Ⅰ 中微子是谁发现的
中微子是组成自然界的最基本的粒子之一,常用符号ν表示。中微子不带电,自旋为1/2,质量非常轻(小于电子的百万分之一),以接近光速运动。
粒子物理的研究结果表明,构成物质世界的最基本的粒子有12种,包括6种夸克(上、下、奇异、粲、底、顶),3种带电轻子(电子、缪子和陶子)和3种中微子(电子中微子,缪中微子和陶中微子)。中微子是1930年德国物理学家泡利为了解释贝塔衰变中能量似乎不守恒而提出的,五十年代才被实验观测到。
中微子只参与非常微弱的弱相互作用,具有最强的穿透力。穿越地球直径那么厚的物质,在100亿个中微子中只有一个会与物质发生反应,因此中微子的检测非常困难。正因为如此,在所有的基本粒子,人们对中微子了解最晚,也最少。实际上,大多数粒子物理和核物理过程都伴随着中微子的产生,例如核反应堆发电(核裂变)、太阳发光(核聚变)、天然放射性(贝塔衰变)、超新星爆发、宇宙射线等等。宇宙中充斥着大量的中微子,大部分为宇宙大爆炸的残留,大约为每立方厘米100个。
1998年,日本超级神岗实验以确凿的证据发现了中微子振荡现象,即一种中微子能够转换为另一种中微子。这间接证明了中微子具有微小的质量。此后,这一结果得到了许多实验的证实。中微子振荡尚未完全研究清楚,它不仅在微观世界最基本的规律中起着重要作用,而且与宇宙的起源与演化有关,例如宇宙中物质与反物质的不对称很有可能是由中微子造成。
由于探测技术的提高,人们可以观测到来自天体的中微子,导致了一种新的天文观测手段的产生。美国正在南极洲冰层中建造一个立方公里大的中微子天文望远镜——冰立方。法国、意大利、俄罗斯也分别在地中海和贝加尔湖中建造中微子天文望远镜。KamLAND观测到了来自地心的中微子,可以用来研究地球构造。
中微子有大量谜团尚未解开。首先它的质量尚未直接测到,大小未知;其次,它的反粒子是它自己还是另外一种粒子;第三,中微子振荡还有两个参数未测到,而这两个参数很可能与宇宙中反物质缺失之谜有关;第四,它有没有磁矩;等等。因此,中微子成了粒子物理、天体物理、宇宙学、地球物理的交叉与热点学科。
什么是中微子?
中微子个头小,不带电,可自由穿过地球,几乎不与任何物质发生作用,号称宇宙间的“隐身人”。科学家观测它颇费周折,从预言它的存在到发现它,用了10多年的时间。
要说中微子,就不得不提它的“老大哥”——原子基本组成之一的中子。中子在衰变成质子和电子(β衰变)时,能量会出现亏损。物理学上著名的哥本哈根学派鼻祖尼尔斯·玻尔据此认为,β衰变过程中能量守恒定律失效。
1931年春,国际核物理会议在罗马召开,当时世界最顶尖的核物理学家汇聚一堂,其中有海森堡、泡利、居里夫人等。泡利在会上提出,β衰变过程中能量守恒定律仍然是正确的,能量亏损的原因是因为中子作为一种大质量的中性粒子在衰变过程中变成了质子、电子和一种质量小的中性粒子,正是这种小质量粒子将能量带走了。泡利预言的这个窃走能量的“小偷”就是中微子。
2. 中微子简史
1930年,德国科学家泡利预言中微子的存在。
1956年,美国莱因斯和柯万在实验中直接观测到中微子,莱因斯获1995年诺贝尔奖。
1962年,美国莱德曼,舒瓦茨,斯坦伯格发现第二种中微子——缪中微子,获1988年诺贝尔奖。
1968年,美国戴维斯发现太阳中微子失踪,获2002年诺贝尔奖。
1985年,日本神岗实验和美国IMB实验发现大气中微子反常现象。
1987年,日本神岗实验和美国IMB实验观测到超新星中微子。日本小柴昌俊获2002年诺贝尔奖。
1989年,欧洲核子研究中心证明存在且只存在三种中微子。
1995年,美国LSND实验发现可能存在第四种中微子——隋性中微子。
1998年,日本超级神岗实验以确凿证据发现中微子振荡现象。
2000年,美国费米实验室发现第三种中微子,陶中微子。
2001年,加拿大SNO实验证实失踪的太阳中微子转换成了其它中微子。
2002年,日本KamLAND实验用反应堆证实太阳中微子振荡。
2003年,日本K2K实验用加速器证实大气中微子振荡。
2006年,美国MINOS实验进一步用加速器证实大气中微子振荡。
2007年,美国费米实验室MiniBooNE实验否定了LSND实验的结果。
3. 大亚湾反应堆中微子实验
中微子是当前粒子物理、天体物理、宇宙学、地球物理的交叉前沿学科,本身性质也有大量谜团尚未解开。在这一领域,大部分成绩均为日本和美国取得。1942年,我国科学家王淦昌提出利用轨道电子俘获检测中微子的可行方案,美国人艾伦成功地用这种方法证明了中微子的存在。80年代,中国原子能科学研究院进行了中微子静止质量的测量,证明电子反中微子的静止质量在30电子伏特以下。
中微子振荡研究的下一步发展,首先必须利用核反应堆精确测量中微子混合角theta13。位于中国深圳的大亚湾核电站具有得天独厚的地理条件,是世界上进行这一测量的最佳地点。由中国科学院高能物理研究所领导的大亚湾反应堆中微子实验于2006年正式启动,联合了国内十多家研究所和大学,美国十多家国家实验室和大学,以及中国香港、中国台湾、俄罗斯、捷克的研究机构。实验总投资约3亿元人民币,预期2010年建成。它的建成运行将使中国在中微子研究中占据重要的国际地位。
中微子具有质量,这是很早就提出过的物理概念。但是人类对于中微子的性质的研究还是非常有限的。我们至今不是非常确定地知道:几种中微子是同一种实物粒子的不同表现,还是不同性质的几种物质粒子,或者是同一种粒子组成的差别相当微小的具有不同质量的粒子。
我们相信,随着人类认识的深化,科学技术的发展,中微子之谜终究是会被攻破的。
Ⅱ 中微子的发现历程
中微子的发现来自19世纪末20世纪初对放射性的研究。研究者发现,在量子世界中,能量的吸收和发射是不连续的。不仅原子的光谱是不连续的,而且原子核中放出的阿尔法射线和伽马射线也是不连续的。这是由于原子核在不同能级间跃迁时释放的,是符合量子世界的规律的。奇怪的是,物质在β衰变过程中释放出的由电子组成的β射线的能谱却是连续的,而且电子只带走了总能量的一部分,还有一部分能量失踪了。物理学上著名的哥本哈根学派领袖尼尔斯·玻尔据此认为,β衰变过程中能量守恒定律失效。
1930年,奥地利物理学家泡利提出了一个假说,认为在β衰变过程中,除了电子之外,同时还有一种静止质量为零、电中性、与光子有所不同的新粒子放射出去,带走了另一部分能量,因此出现了能量亏损。这种粒子与物质的相互作用极弱,以至仪器很难探测得到。未知粒子、电子和反冲核的能量总和是一个确定值,能量守恒仍然成立,只是这种未知粒子与电子之间能量分配比例可以变化而已。1931年春,国际核物理会议在罗马召开,与会者中有海森堡、泡利、居里夫人等,泡利在会上提出了这一理论。当时泡利将这种粒子命名为“中子”,最初他以为这种粒子原来就存在于原子核中,1931年,泡利在美国物理学会的一场讨论会中提出,这种粒子不是原来就存在于原子核中,而是衰变产生的。泡利预言的这个窃走能量的“小偷”就是中微子。1932年真正的中子被发现后,意大利物理学家费米将泡利的“中子”正名为“中微子”。
1933年,意大利物理学家费米提出了β衰变的定量理论,指出自然界中除了已知的引力和电磁力以外,还有第三种相互作用—弱相互作用。β衰变就是核内一个中子通过弱相互作用衰变成一个电子、一个质子和一个中微子。他的理论定量地描述了β射线能谱连续和β衰变半衰期的规律,β能谱连续之谜终于解开了。
美国物理学家柯万(Cowan)和莱因斯(Reines)等第一次通过实验直接探测到了中微子 。他们的实验实际上探测的是核反应堆β衰变发射的电子和反中微子,该电子反中微子与氢原子核(即质子)发生反β衰变,在探测器里形成有特定强度和时间关联的快、慢信号,从而实现对中微子的观测。他们的发现于1995年获得诺贝尔物理学奖 。
1956年,美国莱因斯和柯万在实验中直接观测到中微子,莱因斯获1995年诺贝尔奖。
1962年,美国莱德曼,舒瓦茨,斯坦伯格发现第二种中微子——μ中微子,获1988年诺贝尔奖。
1968年,美国戴维斯发现太阳中微子失踪,获2002年诺贝尔奖。
1985年,日本神岗实验和美国IMB实验发现大气中微子反常现象。
1987年,日本神岗实验和美国IMB实验观测到超新星中微子。日本小柴昌俊获2002年诺贝尔奖。
1989年,欧洲核子研究中心证明存在且只存在三种中微子。
1995年,美国LSND实验发现可能存在第四种中微子——惰性中微子。
1998年,日本超级神岗实验以确凿证据发现中微子振荡现象。日本梶田隆章获2015年诺贝尔奖。
2000年,美国费米实验室发现第三种中微子,τ中微子。
2001年,加拿大SNO实验证实失踪的太阳中微子转换成了其它中微子。最早提出建设思路的是华裔物理学家陈华生博士Herbert H. Chen(美国普林斯顿大学理论物理博士学位,加州大学欧文分校物理学家) 。加拿大阿瑟·麦克唐纳获2015年诺贝尔奖。
2002年,日本KamLAND实验用反应堆证实太阳中微子振荡。
2003年,日本K2K实验用加速器证实大气中微子振荡。
2006年,美国MINOS实验进一步用加速器证实大气中微子振荡。
2007年,美国费米实验室MiniBooNE实验否定了LSND实验的结果。 粒子物理的研究结果表明,构成物质世界的最基本的粒子有12种,包括了6种夸克(上、下、奇、粲、底、顶,每种夸克有三种色,还有以上所述夸克的反夸克),3种带电轻子(电子、μ子和τ子)和3种中微子(电子中微子,μ中微子和τ中微子)而每一种中微子都有与其相对应的反物质。中微子是1930年奥地利物理学家泡利为了解释β衰变中能量似乎不守恒而提出的,1933年正式命名为中微子,1956年才被观测到。
中微子 是一种基本粒子,不带电,质量极小,与其他物质的相互作用十分微弱,在自然界广泛存在。太阳内部核反应产生大量中微子,每秒钟通过我们眼睛的中微子数以十亿计。
Ⅲ 中微子能构成物质么
1. 中微子简介
中微子是组成自然界的最基本的粒子之一,常用符号ν表示。中微子不带电,自旋为1/2,质量非常轻(小于电子的百万分之一),以接近光速运动。
粒子物理的研究结果表明,构成物质世界的最基本的粒子有12种,包括6种夸克(上、下、奇异、粲、底、顶),3种带电轻子(电子、缪子和陶子)和3种中微子(电子中微子,缪中微子和陶中微子)。中微子是1930年德国物理学家泡利为了解释贝塔衰变中能量似乎不守恒而提出的,五十年代才被实验观测到。
中微子只参与非常微弱的弱相互作用,具有最强的穿透力。穿越地球直径那么厚的物质,在100亿个中微子中只有一个会与物质发生反应,因此中微子的检测非常困难。正因为如此,在所有的基本粒子,人们对中微子了解最晚,也最少。实际上,大多数粒子物理和核物理过程都伴随着中微子的产生,例如核反应堆发电(核裂变)、太阳发光(核聚变)、天然放射性(贝塔衰变)、超新星爆发、宇宙射线等等。宇宙中充斥着大量的中微子,大部分为宇宙大爆炸的残留,大约为每立方厘米100个。
1998年,日本超级神岗实验以确凿的证据发现了中微子振荡现象,即一种中微子能够转换为另一种中微子。这间接证明了中微子具有微小的质量。此后,这一结果得到了许多实验的证实。中微子振荡尚未完全研究清楚,它不仅在微观世界最基本的规律中起着重要作用,而且与宇宙的起源与演化有关,例如宇宙中物质与反物质的不对称很有可能是由中微子造成。
由于探测技术的提高,人们可以观测到来自天体的中微子,导致了一种新的天文观测手段的产生。美国正在南极洲冰层中建造一个立方公里大的中微子天文望远镜——冰立方。法国、意大利、俄罗斯也分别在地中海和贝加尔湖中建造中微子天文望远镜。KamLAND观测到了来自地心的中微子,可以用来研究地球构造。
中微子有大量谜团尚未解开。首先它的质量尚未直接测到,大小未知;其次,它的反粒子是它自己还是另外一种粒子;第三,中微子振荡还有两个参数未测到,而这两个参数很可能与宇宙中反物质缺失之谜有关;第四,它有没有磁矩;等等。因此,中微子成了粒子物理、天体物理、宇宙学、地球物理的交叉与热点学科。
什么是中微子?
中微子个头小,不带电,可自由穿过地球,几乎不与任何物质发生作用,号称宇宙间的“隐身人”。科学家观测它颇费周折,从预言它的存在到发现它,用了10多年的时间。
要说中微子,就不得不提它的“老大哥”——原子基本组成之一的中子。中子在衰变成质子和电子(β衰变)时,能量会出现亏损。物理学上著名的哥本哈根学派鼻祖尼尔斯·玻尔据此认为,β衰变过程中能量守恒定律失效。
1931年春,国际核物理会议在罗马召开,当时世界最顶尖的核物理学家汇聚一堂,其中有海森堡、泡利、居里夫人等。泡利在会上提出,β衰变过程中能量守恒定律仍然是正确的,能量亏损的原因是因为中子作为一种大质量的中性粒子在衰变过程中变成了质子、电子和一种质量小的中性粒子,正是这种小质量粒子将能量带走了。泡利预言的这个窃走能量的“小偷”就是中微子。
2. 中微子简史
1930年,德国科学家泡利预言中微子的存在。
1956年,美国莱因斯和柯万在实验中直接观测到中微子,莱因斯获1995年诺贝尔奖。
1962年,美国莱德曼,舒瓦茨,斯坦伯格发现第二种中微子——缪中微子,获1988年诺贝尔奖。
1968年,美国戴维斯发现太阳中微子失踪,获2002年诺贝尔奖。
1985年,日本神岗实验和美国IMB实验发现大气中微子反常现象。
1987年,日本神岗实验和美国IMB实验观测到超新星中微子。日本小柴昌俊获2002年诺贝尔奖。
1989年,欧洲核子研究中心证明存在且只存在三种中微子。
1995年,美国LSND实验发现可能存在第四种中微子——隋性中微子。
1998年,日本超级神岗实验以确凿证据发现中微子振荡现象。
2000年,美国费米实验室发现第三种中微子,陶中微子。
2001年,加拿大SNO实验证实失踪的太阳中微子转换成了其它中微子。
2002年,日本KamLAND实验用反应堆证实太阳中微子振荡。
2003年,日本K2K实验用加速器证实大气中微子振荡。
2006年,美国MINOS实验进一步用加速器证实大气中微子振荡。
2007年,美国费米实验室MiniBooNE实验否定了LSND实验的结果。
3. 大亚湾反应堆中微子实验
中微子是当前粒子物理、天体物理、宇宙学、地球物理的交叉前沿学科,本身性质也有大量谜团尚未解开。在这一领域,大部分成绩均为日本和美国取得。1942年,我国科学家王淦昌提出利用轨道电子俘获检测中微子的可行方案,美国人艾伦成功地用这种方法证明了中微子的存在。80年代,中国原子能科学研究院进行了中微子静止质量的测量,证明电子反中微子的静止质量在30电子伏特以下。
中微子振荡研究的下一步发展,首先必须利用核反应堆精确测量中微子混合角theta13。位于中国深圳的大亚湾核电站具有得天独厚的地理条件,是世界上进行这一测量的最佳地点。由中国科学院高能物理研究所领导的大亚湾反应堆中微子实验于2006年正式启动,联合了国内十多家研究所和大学,美国十多家国家实验室和大学,以及中国香港、中国台湾、俄罗斯、捷克的研究机构。实验总投资约3亿元人民币,预期2010年建成。它的建成运行将使中国在中微子研究中占据重要的国际地位。
中微子具有质量,这是很早就提出过的物理概念。但是人类对于中微子的性质的研究还是非常有限的。我们至今不是非常确定地知道:几种中微子是同一种实物粒子的不同表现,还是不同性质的几种物质粒子,或者是同一种粒子组成的差别相当微小的具有不同质量的粒子。
我的看法是,可能几种中微子还是同一种物质组成的具有不同能量状态和质量的实物粒子,他们肯定地有质量。如果是这样的话,中微子应该存在不同速度的多种能谱型,从零到最大能量容量都有存在。目前这方面的研究还相当有限,这也是中微子难以捉摸的性质所造成的。
An.Lee的看法可能更加激进一点,但可能是非常正确的。他认为,中微子就是由正负电子结合的产物。他归纳说:正负电子可组成为一正一负两个自绕一组的稳定结构,也可以两对正负电子组成四个一组具有相互传递缠绕的稳定结构,还可以组成为六个一组的具有立体空间相互缠绕的稳定结构。他认为,中微子的正负电子学说推导出中微子应当具有基本三种类型,这和我们实际中探测到的三种中微子(电子中微子、μ中微子和τ中微子)是完全一致的。他说,中微子的正负电子学说可以通过中微子相互碰撞和正负电子零速度下飘逸实验来证实。他表示,物理学世界及其研究还要以正负电子作为基点来考虑才行。
按照这个思路,中微子的质量至少应当是三种情况,即两倍电子的质量2me,4me,6me 中微子的质量可能关系到宇宙平衡。宇宙中如果弥漫这种东西,而且是相对比较一致的,那么我们的宇宙就是一个均衡态的宇宙。光的传递可能是需要中微子作用的,只是我们觉察不到。关于中微子磁性的研究可能是揭开“光传递是否需要依靠媒质”最为关键的问题。然而,中微子的性质决定了研究它的复杂性和十分艰难。
如果说世界上的所有物质都是由正负电子组成的,证实了这一点,也就意味着我们找到了组成一切物质的原点物质。这个物理模型确实非常有趣。如果他的这个理论是正确的话,那意味着物理学将发生最为本质的变革。
我们相信,随着人类认识的深化,科学技术的发展,中微子之谜终究是会被攻破的。
编辑词条
开放分类:
物理、基本粒子、核物理、宇宙学、粒子物理
参考资料:
1.大亚湾反应堆中微子实验 http://dayabay.ihep.ac.cn/
贡献者:
apple841018、xug5350、l1332000、翼壬、fjd0105、 冷月痴情、蝼蚁吃月饼、量子物理学家、landw169、caoj73、 小松博客、wqygiop、海量不多喝、wangpijie、xztlsy、弦之月NONO、 高楼居士、天魔龙、景观美
本词条在以下词条中被提及:
超新星、引力坍缩、诺贝尔物理学奖、暗物质、白洞、宇宙大爆炸、弦论、欧洲核子中心、大爆炸宇宙论、贝塔粒子、物理宇宙学、中微子天文望远镜、夸克模型、核衰变、宇宙线、热核聚变双循环模式、雷蒙德·戴维斯、质子、中性粒子、莱德曼、马丁·佩尔、威耳孙D.T.R.
Ⅳ 中微子的穿透力到底有多强有哪些科学依据
中微子的传统的内饰非常强的,据说它可以穿透地球甚至是宇宙当中的一切物质,这是科学家经过多层实验产生的结果。一说到中微子可能很多小伙伴都不知道这是个什么东西,它产生地方就是在核聚变的时候,比如说在核电站反应堆就会产生很多的核反应,或者是一些天然的东西有放射性衰变,那么它都能够产生中微子。中微子是目前科学领域最神秘的东西,人们还不能够将其牢牢的掌握,并且运用它做任何的事情,只是提出了这一个概念,因为在很多的反应当中都发现有能量失衡,但是却计算不出来,很多科学家就猜想是中微子捣的乱,因为它能够将能量携带出去不被人们发现,毕竟它可以穿透任何物质甚至是地球,接下来将会从不同的角度为大家好好讲解一下关于中微子的一些事情。对于这件事情,你要是有什么更好的想法,欢迎写在评论下方,我们一起讨论吧。
Ⅳ 中微子的研究过程
1930年,奥地利物理学家泡利提出存在中微子的假设。1956年,柯温(C.L.Cowan)和弗雷德里克·莱因斯利用核反应堆产物的β衰变产生反中微子,观测到了中微子诱发的反应:
这是第一次从实验上得到中微子存在的证据。
泡利的中微子假说和费米的β衰变理论虽然逐渐被人们接受,但终究还蒙上了一层迷雾:谁也没有见到中微子。就连泡利本人也曾说过,中微子是永远测不到的。在泡利提出中微子假说的时候,我国物理学家王淦昌正在德国柏林大学读研究生,直到回国,他还一直关心着β衰变和检验中微子的实验。1941年,王淦昌写了一篇题为《关于探测中微子的一个建议》的文章,发表在次年美国的《物理评论》杂志上。1942年6月,该刊发表了美国物理学家艾伦根据王淦昌方案作的实验结果,证实了中微子的存在,这是这一年中世界物理学界的一件大事。但当时的实验不是非常成功,直到1952年,艾伦与罗德巴克合作,才第一次成功地完成了实验,同一年,戴维斯也实现了王淦昌的建议,并最终证明中微子不是几个而是一个。
在电子俘获试验证实了中微子的存在以后,进一步的工作就是测量中微子与质子相互作用引起的反应,直接探测中微子。由于中微子与物质相互作用极弱,这种实验是非常困难的。直到1956年,这项实验才由美国物理学家弗雷德里克·莱因斯完成。首先实验需要一个强中微子源,核反应堆就是合适的源。这是由于核燃料吸收中子后会发生裂变,分裂成碎片时又放出中子,从而使其再次裂变。裂变碎片大多是β放射性的,反应堆中有大量裂变碎片,因此它不仅是强大的中子源,也是一个强大的中微子源。因为中微子反应几率很小,要求用大量的靶核,莱因斯选用氢核(质子)作靶核,使用了两个装有氯化镉溶液的容器,夹在三个液体闪烁计数器中。这种闪烁液体是是一种在射线下能发出荧光的液体,每来一个射线就发出一次荧光。由于中微子与构成原子核的质子碰撞时发出的明显的频闪很有特异性,从而证实了中微子的存在。为此,他与发现轻子的美国物理学家马丁·珀尔分享了1995年诺贝尔物理学奖。
理论上讲,中微子的假设非常成功,但要观察它的存在却非常困难。由于它的质量小又不带电荷,与其它粒子间的相互作用非常弱,因而很难探测它的存在。1953年,美国洛斯阿拉莫斯科学实验室的物理学家莱因斯和柯万领导的物理学小组着手进行这种艰难的寻觅。1956年,他们在美国原子能委员会所属的佐治亚州萨凡纳河的一个大型裂变反应堆进行探测,终于探测到反中微子。
1962年又发现另一种反中微子。在泡利提出中微子假说以后,经过26年,人们才第一次捕捉到了中微子,也打破了泡利本人认为中微子永远观测不到的悲观观点。
中微子是哪一味?
每一种中微子都对应一种带电的轻子——电子中微子对应电子,μ中微子对应μ子,同理,τ(希腊字母,普通话念“涛”)中微子对应τ子。
电子中微子
电子与原子相互作用,将能量一下子释放出来,会照亮一个接近球形的区域。
μ中微子
μ子不像电子那样擅长相互作用,它会在冰中穿行至少1千米,产生一个光锥。
τ中微子
τ子会迅速衰变,它的出现和消失会产生两个光球,被称为“双爆”。 为了研究中微子的性质,各国建造了大量探测设施,比较著名的有日本神冈町的地下中微子探测装置、意大利的“宏观”、俄罗斯在贝加尔湖建造的水下中微子探测设施以及美国在南极地区建造的中微子观测装置。
1994年,美国威斯康星大学和加利福尼亚大学的科学家在南极冰原以下800米深处安装辐射探测器,以观测来自宇宙射线中的中微子。使用南极冰原作为探测器的安置场所,是因为冰不产生自然辐射,不会对探测效果产生影响。此外,把探测器埋到深处,是为了过滤掉宇宙中除了中微子之外的其他辐射。
宇宙中微子的产生有几种方式。一种是原生的,在宇宙大爆炸产生,现在为温度很低的宇宙背景中微子。第二种是超新星爆发巨型天体活动中,在引力坍缩过程中,由质子和电子合并成中子过程中产生出来的,SN1987A中微子就是这一类。第三种是在太阳这一类恒星上,通过轻核反应产生的十几MeV以下的中微子。第四种是高能宇宙线粒子射到大气层,与其中的原子核发生核反应,产生π、K介子,这些介子再衰变产生中微子,这种中微子叫“大气中微子”。五是宇宙线中高能质子与宇宙微波背景辐射的光子碰撞产生π介子,这个过程叫“光致π介子”, π介子衰变产生高能中微子,这种中微子能量极高。第六种是宇宙线高能质子打在星体云或星际介质的原子核上产生核反应生成的介子衰变为中微子,特别在一些中子星、脉冲星等星体上可以产生这种中微子。第七种是地球上的物质自发或诱发裂变产物β衰变产生的中微子,这类中微子是很少的。
泡利提出中微子假说时,还不知道中微子有没有质量,只知道即使有质量也是很小的,因为电子的最大能量与衰变时放出的总能量很接近,此时中微子带走的能量就是它的静止能量,只能是很小的。1998年6月,日本科学家宣布他们的超级神冈中微子探测装置掌握了足够的实验证据说明中微子具有静止质量,这一发现引起广泛关注。来自24个国家的350多名高能物理学家云集日本中部岐阜县的小镇神冈町,希望亲眼目睹实验过程。美国哈佛大学理论物理学家谢尔登·格拉休指出:“这是最近几十年来粒子物理领域最重要的发现之一。”
超级神冈探测器主要用来研究太阳中微子。太阳是地球上所有生命的源泉,也是地球表面最主要的能量来源。事实 上,到达地球太阳光热辐射总功率大约是170万亿千瓦,只占太阳总辐射量的22亿分之一。爱因斯坦相对论的质能关系式使人们了解了核能,而太阳正是靠着核反应才可以长期辐射出巨大能量,这就是太阳能源的来源。在太阳上质子聚变和其他一些轻核反应的过程中不仅释放出能量,而且发射出中微子。人们利用电子学方法或者放射化学的方法探测中微子。1968年,戴维斯发现探测到的太阳中微子比标准太阳模型的计算值少得多。科学还无法解释太阳中微子的失踪之谜,也许是因为中微子还有许多我们不了解的性质。
这个探测装置由来自日本和美国的约120名研究人员共同维护。他们在神冈町地下一公里深处废弃的锌矿坑中设置了一个巨大水池,装有5万吨水,周围放置了1.3万个光电倍增管探测器。当中微子通过这个水槽时,由于水中氢原子核的数目极其巨大,两者发生撞击的几率相当高。碰撞发生时产生的光子被周围的光电倍增管捕获、放大,并通过转换器变成数字信号送入计算机,供科学家们分析。
已经确认的有三种中微子:电子中微子、μ(缪子)中微子和τ(陶子)中微子。日本科学家设计的这个装置主要是用来探测宇宙射线与地面上空20公里处的大气层中各种粒子发生碰撞产生的缪子中微子。研究人员在6月12日出版的美国《科学》杂志上报告说,他们在535天的观测中捕获了256个从大气层进入水槽的μ中微子,只有理论值的百分之六十;在实验地背面的大气层中产生、穿过地球来到观测装置的中微子有139个,只剩下理论值的一半。他们据此推断,中微子在通过大气和穿过地球时,一部分发生了振荡现象,即从一种形态转为另一种,变为检测不到的τ中微子。根据量子物理的法则,粒子之间的相互转化只有在其具有静止质量的情况下才有可能发生。其结论不言而喻:中微子具有静止质量。研究人员指出,这个实验结果在统计上的置信度达到百分之九十九点九九以上。
这个实验不能给出中微子的准确质量,只能给出这两种中微子的质量平均值之差--大约是电子质量的一千万分之一,这也是中微子质量的下限。中微子具有质量的意义却不可忽视。一是如前所述,由于宇宙中中微子的数量极其巨大,其总质量也就非常惊人。二是在现有的量子物理框架中,科学家用假设没有质量的中微子来解释粒子的电弱作用;因此如果它有质量,目前在理论物理中最前沿的大统一理论模型(一种试图把粒子间四种基本作用中的三种统一起来的理论)就需要重建。 从19世纪末的三大发现至今,已经过去了100年。在这一个世纪,科学技术飞速发展,人类对自然有了进一步的认识。但是仍有许多自然之谜等着人们去解决。其中牵动全局的问题是粒子物理的标准模型能否突破?如何突破?中微子正是有希望的突破口之一。
中微子是一门与粒子物理、核物理以及天体物理的基本问题息息相关的新兴分支科学,人类已经认识了中微子的许多性质及运动、变化规律,但是仍有许多谜团尚未解开。中微子的质量问题到底是怎么回事?中微子有没有磁矩?有没有右旋的中微子与左旋的反中微子?有没有重中微子?太阳中微子的强度有没有周期性变化?宇宙背景中微子怎样探测?它在暗物质中占什么地位?恒星内部、银河系核心、超新星爆发过程、类星体、极远处和极早期宇宙有什么奥秘? 这些谜正点是将微观世界与宇观世界联系起来的重要环节。对中微子的研究不仅在高能物理和天体物理中具有重要意义,在我的日常生活中也有现实意义。人类认识客观世界的目的是为了更自觉地改造世界。我们应充分利用在研究中微子物理的过程中发展起来的实验技术和中间成果,使其转化成生产力造福人类,而中微子本身也有可能在21世纪得到应用。 其中可能的应用之一就是中微子通讯。由于地球是球面,加上表面建筑物、地形的遮挡,电磁波长距离传送要通过通讯卫星和地面站。而中微子可以直透地球,它在穿过地球时损耗很小,用高能加速器产生10亿电子伏特的中微子穿过地球时只衰减千分之一,因此从南美洲可以使用中微子束穿过地球直接传至北京。将中微子束加以调制,就可以使其包含有用信息,在地球上任意两点进行通讯联系,无需昂贵而复杂的卫星或微波站。
应用之二是中微子地球断层扫描,即地层CT。中微子与物质相互作用截面随中微子能量的提高而增加,用高能加速器产生能量为一万亿电子伏以上的中微子束定向照射地层,与地层物质作用可以产生局部小“地震”,类似于地震法勘探,可对深层地层也进行勘探,将地层一层一层地扫描。
Ⅵ 中微子到底是真是假
中微子看不见也摸不着,但真实存在
因为中微子不带电,不受电磁力影响,质量近乎零,几乎不受引力影响(且本引力本身极微弱,仅占四大作用力的10^-40,根本抓不住中微子)也完全不参与强作用力,不受宇宙中主要粒子-强子影响,且又以几乎光速运动,所以可以穿过世界上任何物体。
要探测中微子需将中微子探测器放在地底深处或南极冰层中,如此可以捕获微量中微子
正反中微子-模型图
图中+-号代表不可分割的最小正负电磁信息单位-量子比特(qubit)
(名物理学家约翰.惠勒John Wheeler曾有句名言:万物源于比特 It from bit
量子信息研究兴盛后,此概念升华为,万物源于量子比特)
注:位元即比特
Ⅶ 何为中微子振荡,为什么说中微子有质量呢
“每一次我们遇到困难的时候,我们应该感谢大自然母亲,因为这意味着我们将要学到一些重要的知识。”——约翰·巴赫
中微子难以捕捉、无处不在的性质,让它博得了“幽灵粒子”的称号,人们首次在核反应中发现中微子以后,一直认为其为0质量粒子,但后来太阳中微子的消失之谜,也称为太阳中微子振荡问题预示着标准模型预测的错误。今天我们就说下,何为中微子振荡?为什么说中微子有质量呢?
当然,这要从我们头顶的太阳说起
当我们仰望天空中那颗赋予生命的炽热等离子球时,你可能会想,到底是什么在驱动着太阳。
总结:中微子质量预示着新的物理学
直到21世纪初,萨德伯里中微子天文台(上图)通过散射效应测量出了来自太阳的中微子通量总量,同时也测量出了来自太阳的电子中微子通量,并确定了34%的中微子是电子中微子,其余的三分之二被分成了两类。随后,对大气中微子的测量让我们对中微子振荡有了更多的了解,而这些难以捉摸的粒子在太空中穿行时从一种类型转换成另一种类型的能力,是对标准模型之外可能存在的新物理现象最有说服力的暗示之一。
为什么中微子有质量?还有什么新的基本粒子存在使这一切成为可能呢?这些是新的圣杯问题:这些问题将真正把粒子物理学带入第三个千年,并最终超越标准模型。
Ⅷ 会变脸、能“隐形”,中微子是个“什么鬼”
由俄罗斯富翁尤里·米尔纳领衔资助的“科学突破奖”于2015年11月9日揭晓。中国科学院高能物理研究所王贻芳研究员及其领导的大亚湾中微子实验团队获得“基础物理学突破奖”。这是中国科学家和以中国科学家为主的实验团队首次获得该奖项,科学突破奖的获得让国人倍增自豪感。物理学的世界总是神秘而难懂,大神们的研究也是那样深不可测。中微子究竟是个“什么鬼”?和我们的生活有多大联系?不妨跟着小编一起“雾里看花”!
人类未来可能会利用中微子进行通信
此外,未来中微子也许还可以应用于地球断层扫描,即“地层CT”。中微子与物质相互作用的截面会随中微子能量的提高而增加,如果用高能加速器产生能量为一万亿电子伏以上的中微子束定向照射地层,与地层物质作用,可以产生局部小“地震”,人们利用此原理可对深层地层进行勘探,将地层一层一层地扫描。
科学家还相信,如果能够更好地理解中微子,它还可以告诉我们地球内部的放射性元素衰变数量,从而判定地球内部的演化模型;没准它也可以告诉我们恒星以及遥远的超新星内部的物理规律;而且因为中微子在宇宙中像光子一样多,如果知道了它的质量,人们甚至可能估计出宇宙中中微子的总质量,进而可以评估它对宇宙演化的作用。
(本文节选自《知识就是力量》杂志2015年12月刊《中微子是个“什么鬼”?》一文,审核专家:李玉峰 中国科学院高能物理研究所副研究员,资料来源:蝌蚪五线谱)
Ⅸ 中微子是神马
中微子又译作微中子,是轻子的一种,是组成自然界的最基本的粒子之一,常用符号ν表示。中微子不带电,自旋为1/2,质量非常轻(小于电子的百万分之一),以接近光速运动。2011年11月20日,科学家再次证明中微子速度超越光速。但欧洲核子研究中心表示在中微子速度超越光速这一结论被驳倒或者被证实前,还需要进行更多的实验观察和独立测试。中微子只参与非常微弱的弱相互作用,具有最强的穿透力。穿越地球直径那么厚的物质,在100亿个中微子中只有一个会与物质发生反应,因此中微子的检测非常困难。正因为如此,在所有的基本粒子,人们对中微子了解最晚,也最少。实际上,大多数粒子物理和核物理过程都伴随着中微子的产生,例如核反应堆发电(核裂变)、太阳发光(核聚变)、天然放射性(贝塔衰变)、超新星爆发、宇宙射线等等。宇宙中充斥着大量的中微子,大部分为宇宙大爆炸的残留,大约为每立方厘米100个。1998年,日本超神冈(Super-Kamiokande
)实验以确凿的证据发现了中微子振荡现象,即一种中微子能够转换为另一种中微子。这间接证明了中微子具有微小的质量。此后,这一结果得到了许多实验的证实。中微子振荡尚未完全研究清楚,它不仅在微观世界最基本的规律中起着重要作用,而且与宇宙的起源与演化有关,例如宇宙中物质与反物质的不对称很有可能是由中微子造成。
由于 中微子探测技术的提高,人们可以观测到来自天体的中微子,导致了一种新的天文观测手段的产生。美国正在南极洲冰层中建造一个立方公里大的中微子天文望远镜——冰立方。法国、意大利、俄罗斯也分别在地中海和贝加尔湖中建造中微子天文望远镜。KamLAND观测到了来自地心的中微子,可以用来研究地球构造。
实验发现中微子速度超过光速
一些欧洲科学家在实验中发现,中微子速度超过光速。如果实验结果经检验得以确认,阿尔伯特·爱因斯坦提出的经典理论相对论将受到挑战。 光速约每秒30万公里,爱因斯坦的相对论认为没有任何物体的速度能够超过光速,这成为现代物理学的重要基础。如果真的证实这种超光速现象,其意义十分重大,整个物理学理论体系或许会因之重建。
中微子要比光子快60纳秒(1纳秒等于十亿分之一秒)
意大利格兰萨索国家实验室“奥佩拉”项目研究人员使用一套装置,接收730公里外欧洲核子研究中心发射的中微子束,发现中微子比光子提前60纳秒(1纳秒等于十亿分之一秒)到达,即每秒钟多“跑”6公里。
“我们感到震惊,”瑞士伯尔尼大学物理学家、“奥佩拉”项目发言人安东尼奥·伊拉蒂塔托说。
英国《自然》杂志网站22日报道这一发现。研究人员定于23日向欧洲核子研究中心提交报告。
中微子是一种基本粒子,不带电,质量极小,几乎不与其他物质作用,在自然界广泛存在。太阳内部核反应产生大量中微子,每秒钟通过我们眼睛的中微子数以十亿计。
挑战经典
相对论是现代物理学基础理论之一,认为任何物质在真空中的速度无法超过光速。这一最新发现可能推翻爱因斯坦的经典理论。
欧洲核子研究中心理论物理学家约翰·埃利斯评价:“如果这一结果是事实,那的确非同凡响。”
法国物理学家皮埃尔·比内特吕告诉法国媒体,这是“革命性”发现,一旦获得证实,“广义相对论和狭义相对论都将打上问号”。他没有参与这一项目,然而查阅过实验数据。
比内特吕说,这项实验中,中微子穿过各类物质,包括地壳,“这也许会减慢它们的速度,但绝不会增加它们的速度,让它们超过光速”。
有待检验
这不是爱因斯坦的光速理论首次遭遇挑战。2007年,美国费米国家实验室研究人员取得类似实验结果,但对实验的精确性存疑。
“奥佩拉”项目发言人伊拉蒂塔托说,项目组充分相信实验结果,继而公开发表。“我们对实验结果非常有信心。我们一遍又一遍检查测量中所有可能出错的地方,却什么也没有发现。我们想请同行们独立核查。”
这一项目使用一套复杂的电子和照相装置,重1800吨,位于格兰萨索国家实验室地下1400米深处。
项目研究人员说,这套接收装置与欧洲核子研究中心之间的距离精度为20厘米以内,测速精度为10纳秒以内。过去两年,他们观测到超过1.6万次“超光速”现象。依据这些数据,他们认定,实验结果达到六西格玛或六标准差,即确定正确。
欧洲核子研究中心物理学家埃利斯对这一结果仍心存疑虑。科学家先前研究1987a超新星发出的中微子脉冲。如果最新观测结果适用于所有中微子,这颗超新星发出的中微子应比它发出的光提前数年到达地球。然而,观测显示,这些中微子仅早到数小时。“这难以符合‘欧佩拉’项目观测结果,”埃利斯说。
美国费米实验室中微子项目专家阿尔方斯·韦伯认为,“欧佩拉”实验“仍存在测量误差可能”。费米实验室女发言人珍妮·托马斯说,“欧佩拉”项目结果公布前,费米实验室研究人员就打算继续做更多精确实验,可能今后一年或两年开始。
伊拉蒂塔托欢迎同行对实验数据提出怀疑,同样态度谨慎。他告诉路透社记者:“这一发现如此让人吃惊,以至于眼下所有人都需要非常慎重。”
编辑本段
物理学家解释超光速中微子
北京时间10月18日消息,超光速中微子存在意味着爱因斯坦的推测是错误的。至少自从科研人员在意大利通过OPERA试验提出中微子比我们认为的早到60纳秒后,这就一直是一些非常受欢迎的新闻媒体喜欢谈论的话题。对这一异常结果非常感兴趣的科学家从此开始寻找更准确的答案。该消息宣布3周后,arxiv网站的预印版上粘贴出80多种解释。虽然一些人提出新物理学的可能性,例如中微子在额外维中穿行,或者特定能量的中微子的运行速度比光更快,但是很多人为这项试验提出创新性更少的解释。
有关超光速的解释,最早出现的一个反对理由来自一项天体物理学研究。1987年,一颗强大的超新星产生的大量光和中微子涌向地球。虽然中微子探测器观察到这种微粒比光早到大约3小时,但是很有可能是这种超轻粒子先开始向地球方向飞来。中微子很难与物质产生互动,它相对比较容易从爆炸的恒星核里逃逸出来,而光子会被多种元素吸收并重新发射出来,它从恒星核里逃逸出来需要更长时间。如果OPERA试验得出的结果与观测结果一样,科学家认为中微子应该比光早到超过4年时间。
其他科学家已经把这一超光速结果应用到采用标准物理模型的任务中,这种模型用来描述所有亚原子粒子以及它们之间的互动。据标准物理模型显示,能量足够高的中微子应该能够通过被称作科恩-格拉肖喷射(Cohen-Glashow emission)的过程产生虚拟电子对。正如诺贝尔奖得主格拉肖和他的同事们在一篇论文里的解释,这些喷射物将会逐渐耗尽超光速中微子产生的能量,导致它们的运行速度放慢下来。
理论物理学家马特-施特拉斯勒也在他的博客上说,标准物理模型的特性表明,要让中微子的运行速度比光快,电子也要这样。但是如果电子中微子以OPERA试验提出的速度运行,那么电子至少也应该比光速快十亿分之一。很多试验已经确定电子的理论极限,这很好地排除了上述假设。OPERA科研组利用GPS卫星精确测量探测器与欧洲粒子物理研究所的粒子束之间的730公里的距离,该研究所正是产生中微子的地方。然而根据狭义相对论,如果两名观察员向彼此靠近,将会得出略微不同的结论。
由于卫星是在围绕地球运行,中微子源和探测器的位置会不断发生变化。据该论文说,卫星运动会导致64纳秒的误差,几乎与OPERA科研组的观察结果接近。最终,物理学界还需要花费大量时间,并获得大量学术知识,才能为该科研组得出的结果提供真正的解释。在此之前,激烈的争论可能会一直持续下去。