A. 厌氧反应器有什么作用
净化高COD浓度的废水,生产沼气
B. 厌氧系统运行需要检测的哪几个数据
中国水网近日采访了北京市环境保护科学研究院的总工程师王凯军,王凯军总工长期从事水污染控制的研究、开发和技术推广,主持设计了多个较大废水重点治理工程。还主持国家“七五”、“八五”、“九五”和“十五”攻关课题,在业内有着广泛的影响力。 前段时间,由王凯军总工牵头的863课题刚刚结题。该课题是国家重大专项水污染控制技术与治理工程之一,由北京市环境保护科学研究院、清华大学环境科学与工程系、西安交通大学和济南十方环保有限公司共同承担。课题开发了具有自主知识产权的新型厌氧生物反应器-- “厌氧复合循环颗粒污泥悬浮床反应器”。厌氧颗粒污泥悬浮床反应器吸收了UASB、EGSB和IC等现代高效厌氧生物反应器的特点,综合考虑反应器在高负荷下的运行特点,通过设计合理的反应器高径比,配合反应区内循环、出水循环和沼气循环,使反应器具有污泥床层高、污泥浓度高、混合程度高、基质降解推动力高的特点。通过对升流式颗粒污泥床(UASB和EGSB)反应器特性分析的基础上,提出升流式反应器型式、污泥颗粒化和相分离器,这些基本构造型式和新的生物反应现象扩大了生物反应器的内涵,不但可以指导新型厌氧反应器的开发和应用,而且可以进一步扩大到好氧、缺氧生物处理领域。因此,在悬浮床反应器工艺继承了升流式反应器的形式,强调颗粒污泥和生物膜颗粒的统一作用,在流态上保持颗粒(污泥)处于充分的悬浮状态。根据进水量、水质以及反应器运行性能的变化,通过在线复合反馈调节系统采用出水内、外循环与沼气循环相结合的复合循环的方式和技术手段,以促进颗粒污泥的快速形成以及颗粒结构和活性的维持,实现反应器内基质与微生物之间充分接触和传质,加快反应速率。具有以下特点:1) 通过调节和控制污泥床层的悬浮程度,促进颗粒污泥形成及在反应器内的滞留和更新,同时也促进反应器内气/液/固三相之间的充分接触和传质;2) 内、外水循环和沼气循环的比例、化学药剂的投加(量)等可以通过在线仪表进行自动调节和控制,可实现反应器系统内pH和碱度的最优控制;3) 通过调控出水内、外复合循环或沼气循环的方式和比例,可以保证整个系统的高效、低耗、稳定运行。 该课题在厌氧悬浮床理论、厌氧悬浮床反应器流态、动力学、功能扩展等方面取得了创新性成果,示范工程已运行一年以上,厌氧悬浮床反应器负荷稳定在30~40kgCOD/m3.d,最高负荷达52 kgCOD/m3.d,负荷指标达国际厌氧生物反应器先进水平。已申请了国家发明专利5项,形成了高效厌氧生物反应器的专业化研究队伍,所取得的成果具有较好的社会和经济效益。 在采访中,王凯军总工谈到目前厌氧技术主要分为四个方面:工业废水领域、城市污水污泥的厌氧消化及厌氧处理、固体废弃物(包括垃圾填埋物、农业废弃物等)的厌氧处理和农村沼气。城市污水污泥的厌氧消化是比较传统的领域,但在其技术、规模和应用上很难与国外相比较,其与经济、政策和技术有一定关系,而其中最大的问题是技术因素。尽管部分人士认为国内已经有很成功技术也很先进的项目,但是一个项目的成功并不能代表整体水平的高低。就整体而言,国内这方面的技术与国外还是有很大的差距。工业废水的厌氧技术近二十年来发展的比较快,但较国外也还有一定的差距。在整个厌氧技术中,中国只有农村沼气在世界上有一定的立足之地,主要包括两方面:其一是农村沼气室的应用。整个农村有2亿多户农民,到2004年年底有1500万户在运行沼气室,其在全世界应用最多。其二是沼气化粪池的应用。沼气化粪池相当于污水处理中的无动力式反应器,其在全世界的沼气领域中都比较领先,目前据不完全统计全国有10-20万套沼气化粪池的装置。当谈及农村沼气在世界领先的原因是,王凯军说主要是农业部做了大量工作,政策推广了沼气的应用。而在污水领域,业界的人士(如设计院、污水处理厂等)认为厌氧技术比较复杂,中小型的工厂在技术上掌握困难,在运行上也很困难。因此在政策上推行10万吨以下的污水处理厂不要采用厌氧消化。相比而言,欧美一些国家80%都是采用厌氧污泥消化。 当问及厌氧与可持续发展的关系时,王凯军总工说首先得从可持续发展的定义谈起。可持续发展在社会层面和技术上的定义是不一样的。就政治或是行政管理而言,一个城市建立了污水处理厂,污水达标排放得到治理,就可以说该城市得到了可持续发展。而可持续发展的本质是既满足当代人的需求又不危害后代人满足其需求的发展。其核心是经济发展与保护资源、保护生态环境的协调一致,是为了让子孙后代能够享有充分的资源和良好的自然环境。要考虑到对资源的消耗、对土地资源的占用、能源和其他资源的占用是否合理。在技术上要考虑采用高能耗还是低能耗、高土地占有还是低土地占有的技术,同时还要顾及高能耗对其他行业的影响。厌氧技术本身就是一种资源回收技术,其可再生能源。在这种前提下,从能源、资源的消耗上而言,厌氧技术是可持续发展的核心技术。 王凯军总工所在的课题组做了很多厌氧应用的成功案例。比如说其研究的高浓度废水适于采用厌氧技术。在“九五”中就开始做UASB的研究,而其后的“十五”中又开始研究新型高效厌氧生物反应器。其中淀粉废水的处理是非常成功的一个领域,浓度在10000mg/l的淀粉废水最后在具体的处理工程上回收的能源供给给污水处理厂还有一定的富余,此时污水处理厂非消耗能源而是能源产出。初步统计该课题组在淀粉行业的处理工程占全国总量的50%-60%以上。 在整个厌氧技术应用上,中国比较成功地也是在淀粉行业,年产沼气可达几亿方,效益非常可观。此外就是农业领域的应用。目前固体废弃物如填埋垃圾的厌氧技术是一个新的领域。厌氧技术的发展趋势一方面是向高浓度发展,如污泥、粪便等都是10%以上的含固量。另一方面是向低浓度发展,如只有300-500mg/lCOD含量的生活污水。 王凯军总工师从UASB的发明人G.lettingga。lettingga在20世纪70年代开发了UASB,随后在UASB的基础上开发出的EGSB其亦是开发人之一。当今世界上UASB与EGSB的应用超过了80%,lettingga对厌氧技术发展的贡献非常大。值得一提的是他在UASB发明后没有申请专利,lettingga说技术是为全人类服务的。其人格的高尚值得称赞。另外他对发展中的国家帮助和支持非常大,其学生几乎都来自中国、东南亚、非洲和南美等一些发展中国家,每一两个月他都会请各个国家、各种肤色的学生到家里。此外,从专业角度而言,UASB在工业废水已经广泛地应用,但他感兴趣的还有两方面:一为城市污水的厌氧技术,lettingga认为只有在城市污水中得到应用才是厌氧技术的真正推广。目前城市污水的厌氧已在印度、南美、巴西、哥伦比亚等地方大力推广。其二是生活污水的分散处理技术。这种以厌氧为核心的厌氧分散处理符合可持续发展的思想,相反大规模地建污水厂象铺设管道之类反而并不符合可持续发展的思想。
C. 什么是全混式厌氧反应器(CSTR)
全混式厌氧反应器是在常规消化器内安装了搅拌装置,使发酵原料和微生物处于完全混合状态,与常规消化器相比,活性区遍布整个反应器,其效率比常规消化器有明显提高,故名高速消化器,内部结构图和现场图见下图。
该消化器采用连续恒温、连续投料或半连续投料运行,适用于高浓度及含有大量悬浮固体原料的处理。在该消化器内,新进入的原料由于搅拌作用很快与发酵其内的全部发酵液混合,使发酵底物浓度始终保持相对较低状态,而其排出的料液又与发酵液的底物浓度相等,并且在出料时微生物也一起排出,所以,出料浓度一般较高。该消化器是典型的HRT(水力滞留期)、SRT和MRT完全相等的消化器,为了使生长缓慢的产甲烷菌的增殖和冲出的速度保持平衡,所以要求HRT较长,一般要10~15天或更长的时间。
全混式厌氧反应器示意图
全混式厌氧反应器优点:①该工艺可以进入高悬浮固体含量的原料;②消化器内物料均匀分布,避免了分层状态,增加底物和微生物接触的机会;③消化器内温度分布均匀;④进入消化器内的任何一点抑制物质,能够迅速分散保持最低的浓度水平;⑤避免了浮渣结壳、堵塞、气体逸出不畅和沟流现象。
全混式厌氧反应器缺点:①由于该消化器无法做到SRT和MRT在大于HRT的情况下运行,因此消化器体积较大;②要有足够的搅拌,所以能量消化较高;③生产用大型消化器难以做到完全混合;④底物流出该系统时未完全消化,微生物随出料而流失。
D. 什么是厌氧反应器
厌氧反应器也叫厌氧处理工艺有以下几种
一、沼气池(厌氧消化器)采用技术分析和评价
在我国已建成的沼气工程中,所采用的厌氧消化工艺,主要有以下四类,即塞流式消化器,升流式固体反应器,升流式厌氧污泥床和污泥床滤器。
1塞流式反应器(Plug Flow Reactor,简称PFR)
塞流式反应器也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,从另一端排出。
优点:1不需要搅拌,池形结构简单,能耗低;2适用于高SS废水的处理,尤其适用于牛粪的厌氧消化,用于农场有较好的经济效益;3运行方便,故障少,稳定性高。
缺点:1固体物容易沉淀于池底,影响反应器的有效体积,使HRT和SRT降低,效率较低;2需要固体和微生物的回流作为接种物;3因该反应器面积/体积比较大,反应器内难以保持一致的温度;4易产生厚的结壳。
北京市大兴区留民营的鸡粪高温沼气工程采用了该反应器。实践表明,该反应器耐粗放管理,采用高温(55℃)发酵,产气率较高,并且可以杀灭有害生物。但因鸡粪沉渣较多,易生成沉淀而影响反应器的效率。
2升流式固体反应器(Upflow Solids Reactor,简称USR)
升流式固体反应器是一种结构简单、适用于高悬浮固体原料的反应器。原料从底部进入消化器内,与消化器里的活性污泥接触,使原料得到快速消化。未消化的生物质固体颗粒和沼气发酵微生物靠自然沉降滞留于消化器内,上清液从消化器上部溢出,这样可以得到比水力滞留期高得多的固体滞留期(SRT)和微生物滞留期(MRT),从而提高了固体有机物的分解率和消化器的效率。
首都师范大学利用USR进行了鸡粪沼气发酵研究,其进料浓度为TS=5%~6%,COD=42~55g/l,悬浮固体为45~55g/l,在35℃条件下,USR的负荷可达10kgCOD/m3•d,产气率488m3/m3•d,CH4含量60%左右,COD去除率85%左右,SS去除率为6616%。据计算当HRT为5天时SRT为25天。
留民营鸡粪污水中温沼气发酵工程、房山区琉璃河猪粪废水沼气发酵工程、房山区南韩继和平谷县南独乐河猪粪废水沼气工程的厌氧消化器均采用USR工艺,运行稳定,效果较好。
3升流式厌氧污泥床(Upflow Anaerobic Sludge Bed,简称UASB)
UASB是由Lettinga等于1974~1978年研究成功的一项新工艺,是世界上发展最快的消化器。由于该消化器结构简单,运行费用低,处理效率高而引起人们的普遍兴趣。该消化器适用于处理可溶性废水,要求较低的悬浮固体含量。北京环境科学院于1983年首先开展了利用UASB处理丙酮丁醇生产废水的工艺研究,至今我国已对COD为300~500mg/l的生活污水,1000~2000mg/l啤酒废水,3000~5000mg/l的屠宰废水,8000~10000mg/l的豆制品废水及30000~40000mg/l的酒醪滤液等进行了研究工作,并且多数已投产应用。该工艺将污泥的沉降与回流置于一个装置内,降低了造价。
该工艺的优点为:1除三相分离器外,消化器结构简单,没有搅拌装置及供微生物附着的填料;2长的SRT和MRT使其达到了很高的负荷率;3颗粒污泥的形成,使微生物天然固定化,改善了微生物的环境条件,增加了工艺的稳定性;4出水的悬浮固体含量低。
缺点:1需要安装三相分离器;2进水中只能含有低浓度的悬浮固体;3需要有效的布水器使其进料能均匀分布于消化器的底部;4当冲击负荷或进料中悬浮固体含量升高,以及遇到过量有毒物质时,会引起污泥流失,要求较高的管理水平。
UASB是近年来在沼气发酵工程中应用最多的工艺,多用于工业废水和生活污水的厌氧消化。经过固液分离后的畜禽粪便污水也可以采用UASB进行厌氧消化处理。UASB工艺在工厂废水处理中已得到广泛应用。北京啤酒厂采用UASB工艺的厌氧消化工程已被国家环保局定为重点推广项目。
4污泥床滤器(UBF)
它是将UASB和厌氧滤器结合为一体的厌氧消化器。其下部为污泥床,上部设置纤维填料。由于附着于纤维填料上的生物膜补充了污泥床上部微生物的不足,所以效益较高。但每
E. 高效厌氧生物反应器有什么用
利用微生物代谢原理处理各种工业、城市污水是我国实行污染控制的最有效手段之一。高效代谢低能耗的厌氧生物反应器特别适合处理淀粉、糖蜜、酒精、味精等行业的高浓度有机废水。传统的厌氧反应器,如UASB、生物滤床、生物流化床等,虽然比较容易操作,但存在反应器处理效率相对较低的缺点,反应器的有机符合很少超过10kgCOD/m3/d,常常造成水处理装置体积过于庞大。造成传统反应器效率低下的主要原因是降解有机物的微生物在反应器内无法以最大容量、最大活性和最大停留时间存在并进行代谢。膨胀颗粒污泥床反应器(EGSB)是国际上九十年代新开发成功的高效厌氧反应器,被认为是现有厌氧反应器的替代反应器。来自烟台金正环保
F. 关于高中生物探究酵母菌呼吸方式。
一、活动目标
1.进行酵母菌细胞呼吸方式的探究。
2.说出酵母菌细胞呼吸的方式。
二、背景资料
1.相关知识
(1)活细胞都要进行细胞呼吸。细胞通过细胞呼吸获得生命活动所需的能量和中间产物。细胞呼吸分成两种类型,即有氧呼吸和无氧呼吸。
(2)酵母菌是一种单细胞真菌,在有氧和无氧条件下都能生存,属于兼性厌氧菌。酵母菌取材方便,培养简单,是做细胞呼吸研究的好材料。
(3)检测酵母菌细胞呼吸产物的方法简单易行。
(4)制酒业普遍使用不同的酿酒酵母生产葡萄酒、啤酒等。例如,啤酒生产过程就分为麦芽制造、麦芽汁制造、前发酵、后发酵、过滤灭菌、包装等几道工序。
麦芽的制造 大麦(也正在试验用小麦)浸渍吸水后,在适宜的温度和湿度下发芽,发芽时产生各种水解酶,如蛋白酶、糖化酶、葡聚糖酶等,这些酶可将麦芽本身的蛋白质分解成肽和氨基酸,将淀粉分解成糊精和麦芽糖等。发芽到一定程度,就要中止发芽,经过干燥,制成水分含量较低的麦芽。
麦芽汁的制造 麦芽经过适当的粉碎,加入温水,在一定的温度下,利用麦芽本身的酶,进行糖化,主要是将麦芽中的淀粉水解成麦芽糖。为了降低生产成本,还可以加入一定比例的大米粉作辅料,大米粉先加水煮沸。制成的麦芽醪,用过滤槽进行过滤,得到麦芽汁,将麦芽汁输送到麦芽汁煮沸锅中,将多余的水分蒸发掉,并加入酒花。酒花是一种植物的花,加到啤酒中,可使啤酒带有特殊的酒花香味和苦味,同时,酒花中的一些成分还具有防腐作用,可延长啤酒的保存期。
发酵 麦芽汁经过冷却后,加入酵母菌,输送到发酵罐中。一般先通入少量空气,酵母菌可进行短时间的有氧呼吸,使自身增殖,而后开始发酵。传统工艺分为前发酵和后发酵,分别在不同的发酵罐中进行。现在流行的作法是在一个罐内进行前发酵和后发酵。前发酵主要是利用酵母菌将麦芽汁中的麦芽糖转变成酒精,后发酵主要是产生一些具有特殊风味的物质,除掉啤酒中的异味,并促进啤酒的陈熟。这一期间,需要控制一定的罐内压力,使后发酵中产生的二氧化碳保留在啤酒中。
过滤灭菌 经过两个星期左右的发酵,有些啤酒发酵期可能长达几个月,将啤酒经过过滤,除去啤酒中的酵母菌和微小的颗粒,再经过62℃左右的灭菌,然后冷却,啤酒就可以包装。
包装 包装方式主要有瓶装和罐装,还有桶装等。
(5)重铬酸钾可以检测酒精的存在。这一原理可以用来检测司机是否喝了酒。具体做法是:让司机呼出的气体直接接触到载有用硫酸处理过的重铬酸钾或三氧化铬的硅胶(二者均为橙色),如果呼出的气体中含有酒精,重铬酸钾或三氧化铬就会变成灰绿色的硫酸铬。
2.实验原理
(1)在有氧条件下,酵母菌进行有氧呼吸,可以将葡萄糖氧化分解形成二氧化碳和水,并释放能量。在无氧条件下,酵母菌进行无氧呼吸,能将葡萄糖转变成酒精和二氧化碳。
酵母菌有氧呼吸: C6H12O6+6O2+6H2O6CO2+12H2O+能量
酵母菌无氧呼吸:C6H12O62C2H5OH+2CO2+能量
(2)检验酵母菌有氧呼吸和无氧呼吸产生的CO2的量的多少
①将酵母菌两种呼吸方式产生的气体分别通入澄清的石灰水,根据产生的碳酸钙沉淀的多少,即可判断两种方式产生的CO2的量的多少,辨别酵母菌的呼吸类型。反应式如下:CO2+Ca(OH)2→CaCO3+H2O
有条件的地区可考虑用Ba(OH)2代替Ca(OH)2,现象将更明显。
②将酵母菌两种呼吸方式产生的气体分别通入溴麝香草酚蓝溶液,根据溶液颜色的变化,判断两种方式产生的CO2的量的多少。
溴麝香草酚蓝溶液在pH6.0~7.6的环境中,其颜色随着pH值的降低,将发生由蓝→绿→黄绿→黄的颜色变化。
有氧呼吸释放的CO2多,生成的H2CO3多,使溴麝香草酚蓝溶液由蓝→绿→黄绿→黄的时间短;无氧呼吸释放的CO2相对较少,溴麝香草酚蓝溶液由蓝→绿→黄绿→黄的时间较长。根据溴麝香草酚蓝溶液颜色变化的时间长短,可以比较酵母菌两种呼吸方式中CO2释放量的多少。
(3)检验酵母菌无氧呼吸产生酒精
酵母菌无氧呼吸产生的酒精,在酸性条件下很容易与重铬酸钾反应生成灰绿色的硫酸铬。稀的重铬酸钾溶液为透明的橙色。化学反应式为: 3C2H5OH+2K2Cr2O7+8H2SO4=3CH3COOH+2K2SO4+2Cr4(SO4)3+11H2O
三、制作指南
1.材料 新鲜酵母(或干酵母),质量分数为5%的葡萄糖溶液。
2.用具 玻璃棒,玻璃导管,试管,研钵,烧杯,量筒,500 mL广口瓶或锥形瓶,胶塞,滴管。
3.试剂 质量分数为10%的NaOH溶液,澄清的石灰水(或Ba(OH)2溶液),蒸馏水,浓硫酸,重铬酸钾晶体,色拉油,溴麝香草酚蓝溶液。
4.操作要点
(1)制备酵母液
取两份新鲜酵母,每份10 g,分别放入两个编好号的500 mL广口瓶或锥形瓶中,再向瓶中分别加入200 mL质量分数为5%的葡萄糖溶液,制成酵母发酵液,简称酵母液。
(2)实验装置
装置1:
(在装置2的酵母液中加一些色拉油,以隔绝空气)
装置3:同装置1或装置2,但要将酵母液换成葡萄糖液。
(3)检测
①使用石灰水(或Ba(OH)2溶液)检测CO2的生成
在室温25℃、湿度55%条件下,10 min时,可见装置1中石灰水变混浊,装置2中石灰水刚冒出气泡;20 min时,装置2中石灰水变混浊。
实验现象:比较单位时间内两种装置中石灰水混浊的程度。
可观察到装置1与装置2中的酵母液均有气体产生,并使石灰水变浑浊,但装置1中石灰水的混浊程度(沉淀)多于装置2,装置1中石灰水变混浊的时间早于装置2。装置3中不出现石灰水变混浊的现象。
②使用溴麝香草酚蓝溶液检测CO2的生成
溴麝香草酚蓝溶液的配制:在锥形瓶中加入5 mL质量浓度为10-4 g/mL的溴麝香草酚蓝溶液、100 mL蒸馏水、1滴质量浓度为0.1 g/mL的NaOH溶液。此时溶液为蓝色。
注意:仍使用装置1和装置2,但要将瓶中的石灰水换成溴麝香草酚蓝溶液,按装置图将反应容器连接好,装置1和装置2要同时连通溴麝香草酚蓝溶液。
实验现象:在室温25℃、湿度55%条件下,20 min时可见以下现象。
装置1溴麝香草酚蓝溶液在130 s时由蓝色变成绿色;190 s时变成黄绿色;270 s时变成黄色。
装置2溴麝香草酚蓝溶液需330 s才变成黄色。
装置3溴麝香草酚蓝溶液仍为蓝色。
③检测酒精的生成
取3支试管,按装置标号分别给试管标上1、2、3号。向1、2、3号试管中各加入0.1 g重铬酸钾晶体,然后分别向3支试管中小心地加入0.5 mL浓硫酸,振荡试管使晶体溶解,待溶液冷却后备用。在室温25℃、湿度55%条件下,20 min时,将装置1和装置2中的酵母液和装置3中的葡萄糖液取出,分别过滤,将滤液盛在3支干净的试管中。各取出2 mL滤液,分别加入1、2、3号试管中,振荡试管。
实验现象:看单位时间内溶液颜色的变化。
1号试管的溶液(即装置1的溶液)橙色略有变化,即有一点灰绿色出现。
2号试管的溶液(即装置2的溶液)由橙色变为灰绿色(在橙色背景中可能显青黄色)。
3号试管的溶液(即装置3的溶液)仍为橙色。
5.需要注意的几个问题
(1)各装置的连通管尽量不漏气。
(2)检测酒精生成时,配药后要马上检测。
(3)由于装置简单,不可能形成完全的有氧或无氧条件,因此不排除装置1中有酒精生成。检测酒精生成的实验中,装置1可能出现少许的灰绿色。
(4)注意对照装置3的实验结果。
(5)建议将全班学生分成若干个小组进行实验,每组4~6人。
四、教学设计
1.提出问题
创设情境:可从工业制酒引入。
围绕学生对酵母菌的了解,以及如何进行酵母菌细胞呼吸的实验展开教学。
2.作出假设
引导学生围绕酵母菌细胞呼吸的两种可能方式进行讨论。
3.设计实验
重点在引导学生思考以下问题。
(1)如何控制实验中的有氧条件和无氧条件?
(2)怎样鉴定细胞呼吸的产物?重点放在如何检测二氧化碳和酒精的生成,如何比较两种呼吸产物的多少。
4.实施计划
同前面的“操作指南”。
5.分析结果
(1)如果在室温25℃、湿度55%条件下,安装好装置,一般在实验开始后25 min左右就会出现比较明显的实验现象。
(2)无论是酵母菌的有氧呼吸还是无氧呼吸,都可以检测到二氧化碳的生成。二氧化碳的生成量可依据单位时间内石灰水变混浊的程度来判断。
(3)在酵母菌有氧呼吸和无氧呼吸的装置中都可以检测到酒精的生成。这是因为在我国目前中学生物实验室的条件下,难以做到让有氧装置中的每一个酵母菌细胞都处于有氧环境中。因此在有氧呼吸装置中也可能有部分酵母菌进行无氧呼吸,产生酒精。
6.得出结论
教师引导学生通过讨论,得出以下结论。
(1)细胞呼吸有两种方式:有氧呼吸和无氧呼吸。
(2)细胞的无氧呼吸包括两种形式:生成酒精的无氧呼吸和生成乳酸的无氧呼吸。
7.表达交流
从学生开始进行实验,到得到实验结果,大约需要30 min。实验结束后可以安排时间让学生讨论并整理实验结果,各小组派代表汇报、交流。
五、评价建议
1.评价等级分为优、良、及格、不及格四个档次。
2.能比较完整地完成探究活动的学生或小组获得“良”以上的成绩。
3.在探究活动的某个环节有创意、有想法,并进行认真思考和实践的学生或小组获得提高一档的评价。
G. UASB厌氧反应器运行过程中应控制的环境因素有哪些
厌氧生物处理反应器启动时的注意事项有哪些
(1)厌氧化物处理反应器在投入运行之前,必须进行充水试验和气密性试验。充水试验要求无漏水现象,气密性试验要求池内加压到350mm水柱,稳定15min后压力降小于100 mm水柱。而且在进行厌氧污泥的培养和驯化之前,最好使氮气吹扫。
(2)厌氧活性污泥最好从处理同类污水的正在运行的厌氧处理构筑物中取得,也可取自江河湖泊沼泽底部、市政下水道及污水集积处等处于厌氧环境下的淤泥,甚至还可以使用好氧活性污泥法的剩余污泥进行转性培养,但这样做需要的时间要更长的一些。
(3)厌氧化物处理反应器因为微生物增殖缓慢,一般需要的启运时间较长,如果能接种大量的厌氧污泥,可以缩短启动时间。一般接种污泥的数量要达到反应器容积的10% ~9%,具保值根据接种污泥的来源情况而定。接种量越大,启动时间越短,如果接种污泥中含有大量的甲烷菌,效果会更好。
(4)采用中温消化或高温消化时,加热升温的速度越慢越好,一定不能超过1℃/h。同时对含碳水化合物较多、缺乏碱性缓冲物质的废水时,需要补充投加一部分碱源,并严格控制反应器内的PH值在6.8~7.8之间。
(5)启动时的初始有机负荷与厌氧处理方法、待处理废水性质、温度等工艺条件及接种污泥的性质等有关,一般从较低的负荷开始,再逐步增加负荷完成启运过程。例如UASB启动时,初始有机负荷一般为0.1~0.2kgCODCR/(kgMLSS•d),当CODCR去除率达到80%或出水中挥发性有机酸VFA的浓度低于1000mg/L后,再按原有负荷50%的递增幅度增加负荷。如果出水中VFA浓度较高,则不宜提高负荷,甚至要酌情降低负荷。
(6)厌氧反应器的出水以一定的回流以返回反应器,可以回收部分流失的污泥及出水中的缓冲性物质、平衡反应器中水的PH值。一般附着型的反应装置因填料具有一定的拦截作用,可以不用回流出水;而悬浮生长型反应装置启动时因污泥易于流失,可适当出水回流。
(7)对于县浮型厌氧反应装置,可以投加粉末无烟煤、签名册水砂砾、粉末活性炭或絮凝剂,促进污泥的颗粒化。
(8)启动初期水力负代号过高可能造成污泥的大量流失,水力负荷过低又不利于厌氧污泥的筛选。一般在启动初期 选用较低的水力负荷,经过数周后再缓慢平稳地递增。
H. 关于厌氧反应器(高手进!!!)
我看了一下 所谓的内循环UASB和外循环UASB都是一样的结构 只不过改了个名字 便冒充新型的反应器 他们跟EGSB差不多 只不过EGSB是出水回流 他们是三相分离器下部的反应液回流,按原理来说效果肯定不如EGSB的好,UASB是不回流的 回流肯定是污水回流 因为三相分离器有隔绝颗粒污泥流失的效果
I. 厌氧反应器的结构图和安装细则
厌氧反应器也叫厌氧处理工艺有以下几种一、沼气池(厌氧消化器)采用技术分析消化器结构简单,没有搅拌装置及供微生物附着的填料;2长的SRT和MRT使其
J. 厌氧反应器的作用及工作原理
作用:采用生物法处理废水。
工作原理:ECAR充分利用了厌氧颗粒污泥技术,通过外循环为反应器提供充分的上升流速,保持颗粒污泥床的膨胀和反应器内部的混合,提高了反应器的处理效率。
高浓度废水由布水系统从ECAR底部泵入,与反应器内的厌氧颗粒污泥充分混合,绝大部分有机物质被转化为沼气,气液分离模块将沼气、水和污泥实现良好分离,沼气由顶部进入沼气输送系统,废水由出水管流入后续处理系统,厌氧污泥回流至污泥床。
(10)厌氧反应实验教学装置扩展阅读
厌氧反应发生在废水和污泥颗粒接触的过程。在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持有利。在污泥层形成的一些气体附着在污泥颗粒上,附着和没有附着的气体向反应器顶部上升。
上升到表面的污泥撞击三相反应器气体发射器的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,附着和没有附着的气体被收集到反应器顶部的三相分离器的集气室。