距a: a≥
=145.294mm
取中心距 a=150mm估算模数m=(0.007~0.02)a=(0.007~0.02)×150=
1.05~3
取标准模数m=2
小齿轮齿数

齿轮分度圆直径

齿轮齿顶圆直径:

齿轮基圆直径: mm
mm
圆周速度
由文献[2]表5-6 取齿轮精度为8级
按电机驱动,载荷平稳,而工作机载荷微振,由文献[2]表5-3 取 KA=1.25
按8级精度和 取KV=1.02
齿宽 b= ,取标准b=53mm
由文献[2]图5-7(a)按b/d1=53/100=0.53,取Kβ=1.03
由文献[2]表5-4,Kα=1.1
载荷系数K= KAKVKβKα=
计算端面重合度:

安全。
③校核齿根弯曲疲劳强度
按z1=50, z2=100,由文献[2]图5-14得YFa1=2.36 ,YFa2=2.22
由文献[2]图5-15得YSa1= 1.71,YSa2=1.80。
Yε=0.25+0.75/ εα=0.25+0.75/1.804=0.666
由文献[2]图5-18(b),σFlim1=290Mp, σFlim2=152Mp
由文献[2]图5-19,YN1= YN2=1.0,因为m=4〈5mm,YX1= YX2=1.0。
取YST=2.0,SFmin=1.4。
计算许用弯曲应力:
[σF1]= σFlim1YST YN1 YX1/SFmin=414Mp
[σF2]= σFlim2YST YN2 YX2/SFmin=217Mp
计算齿根弯曲应力:
σF1=2KT1YFa1YSa1Yε/bd1m=2×1.445×136283×2.36×1.71×0.666/53×100×2=99.866Mp〈[σF1]
σF2=σF1 YFa2YSa2/ YFa1YSa1=98.866Mp〈[σF2]
均安全。
五.轴的结构设计和轴承的选择
a1=112mm, a2=150mm,
bh2=45mm, bh1= bh2+(5~10)=50mm
bl2=53mm, bl1= bl2+(5~10)=60mm
(h----高速轴,l----低速轴)
考虑相邻齿轮沿轴向不发生干涉,计入尺寸s=10mm,考虑齿轮与箱体内壁沿轴向不发生干涉,计入尺寸k=10mm,为保证滚动轴承放入箱体轴承座孔内,计入尺寸c=5mm,初取轴承宽度分别为n1=20mm,n2=22,n3=22mm,3根轴的支撑跨距分别为:
计算内容

低速级直齿轮主要参数:
m=2
z1=50, z1=50 z2=100
u=2.034
d1=100mm
d2=200mm
da1=104mm
da2=204mm
df1=
d1-2(ha*+ c*) m=95mm
df2=
d2-2(ha*+ c*) m=195mm
a=1/2(d2+ d1)=150mm
齿宽b2 =b=53mm
b1=b2+
(5~10)=60mm

计算结果
l1=2(c+k)+bh1+s+bl1+n1=2×(5+10)+50+10+60+20=170mm
l2=2(c+k)+bh1+s+bl1+n2=2×(5+10)+50+10+60+20=

172mm
l3=2(c+k)+bh1+s+bl1+n3=2×(5+10)+50+10+60+20=172mm
(2)高速轴的设计:
①选择轴的材料及热处理
由于高速轴小齿轮直径较小,所以采用齿轮轴,选用40r钢,
②轴的受力分析:
如图1轴的受力分析:

lAB=l1=170mm,
lAC=n1/2+c+k+bh1/2=20/2+5+10+50/2=50mm
lBC= lAB- lAC=170-50=120mm
(a) 计算齿轮啮合力:
Ft1=2000T1/d1=2000×51.687/61.091=162.131N
Fr1=Ft1tanαn/cosβ1692.13×tan20°/cos10.8441°=627.083N
Fa1= Ft1tanβ×tan10.8441°=324.141N
(b) 求水平面内支承反力,轴在水平面内和垂直面的受力简图如下图:

RAx= Ft1 lBC/ lAB=1692.131×120/170=1194.445N
RBx= Ft1-RAx=1692.131-1194.445=497.686N
RAy=(Fr1lBC+Fa1d1/2)/lAB=(627.083×120+324.141×
61.091/2)/170=500.888N
RBy= Fr1-RAy=627.083-500.888=126.195N
(c) 支承反力

弯矩MA= MB=0,MC1= RA lAC=64760.85N.mm
MC2= RB lBC=61612.32N.mm
转矩T= Ft1 d1/2=51686.987N.mm
计算内容

计算结果

d≥ ③轴的结构设计
按经验公式,减速器输入端轴径A0 由文献[2]表8-2,取A0=100
则d≥100 ,由于外伸端轴开一键槽,
d=17.557(1+5%)=18.435取d=20mm,由于da1<2d,用齿轮轴,根据轴上零件的布置、安装和定位的需要,初定轴段直径和长度,其中轴颈、轴的结构尺寸应与轴上相关零件的结构尺寸联系起来考虑。
初定轴的结构尺寸如下图:

高速轴上轴承选择:选择轴承30205 GB/T297-94。
(2)中间轴(2轴)的设计:
①选择轴的材料及热处理
选用45号纲调质处理。
②轴的受力分析:
如下图轴的受力分析:

计算内容

计算结果

lAB=l2=172mm,
lAC=n2/2+c+k+bh1/2=22/2+5+10+50/2=51mm
lBC= lAB- lAC=172-51=121mm
lBD=n2/2+c+k+bl1/2=22/2+5+10+60/2=56mm
(a) 计算齿轮啮合力:
Ft2=2000T2/d2=2000×136.283/162.909=1673.118N
Fr2=Ft2tanαn/cosβ=1673.118×tan20°/cos10.8441°=620.037N
Fa2=Ft2tanβ=1673.118×tan10.8441°=320.499N
Ft3=2000T2/d3=2000×136.283/100=2725.660N
Fr3=Ft3tanα=2725.660×tan20°=992.059N
(b)求水平面内和垂直面内的支反力
RAx=(Ft2lBC+Ft3lBD )/lAB=(1673.118×121+2725.660×56)/172=2064.443N
RBx=Ft2+Ft3-RAX=1673.118+2725.660-2064.443=2334.35N
RAY=(Fa2d2/2-Fr2lBC+Fr3lBD)/lAB=(320.449×162.909/2-620.037×121+992.059×56)=190.336N
RBY=Fr3-Fr2-RAY=992.059-620.037-190.336=
计算内容

计算结果
181.656N
RA=2073.191N, RB=2341.392N
③轴的结构设计
按经验公式, d≥A0 由文献[2]表8-2,取A0=110
则d≥110 ,取开键槽处d=35mm
根据轴上零件的布置、安装和定位的需要,初定轴段直径和长度,其中轴颈、轴的结构尺寸应与轴上相关零件的结构尺寸联系起来考虑。
初定轴的结构尺寸如下图:

中间轴上轴承选择:选择轴承6206 GB/T276-94。
(3)低速轴(3轴)的设计:
①选择轴的材料及热处理
选用45号纲调质处理。
②轴的受力分析:
如下图轴的受力分析:

计算内容

计算结果

初估轴径:
d≥A0 =110
联接联轴器的轴端有一键槽,dmin=33.5(1+3%)=34.351mm,取标准d=35mm
轴上危险截面轴径计算:d=(0.3~0.4)a=(0.3~0.4)×150=45~60mm 最小值dmin =45×(1+3%)=46.35mm,取标准
计算内容 计算结果
50mm
初选6207GB/T276-94轴承,其内径,外径,宽度为40×80×18
轴上各轴径及长度初步安排如下图:

③低速级轴及轴上轴承的强度校核
a、 低速级轴的强度校核
①按弯扭合成强度校核:
转矩按脉动循环变化,α≈0.6
Mca1= Mc=106962.324N.mm
Mca2=
Mca3=αT=159679.800N.mm
计算弯矩图如下图:

计算内容

计算结果

Ⅱ剖面直径最小,而计算弯矩较大,Ⅷ剖面计算弯矩最大,所以校核Ⅱ,Ⅷ剖面。
Ⅱ剖面:σca= Mca3/W=159679.8/0.1×35³=37.243Mp
Ⅷ剖面:σca= Mca2/W=192194.114/0.1×50³=15.376Mp
对于45号纲,σB=637Mp,查文献[2]表8-3得
[σb] -1=59
Mp,σca<[σb] -1,安全。
②精确校核低速轴的疲劳强度
a、 判断危险截面:
各个剖面均有可能有危险剖面。其中,Ⅱ,Ⅲ,Ⅳ剖面为过度圆角引起应力集中,只算Ⅱ剖面即可。Ⅰ剖面与Ⅱ剖面比较,只是应力集中影响不同,可取应力集中系数较大者进行验算。Ⅸ--Ⅹ面比较,它们直径均相同,Ⅸ与Ⅹ剖面计算弯矩值小,Ⅷ剖面虽然计算弯矩值最大,但应力集中影响较小(过盈配合及键槽引起的应力集中均在两端),所以Ⅵ与Ⅶ剖面危险,Ⅵ与Ⅶ剖面的距离较接近(可取5mm左右),承载情况也很接近,可取应力集中系数较大值进行验算。
计算内容

计算结果
b.较核Ⅰ、Ⅱ剖面疲劳强度:Ⅰ剖面因键槽引
起的应力集中系数由文献[2]附表1-1查得:kσ=1.76, kτ=1.54
Ⅱ剖面配合按H7/K6,引起的应力集中系数由文献[2]附表1-1得:kσ=1.97, kτ=1.51。Ⅱ剖面因过渡圆角引起的应力集中系数查文献[2]附表1-2(用插入法): (过渡圆角半径根据D-d由文献[1]表4.2-13查取) kτ=1.419,故应按过渡圆角引起的应力集中系数验算Ⅱ剖面
Ⅱ剖面产生的扭应力、应力幅、平均应力为:
τmax =T/ WT=266.133/0.2×35³=31.036Mp,
τa=τm =τmax /2=15.52Mp
绝对尺寸影响系数查文献[2]附表1-4得:εσ =0.88,ετ =0.81,表面质量系数查文献[2]附表1-5:βσ =0.92,βτ =0.92
Ⅱ剖面安全系数为:
S=Sτ=
取[S]=1.5~1.8,S>[S] Ⅱ剖面安全。
b、 校核Ⅵ,Ⅶ剖面:
Ⅵ剖面按H7/K6配合,引起的应力集中系数查附表1-1,kσ=1.97, kτ=1.51
Ⅵ剖面因过渡圆角引起的应力集中系数查附表1-2, ,kσ=1.612,kτ=1.43
Ⅶ剖面因键槽引起的应力集中系数查文献[2]附表1-1得:kσ=1.82, kτ=1.62。故应按过渡圆角引起
计算内容

计算结果
的应力集中系数来验算Ⅵ剖面
MVⅠ=113 RA=922.089×113=104196.057N.mm, TVⅠ=266133N.mm
Ⅵ剖面产生的正应力及其应力幅、平均应力:
σmax= MVⅠ/W=104196.057/0.1×50³=8.336Mp
σa=σmax=8.366 σm=0
Ⅵ剖面产生的扭应力及其应力幅,平均应力为:
τmax =TⅥ/ WT=266133/0.2×50³
绝对尺寸影响系数由文献[2]附表1-4得:εσ =0.84,ετ
=0.78
表面质量系数由文献[2]附表1-5查得:βσ =0.92,βτ =0.92
Ⅵ剖面的安全系数:
Sσ =
Sτ=
S=
取[S]= 1.5~1.8,S>[S] Ⅵ剖面安全。
六.各个轴上键的选择及校核
1.高速轴上键的选择:
初选A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm,查文献[2]表2-10,许用挤压应力[σp]=110Mp,σp= 满足要求;

计算内容

高速轴上
选A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm
中间轴
选A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm,

计算结果
2.中间轴键的选择:
A处:初选A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm, [σp]=110Mp
σp= 满足要求;
B处:初选A型10×45 GB1095-79:
b=10mm,h=8mm,L=32mm,l=22mm,[σp]=110Mp
σp= 满足要求.
3. 低速轴上键的选择:
a.联轴器处选A型普通平键
初选A型10×50 GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm,查文献[2]表2-10,许用挤压应力[σp]=110Mp
σp= 满足要求.
b. 齿轮处初选A型14×40 GB1096-79:b=14mm,h=9mm,L=40mm,l=26mm, [σp]=110Mp
σp= 满足要求.
七.联轴器的选择
根据设计题目的要求,减速器只有低速轴上放置一联轴器。
查表取工作情况系数K=1.25~1.5 取K=1.5
计算转矩 Tc=KT=1.5×266.133=399.200Mp
选用HL3型联轴器:J40×84GB5014-85,[T]=630N.m, Tc<[T],n<[n],所选联轴器合适。
低速轴
联轴器处选A型10×50GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm
低速轴
齿轮处初选A型14×40GB1096-79:
b=14mm,h=9mm,L=40mm,l=26mm

选用HL3型联轴器:J40×84GB5014-85
参考资料:机械课程设计,理论力学

8. 带式输送机传动装置 课程设计

带式运输机传动装置减速器课程设计发去,仅供参考。

阅读全文

与驱动装置课程设计相关的资料

热点内容
机械识图中C表示什么 浏览:298
东莞艺神五金制品厂 浏览:100
某个同学用下图所示装置探究实验 浏览:811
楼道暖气阀门半开 浏览:228
德山五金市场在哪里 浏览:46
钻石牌座扇轴承怎么拆视频 浏览:169
小电流装置作用 浏览:46
太阳能下水管道阀门 浏览:92
建筑公司租赁设备没有发票怎么办 浏览:479
广西电子称重仪表多少钱一台 浏览:109
楼道暖气片阀门开关示意图 浏览:665
军用超声波有什么用 浏览:191
机械设备抵债协议怎么写 浏览:283
浩工阀门质量怎么样 浏览:612
上海市五金批发市场商品培 浏览:821
在继电保护配电自动化装置 浏览:609
连接电路器材是什么 浏览:944
电梯上什么装置起超速保护作用 浏览:470
新桑塔仪表盘怎么改时间 浏览:582
水箱自动清洗装置改造 浏览:453