A. 磁场强度多少的磁场可称为强磁场
强磁场一般叫做超强磁场,2T以上就叫做超强磁场
希望下面的文字对你有帮助
强磁版场权实验装置是开展强磁场下物理实验的最基本条件。建立20T以上的稳态强磁场装置是复杂的涉及多学科和高难度的大型综合性科学工程,其建设费用高,磁体装置的运行费用也很高。正因为如此,目前国际上拥有20T以上的稳态磁体的强磁场实验中心仅分布在主要的工业大国。世界上第一个强磁场实验室于1960年建于美国的MIT。随后,欧州的英国、荷兰、法国和德国以及东欧和苏联相继在70年代建立了强磁场实验室。日本的强磁场实验室建于80年代初。磁场水平由60年代的20T,提高到80年代的30T。90年代初,美国政府决定在Florida建立新的国家强磁场实验室,日本在筑波建立了新的强磁场实验室,强场磁体技术有了长足的进步和发展,稳态磁场水平近期可望达到40-50T。
B. 我国建成“稳态强磁场”实验装置是真的吗
1.纳米是一个微小的长度单位,1纳米等于10亿分之一米。根头发丝有7万到8万纳米。纳米技术这个词汇出现在1974年。纳米科学、纳米技术是在0。10到100纳米尺度的空间内研究电子、原子和分子运动规律及特性。纳米材料是纳米技术的重要的组成部分,也是国际上竞争的热点和难点。碳纳米管自从1991年被发现以来,就一直被誉为未来的材料。碳纳米管在强度上大约比钢强100倍,其传热性能优于所有已知的其它材料。碳纳米管具有良好的导电性,在常温下导电时,几乎不产生电阻。纳米陶瓷材料在1600摄氏度高温下能像橡皮泥那样柔软,在室温下也能自由弯曲。从1998年世界上第一只纳米晶体管制成,到1999年100纳米芯片问世,使20世纪最后10年世界上出现的“纳米热”进一步升温。我国在纳米技术领域占有一度之地,处于国际先进行列。已成功制备出包括金属、合金、氧经化物、氢化物、碳化物、离子晶体和半导体等多种纳米材料,合成出多种同轴纳米电缆,掌握了制备纯净碳纳米管技术,能大批量制备长度为2至3毫米的超长纳米管。合成的最细的碳纳米管的直径只有0。33纳米,这不但打破了我国科学家自已不久前创造的直径只为0。5纳米的世界纪录,而且突破了日本科学家1992年所提出的0。4纳米的理论极限值。《稻草变黄金——从四氯化碳制成金刚石》的文章高度评价。最近又研制成功新型纳米材料——超双疏性界面材料。这种材料具有超疏水性及超疏油性,制成纺织品,不染油污,不用洗染。纳米技术应用前景十分广阔,经济效益十分巨大,美国权威机构预测,2010年纳米技术市场估计达到14400亿美元,纳米技术未来的应用将远远超过计算机工业。纳米复合、塑胶、橡胶和纤维的改性,纳米功能涂层材料的设计和应用,将给传统产生和产品注入新的高科技含量。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”现在我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。纳米布料、服装已批量生产,象电脑工作装、无静电服、防紫外线服等纳米服装都已问世。加入纳米技术的新型油漆,不仅耐洗刷性提高了十几倍,而且无毒无害无异味。一张纳米光盘上能存几百部,上千部电影,而一张普通光盘只能存两部电影。纳米技术正在改善着、提高着人们的生活质量。2.超导技术的发展概况1962年,年仅20多岁的剑桥大学实验物理研究生约瑟夫逊在著名科学家安德森指导下研究超导体能隙性质,他提出在超导结中,电子对可以通过氧化层形成无阻的超导电流,这个现象称作直流约瑟夫逊效应。当外加直流电压为V时,除直流超导电流之外,还存在交流电流,这个现象称作交流约瑟夫逊效应。将超导体放在磁场中,磁场透入氧化层,这时超导结的最大超导电流随外磁场大小作有规律的变化。约瑟夫逊的这一重要发现为超导体中电子对运动提供了证据,使对超导现象本质的认识更加深入。约瑟夫森效应成为微弱电磁信号探测和其他电子学应用的基础。70年代超导列车成功地进行了载人可行性试验。超导列车是在车上安装强大的超导磁体,地上安放一系列金属环状线圈。当车辆行进时,车上的磁体在地上的线圈中感应起相反的磁极,使两者的斥力将车子浮出地面。车辆在电机牵引下无摩擦地前进,时速可高达500千米。1987年3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。1987年日本铁道综合技术研究所的“MLU002”号磁悬浮实验车开始试运行1991年3月日本住友电气工业公司展示了世界上第一个超导磁体。1991年10月日本原子能研究所和东芝公司共同研制成核聚变堆用的新型超导线圈。该线圈电流密度达到每平方毫米40安培,为过去的3倍多,达到世界最高水准。该研究所把这个线圈大型化后提供给国际热核聚变堆使用。这个新型磁体使用的超导材料是铌和锡的化合物。1992年1月27日第一艘由日本船舶和海洋基金会建造的超导船“大和”1号在日本神户下水试航。超导船由船上的超导磁体产生强磁场,船两侧的正负电极使水中电流从船的一侧向另一侧流动,磁场和电流之间的洛化兹力驱动船舶高速前进。这种高速超导船直到目前尚未进入实用化阶段,但实验证明,这种船舶有可能引发船舶工业爆发一次革命,就像当年富尔顿发明轮船最后取代了帆船那样。1992年一个以巨型超导磁体为主的超导超级对撞机特大型设备,于美国得克萨斯州建成并投入使用,耗资超过82亿美元。1996年改进高温超导电线的研究工作取得进展,制成了第一条地下输电电缆。欧洲电缆巨头皮雷利电缆公司、美国超导体公司和旧金山的电力研究所的工人,共同把6000米长的铋、锶、钙、铜和氧制成的线缠绕到一根保持超导温度的液氮的空管子上。目前国内外的研究状况及发展趋势强磁场实验装置是开展强磁场下物理实验的最基本条件。建立20T以上的稳态强磁场装置是复杂的涉及多学科和高难度的大型综合性科学工程,其建设费用高,磁体装置的运行费用也很高。正因为如此,目前国际上拥有20T以上的稳态磁体的强磁场实验中心仅分布在主要的工业大国。世界上第一个强磁场实验室于1960年建于美国的MIT。随后,欧州的英国、荷兰、法国和德国以及东欧和苏联相继在70年代建立了强磁场实验室。日本的强磁场实验室建于80年代初。磁场水平由60年代的20T,提高到80年代的30T。90年代初,美国政府决定在Florida建立新的国家强磁场实验室,日本在筑波建立了新的强磁场实验室,强场磁体技术有了长足的进步和发展,稳态磁场水平近期可望达到40-50T。伴随着强磁场实验室的建立,强磁场下的物理研究也在不断深入。量子霍尔效应的发现得到了1985年诺贝尔物理学奖。它是在20T稳态强磁场中研究金属-氧化物-半导体场效应晶体管输运过程时观测到的。近年来,有关强磁场下物理工作的文章对每个强磁场实验室来说平均每年都在上百篇,其中有很多重要的科学发现。目前的发展趋势普遍是将凝聚态物理学领域中前沿的研究对象如高温超导材料、纳米材料、低维系统等同强磁场极端条件相结合加以研究。在Grenoble强磁场实验室,半导体材料和半导体超晶格中的光电特性以及元激发及其互作用等是其主要的研究内容,而在美国、日本等强磁场实验室,则侧重在高温超导材料、低维系统、强关联电子系统、人造超晶格以及新材料等方面。同时,强磁场下的化学反应过程、生物效应等方面的研究也逐渐为人们所重视。在中国虽有一些6T-12T的超导磁体分散在全国各地,但尚未形成一个全国性的强磁场实验中心,我国在10T以上稳态强磁场下的系统的科学研究工作尚属空白。为满足国内强磁场研究工作的需要,早在1984年中国科学院数理学部就组织论证,决策在等离子体物理研究所建立以20T稳态强磁场装置为主体的强磁场实验室。该装置于1992年建成并投入运行。与此同时,实验室相继建成了多个能满足不同物理实验、场强在15T左右的稳态强磁场装置,配备了相应的输运和磁化测量系统以及低温系统。中国科学院院士、著名物理学家冯端先生在了解了合肥强磁场实验室的情况后非常感慨地说:过去中国没有强磁场条件,对有关强磁场下的物理工作连想都不敢想,现在有了强磁场条件我们应该好好的考虑考虑这方面的问题了。3.磁悬浮列车的原理并不深奥。它是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。科学家将“磁性悬浮”这种原理运用在铁路运输系统上,使列车完全脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮列车”,亦称之为“磁垫车”。由于磁铁有同性相斥和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导体电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁铁和导轨间保持10—15毫米的间隙,并使导轨钢板的吸引力与车辆的重力平衡,从而使车体悬浮于车道的导轨面上运行。磁悬浮列车与当今的高速列车相比,具有许多无可比拟的优点:由于磁悬浮列车是轨道上行驶,导轨与机车之间不存在任何实际的接触,成为“无轮”状态,故其几乎没有轮、轨之间的摩察,时速高达几百公里;磁悬浮列车可靠性大、维修简便、成本低,其能源消耗仅是汽车的一半、飞机的四分之一;噪音小,当磁悬浮列车时速达300公里以上时,噪声只有656分贝,仅相当于一个人大声地说话,比汽车驶过的声音还小;由于它以电为动力,在轨道沿线不会排放废气,无污染,是一种名副其实的绿色交通工具。磁悬浮列车是现代高技术的综合集成,被称为20世纪最伟大的技术发明之一。与传统的轮轨列车相比,磁悬浮列车最大的特点是安静和平稳。由於依靠强大磁力支撑起的车厢,其底部电磁铁在悬浮系统的控制下与轨道保持有一厘米的间隙,列车运行时是不接触轨道的,因此,即使列车高速运行,乘客也很难感受到震动,走在车厢内就像走在平地上一样。据悉,磁悬浮列车的试制应用技术在欧洲和日本起步较早,现在的运行时速已高达450至550公里。技术发展史1934年,德国人海曼‧开普提出了磁悬浮技术的第一份专利。1969-1984年,德国人造了六代磁悬浮列车。1981年,德国开始修建第一条磁悬浮铁路,至1987年完工。90年代,由中国西南交大、国防科大牵头,我国对磁悬浮技术开展了系统研究,并建成了磁悬浮列车模型和样车。我国第一条磁悬浮列车专线将在北京八达岭风景区开始建设,往返全程近4公里,预计2002年可正式投入使用。连接浦东国际机场和陆家嘴的上海磁悬浮新干线全长40公里,时速可达400公里,将成为我国第一条“世界级”磁悬浮专线车。
C. 我国为什么要研制强磁源
据悉,中科院合肥强磁中心所研制的“世界第二强”强磁源已经于2017年2月顺利结题。该项目所研制的磁场强度高达40万高斯,位居世界第二,而目前的世界纪录为45万高斯。既然国外已经有人做出了世界第一强的磁场源,那么为什么我国仍要继续研发一个“世界第二”的强磁源呢,其意义何在呢?
据中科院合肥物质科学研究院院长匡光力透露,现在所研制的混合磁体装置是由一个能产生30万高斯的稳态磁场水冷磁体和一个能产生10万高斯的稳态磁场的超导磁体组成(如图1)。虽然从数学上来说,30+10=40只是一个简单的数学运算,也简单地遵从着磁场的叠加定理,但是由于如此强的两个磁体相组合,它们之间存在着如此强大的相互作用力。
D. 全超导托卡马克核聚变实验装置的基本原理
核能是能源家族的新成员,包括裂变能和聚变能两种主要形式。裂变能是重金属元素的核子通过裂变而释放的巨大能量。受控核裂变技术的发展已使裂变能的应用实现了商用化,如核(裂变)电站。裂变需要的铀等重金属元素在地球上含量稀少,而且常规裂变反应堆会产生放射性较强的核废料,这些因素限制了裂变能的发展。聚变能是两个较轻的原子核聚合为一个较重的原子核并释放出的能量。目前开展的受控核聚变研究正是致力于实现聚变能的和平利用。其实,人类已经实现了氘氚核聚变--氢弹爆炸,但那是不可控制的瞬间能量释放,人类更需要受控核聚变。维系聚变的燃料是氢的同位素氘和氚,氘在地球的海水中有极其丰富的蕴藏量。经测算,l升海水所含氘产生的聚变能等同于300升汽油所释放的能量。海水中氘的储量可使人类使用几十亿年。特别的,聚变产生的废料为氦气,是清洁和安全的。因此,聚变能是一种无限的、清洁的、安全的新能源。这就是世界各国尤其是发达国家不遗余力竞相研究、开发聚变能的根本原因。
受控热核聚变能的研究主要有两种--惯性约束核聚变和磁约束核聚变。前者利用超高强度的激光在极短的时间内辐照氘氚靶来实现聚变,后者则利用强磁场可很好地约束带电粒子的特性,将氘氚气体约束在一个特殊的磁容器中并加热至数亿摄氏度高温,实现聚变反应。
托卡马克(Tokamak)是前苏联科学家于20世纪50年代发明的环形磁约束受控核聚变实验装置。经过近半个世纪的努力,在托卡马克上产生聚变能的科学可行性已被证实,但相关结果都是以短脉冲形式产生的,与实际反应堆的连续运行有较大距离。超导技术成功地应用于产生托卡马克强磁场的线圈上,是受控热核聚变能研究的一个重大突破。超导托卡马克使磁约束位形能连续稳态运行,是公认的探索和解决未来聚变反应堆工程及物理问题的最有效的途径。目前建造超导装置开展聚变研究已成为国际热潮。
托克马克从本质上说是一种脉冲装置,因为等离子体电流是通过感应方式驱动的。但是,存在所谓的“先进托克马克”运行的可能性,即它们可以利用非感应外部驱动和发生在等离子体内的自然的压强驱动电流相结合而实现运行。它们需要仔细地调节压强和约束使之最佳化。在理论和实验上正在研究这种先进托克马克,因为连续运行对聚变功率的产生是最有希望的,其相对小的尺寸导致比类ITER设计更经济的电站。先进超导托克马克实验装置是指装置的环向磁场和极向磁场线圈都是超导材料绕制而成的,它可以大大节省供电功率,长时间维持磁体工作,并且可以得到较高的磁场。
等离子体物理研究所主要从事高温等离子体物理、受控热核聚变技术的研究以及相关高技术的开发研究工作,担负着国家核聚变大科学工程的建设和研究任务,先后建成HT-6B、HT-6M等托卡马克实验装置。1994年底,等离子体所成功地建成我国第一台大型超导托卡马克装置HT-7,使我国进入超导托卡马克研究阶段,研究成果引起了国际聚变界的广泛关注。“九五”国家重大科学工程--大型非圆截面全超导托卡马克核聚变实验装置EAST计划的实施,标志着我国进入国际大型聚变装置(近堆芯参数条件)的实验研究阶段,表明中国核聚变研究在国际上已占有重要地位。
E. 华中科技大学脉冲强磁场实验室的申请批准
在中国和比利时政府间科技合作协议框架下,“超强脉冲磁场开发研究”项目于2002年和2007年两度得到了双方政府的资助,该项目由华中科技大学与比利时鲁汶大学联合执行。以实施该项目为基础,华中科技大学建立了脉冲强磁场实验室。比利时鲁汶大学每年派专家来华工作,指导实验室建设,并接收华中科技大学选派的研究人员前往欧洲强磁场实验室学习,双方开展了大量的合作研究工作。
华中科技大学与鲁汶大学共同合作开发了脉冲磁体设计软件PMDS2.0,被欧洲“DeNUF”项目采纳为磁体设计工具。
2003年至2004年,华中科技大学脉冲强磁场实验室成为教育部重点实验室,研制出国内最高磁场强度的脉冲强磁场装置。之后,华中科技大学又以脉冲强磁场教育部重点实验室的建设为基础,在中比政府间科技合作的支持下,申报了脉冲强磁场国家重大科技基础设施,并获得了批准。
华中科技大学的脉冲强磁场实验室在建设之初,就瞄准世界先进水平,以国际科技合作为支撑,旨在建设高水平的脉冲强磁场装置。经过短短5年的时间,科研水平实现了跨越式发展,磁场强度提高了一倍,为建设世界一流脉冲强磁场装置奠定了坚实基础。同时,学校与世界主要的脉冲强磁场实验室建立了紧密的合作关系,得到世界脉冲强磁场学界的认可。在未来5年内,华中科技大学有望建设世界一流的脉冲强磁场实验室,研制出80特斯拉以上脉冲磁体,冲击世界脉冲磁场强度记录,使中国在脉冲强磁场领域达到世界先进水平 。
F. 陈忠的科研项目列表
1. 国家自然科学基金:不均匀磁场中快速获得高分辨二维核磁共振谱的新技术,2010.1-2012.12.
2. 厦门市科技计划重大项目:厦门半导体照明检测体系建设(二期),2010.1-2011.12.
3. 卫生部科学研究基金--福建省卫生教育联合攻关计划项目:核磁共振代谢组学新技术及其在糖尿病研究中的应用,2009.1-2011.12.
4. 福建省发展和改革委员会产业技术开发专项项目:核磁共振仪器关键技术的研发,2008.9-2011.8.
5. 国家自然科学基金:不稳定不均匀强磁场下的高分辨核磁共振新技术,2008.1-2010.12.
6. 教育部高等学校博士学科点专项科研基金:极端强磁场实验装置中核磁共振新方法,2009.1-2011.12.
7. 国家科技支撑计划子课题:核磁共振波谱仪关键部件和系统软件的研制,2007.1-2009.12.
8. 国家高技术研究发展计划(863计划):半导体照明评价与测试系统建设,2006.10-2009.9.
9. 福建省重大科技项目:福建省半导体照明工程技术研究中心建设,2006.12-2009.12.
10. 厦门市重大科技专项基金:厦门半导体照明检测体系建设,2006.12-2008.6.
11. 厦门大学科技创新团队:光电子与信息技术,2007.1-2009.12.
12. 国家自然科学基金:非均匀体系中的核磁共振新技术及其在物理化学中的应用,2006.1-2008.12.
13. 国家自然科学基金:物理化学新方法在生命科学中的应用子课题,2005.1-2007.12.
14. 教育部新世纪优秀人才支持计划:分子内和分子间多量子相干性质, 2005.1-2007.12.
15. 厦门市重大疾病攻关研究基金:含活性有机钒中药抗糖尿病及其干预大血管并发症的研究2005.1-2007.12.
16. 卫生部卫生教育联合攻关计划项目:抗糖尿病过氧钒配合物的设计合成、作用机理及药理研究2005.1-2005.12.
17. 国家自然科学基金:基于分子间多量子相干的高分辨核磁共振新技术,2004.1-2006.12.
18. 教育部优秀青年教师资助计划:不均匀和不稳定磁场中的高分辨核磁共振新技术,2004.1-2006.12.
19. 国家自然科学基金重点项目子课题:有关分子间多量子跃迁,2003.1-2006.12.
20. 福建省自然科学基金:磁共振成像多阵列探头电子系统和信号处理的关键技术,2002.9-2004.8.
21. 国家自然科学基金:快速研究中药药效组分的核磁共振新技术,2002.1-2002.12.
22. 国家留学回国基金:分子间多量子相干效应及其在核磁共振成像中应用,2001.7-2003.6.
23. 国家自然科学基金:分子间多量子相干性质、机理及其在磁共振成像中的应用,2001.1-2003.12.
24. 国家中医药管理局中医药科学技术研究基金:快速分析中草药药效物质成分的扩散相关核磁共振研究,2001.1-2002.12.
25. 国家自然科学基金重点项目子课题:NMR研究药物小分子与生物靶分子相互作用,1999.1-2002.12.
26. 国家自然科学基金:高分辨核磁共振脉冲梯度场新技术及其应用,1997.1-1999.12.
27. 福建省自然科学基金:扩散相关的多维多核核磁共振技术在中药研究中的应用,1999.5-2002.4.
G. 图甲为一研究电磁感应的实验装置示意图,其中电流传感器(相当于一只理想的电流表)能将各时刻的电流数据
(1)由I-t图象可知当t=0.5s时,I=1.10A;
P=I2R=1.102×1.0W=1.21W
(2)由图知,当金属杆达到稳定运动时的电流为1.60A,
稳定时杆匀内速运动,受力平容衡,则有:mgsinθ=BIL
解得B=
mgsinθ |
IL |
E |
R+r |
BLv |
R+r |
I(R+r) |
BL |
.
H. 中国科学院合肥物质科学研究院的下属研究所简介 等离子体物理研究所成立于1978年9月现已发展成为中国主要核聚变研究基地之一并成为世界实验室在中国设立的核聚变研究中心。先后建成并运行了三代托卡马克核聚变实验装置——常规磁体托卡马克HT-6B、HT-6M,我国第一个圆截面超导托卡马克HT-7,世界上第一个非圆截面全超导托卡马克EAST。随着EAST辅助加热系统建设和装置升级改造,EAST将在国际聚变界上起到更加重要的作用,为ITER和我国下一代聚变堆奠定必要的科学技术基础。等离子体所高度重视大科学工程项目派生出来的技术应用及其发展,积极开拓新的研究领域和交叉科学,确立了低温等离子体技术在环境、新能源、化工、新材料等领域的应用研究。其中,太阳能材料与工程研究方面,建成大面积染料敏化太阳电池制作实验线,并在安徽省铜陵市建立了“染料敏化太阳电池中试生产基地”。等离子体技术应用方面,积极进行技术成果转化,2012年底与黑龙江省牡丹江市签约建设“中科院等离子体应用技术中试基地”。 I. 国之重器稳态强磁场实验装置有何惊艳之处 9月27日,国家重大科技基础设施“稳态强磁场实验装置”在合肥通过国家验收,这使我国成为继美国、法国、荷兰、日本之后第五个拥有稳态强磁场的国家。 据了解,“稳态强磁场实验装置”包括十台强磁场磁体装置和六大类实验测量系统以及极低温、超高压实验系统。中国科学院合肥物质科学研究院为承担项目单位,中国科学技术大学为共建单位。稳态强磁场研制团队经过多年自主创新,打破国际技术壁垒,成功克服关键材料国际限制、关键技术国内空白等重大难题,成功建成继美国之后世界第二台40T级混合磁体,建成三台场强创世界纪录的水冷磁体。首创SMA组合显微系统,建立了国际领先的科学实验系统,实现了我国稳态强磁场极端条件的重大突破。 J. 稳态强磁场的简介 磁现象是物质的基本现象之一。科学研究早已证实,当物质处在磁场中,其内部结构可能发生改变,磁场因而一直是研究物理等诸多学科的一种非常有用的工具。物质结构和状态在强磁场环境下都可能发生变化,呈现出多样的物理、化学现象和效应。 与稳态强磁场实验装置国家验收图片相关的资料
热点内容
东莞艺神五金制品厂
浏览:100
某个同学用下图所示装置探究实验
浏览:811
楼道暖气阀门半开
浏览:228
德山五金市场在哪里
浏览:46
钻石牌座扇轴承怎么拆视频
浏览:169
小电流装置作用
浏览:46
太阳能下水管道阀门
浏览:92
建筑公司租赁设备没有发票怎么办
浏览:479
广西电子称重仪表多少钱一台
浏览:109
楼道暖气片阀门开关示意图
浏览:665
军用超声波有什么用
浏览:191
机械设备抵债协议怎么写
浏览:283
浩工阀门质量怎么样
浏览:612
上海市五金批发市场商品培
浏览:821
在继电保护配电自动化装置
浏览:609
连接电路器材是什么
浏览:944
电梯上什么装置起超速保护作用
浏览:470
新桑塔仪表盘怎么改时间
浏览:582
水箱自动清洗装置改造
浏览:453
机械手表怎么
浏览:800
|