1. 如圖所示為研究光的反射規律的實驗裝置,其中O點為入射點,ON當法線,面板上每一格對應的角度均為10°,
(1)根據圖示可知,當入射光線為AO時,入射角為50°,此時反射光線0B與ON的角度為50°,即為反射角50°;
當入射光線為CO時,入射角為40°,此時反射光線OD與ON的角度為40°,即為反射角40°;
當入射光線為EO時,入射角為20°,此時反射光線OF與ON的角度為20°,即為反射角20°;
(2)根據表中數據和圖示可知,反射光線、入射光線分居法線兩側,並且反射角等於入射角.
故答案為:(1)
實驗序號 | 入射光線 | 入射角α | 反射角β |
1 | AO | 50 | 50 |
2 | CO | 40 | 40 |
3 | EO | 20 | 20 |
2. 如圖所示為研究光的反射定律的實驗裝置,其中ON為法線,AO是入射光線,甲圖中F屏上可以看到反射光線,而
將紙板的半面向前折或向後折,就看不到反射光線了,這一現象說明反射光線、法線、入射光線在同一平面內. 故答案為:反射光線、入射光線和法線在同一個平面內. |
3. 污水處理的深度處理工藝有哪些
污水深度處理
是指城市污水或工業廢水經一級、二級處理後,為了達到一定的回用水標准使污水作為水資源回用於生產或生活的進一步水處理過程。
針對污水(廢水)的原水水質和處理後的水質要求可進一步採用三級處理或多級處理工藝。常用於去除水中的微量COD和BOD有機污染物質,SS及氮、磷高濃度營養物質及鹽類。
處理方法
深度處理的方法有:
絮凝沉澱法、砂濾法、活性炭法、臭氧氧化法、膜分離法、離子交換法、電解處理、濕式氧化法、蒸發濃縮法等物理化學方法與生物脫氮、脫磷法等。深度處理方法費用昂貴,管理較復雜,除了每噸水的費用約為一級處理費用的4-5倍以上。
方法簡介
1、活性炭吸附法活性炭是一種多孔性物質,而且易於自動控制,對水量、水質、水溫變化適應性強,因此活性炭吸附法是一種具有廣闊應用前景的污水深度處理技術。活性炭對分子量在500~3 000的有機物有十分明顯的去除效果,去除率一般為70%~86.7%,可經濟有效地去除嗅、色度、重金屬、消毒副產物、氯化有機物、農葯、放射性有機物等。常用的活性炭主要有粉末活性炭(PAC)、顆粒活性炭(GAC)和生物活性碳(BAC)三大類。近年來,國外對PAC的研究較多,已經深入到對各種具體污染物的吸附能力的研究。亞太水處理(天長)有限公司根據水污染的程度,在水處理系統中,投加粉末活性炭去除水中的COD,過濾後水的色度能降底1~2度;臭味降低到0度。GAC在國外水處理中應用較多,處理效果也較穩定,美國環保署(USEPA)飲用水標準的64項有機物指標中,有51項將GAC列為最有效技術。GAC處理工藝的缺點是基建和運行費用較高,且容易產生亞硝酸鹽等致癌物,突發性污染適應性差。如何進一步降低基建投資和運行費用,降低活性炭再生成本將成為今後的研究重點。BAC可以發揮生化和物化處理的協同作用,從而延長活性炭的工作周期,大大提高處理效率,改善出水水質。不足之處在於活性炭微孔極易被阻塞、進水水質的pH 適用范圍窄、抗沖擊負荷差等。目前,歐洲應用BAC技術的水廠已發展到70個以上,應用最廣泛的是對水進行深度處理。撫順石化分公司石油三廠採用BAC技術,既節省了新鮮水的補充量,減少污水排放量,減輕水體污染,降低生產成本,還體現了經濟效益和社會效益的統一。今後的研究重點是降低投資成本和增加各種預處理措施與BAC聯用,提高處理效果。
2、膜分離法膜分離技術是以高分子分離膜為代表的一種新型的流體分離單元操作技術。它的最大特點是分離過程中不伴隨有相的變化,僅靠一定的壓力作為驅動力就能獲得很高的分離效果,是一種非常節省能源的分離技術。微濾可以除去細菌、病毒和寄生生物等,還可以降低水中的磷酸鹽含量。天津開發區污水處理廠採用微濾膜對SBR二級出水進行深度處理, 滿足了景觀、沖洗路面和沖廁等市政雜用和生活雜用的需求。超濾用於去除大分子,對二級出水的COD和BOD去除率大於50%。北京市高碑店污水處理廠採用超濾法對二級出水進行深度處理,產水水質達到生活雜用水標准,回用污水用於洗車,每年可節約用水4700 m3。反滲透用於降低礦化度和去除總溶解固體,對二級出水的脫鹽率達到90%以上,COD和BOD的去除率在85%左右,細菌去除率90%以上。緬甸某電廠採用反滲透膜和電除鹽聯用技術,用於鍋爐補給水。經反滲透處理的水,能去除絕大部分的無機鹽、有機物和微生物。納濾介於反滲透和超濾之間,其操作壓力通常為0.5~1.0 MPa,納濾膜的一個顯著特點是具有離子選擇性,它對二價離子的去除率高達95%以上,一價離子的去除率較低,為40%~80%。採用膜生物反應器-納濾膜集成技術處理糖蜜制酒精廢水取得了較好結果,出水COD小於100 mg/L,廢水回用率大於80%。我國的膜技術在深度處理領域的應用與世界先進水平尚有較大差距。今後的研究重點是開發、製造高強度、長壽命、抗污染、高通量的膜材料,著重解決膜污染、濃差極化及清洗等關鍵問題。
3、高級氧化法工業生產中排放的高濃度有機污染物和有毒有害污染物,種類多、危害大,有些污染物難以生物降解且對生化反應有抑制和毒害作用。而高級氧化法在反應中產生活性極強的自由基(如•OH等),使難降解有機污染物轉變成易降解小分子物質,甚至直接生成CO2和H2O,達到無害化目的。
3.1
濕式氧化法濕式氧化法(WAO)是在高溫(150~350 ℃)、高壓(0.5~20 MPa)下利用O2或空氣作為氧化劑,氧化水中的有機物或無機物,達到去除污染物的目的,其最終產物是CO2和H2O。2002年引進了WAO
工藝,徹底解決了渣的後續治理和惡臭污染問題,而且運行成本低,氧化效率高。
3.2 濕式催化氧化法濕式催化氧化法(CWAO)是在傳統的濕式氧化處理工藝中加入適宜的催化劑使氧化反應能在更溫和的條件下和更短的時間內完成,也因此可減輕設備腐蝕、降低運行費用。目前,建於昆明市的一套連續流動型CWAO工業實驗裝置,已經體現出了較好的經濟性。濕式催化氧化法的催化劑一般分為金屬鹽、氧化物和復合氧化物3類。目前,考慮經濟性,應用最多的催化劑是過渡金屬氧化物如Cu、Fe、Ni、Co、Mn等及其鹽類。採用固體催化劑還可避免催化劑的流失、二次污染的產生及資金的浪費。
4. AO工藝,氧化溝工藝,SBR工藝的優缺點對比
AO工藝法也叫厭氧好氧工藝法,A(Anacrobic)是厭氧段,用與脫氮除磷;O(Oxic)是好氧段,用於除水中的有機物。
A/O法脫氮工藝的特點:
(a) 流程簡單,勿需外加碳源與後曝氣池,以原污水為碳源,建設和運行費用較低;
(b) 反硝化在前,硝化在後,設內循環,以原污水中的有機底物作為碳源,效果好,反硝化反應充分;
(c) 曝氣池在後,使反硝化殘留物得以進一步去除,提高了處理水水質;
(d) A段攪拌,只起使污泥懸浮,而避免DO的增加。O段的前段採用強曝氣,後段減少氣量,使內循環液的DO含量降低,以保證A段的缺氧狀態。
A/O法存在的問題:
1.由於沒有獨立的污泥迴流系統,從而不能培養出具有獨特功能的污泥,難降解物質的降解率較低;
2、若要提高脫氮效率,必須加大內循環比,因而加大運行費用。從外,內循環液來自曝氣池,含有一定的DO,使A段難以保持理想的缺氧狀態,影響反硝化效果,脫氮率很難達到90%
3、 影響因素 水力停留時間 (硝化>6h ,反硝化<2h )循環比MLSS(>3000mg/L)污泥齡( >30d )N/MLSS負荷率( <0.03 )進水總氮濃度( <30mg/L)
氧化溝又名氧化渠,因其構築物呈封閉的環形溝渠而得名。它是活性污泥法的一種變型。因為污水和活性污泥在曝氣渠道中不斷循環流動,因此有人稱其為「循環曝氣池」、「無終端曝氣池」。氧化溝的水力停留時間長,有機負荷低,其本質上屬於延時曝氣系統。以下為一般氧化溝法的主要設計參數:
水力停留時間:10-40小時;
污泥齡:一般大於20天;
有機負荷:0.05-0.15kgBOD5/(kgMLSS.d);
容積負荷:0.2-0.4kgBOD5/(m3.d);
活性污泥濃度:2000-6000mg/l;
溝內平均流速:0.3-0.5m/s
1.2 氧化溝的技術特點:
氧化溝利用連續環式反應池(Cintinuous Loop Reator,簡稱CLR)作生物反應池,混合液在該反應池中一條閉合曝氣渠道進行連續循環,氧化溝通常在延時曝氣條件下使用。氧化溝使用一種帶方向控制的曝氣和攪動裝置,向反應池中的物質傳遞水平速度,從而使被攪動的液體在閉合式渠道中循環。
氧化溝一般由溝體、曝氣設備、進出水裝置、導流和混合設備組成,溝體的平面形狀一般呈環形,也可以是長方形、L形、圓形或其他形狀,溝端面形狀多為矩形和梯形。
氧化溝法由於具有較長的水力停留時間,較低的有機負荷和較長的污泥齡。因此相比傳統活性污泥法,可以省略調節池,初沉池,污泥消化池,有的還可以省略二沉池。氧化溝能保證較好的處理效果,這主要是因為巧妙結合了CLR形式和曝氣裝置特定的定位布置,是式氧化溝具有獨特水力學特徵和工作特性:
1) 氧化溝結合推流和完全混合的特點,有力於克服短流和提高緩沖能力,通常在氧化溝曝氣區上游安排入流,在入流點的再上游點安排出流。入流通過曝氣區在循環中很好的被混合和分散,混合液再次圍繞CLR繼續循環。這樣,氧化溝在短期內(如一個循環)呈推流狀態,而在長期內(如多次循環)又呈混合狀態。這兩者的結合,即使入流至少經歷一個循環而基本杜絕短流,又可以提供很大的稀釋倍數而提高了緩沖能力。同時為了防止污泥沉積,必須保證溝內足夠的流速(一般平均流速大於0.3m/s),而污水在溝內的停留時間又較長,這就要求溝內由較大的循環流量(一般是污水進水流量的數倍乃至數十倍),進入溝內污水立即被大量的循環液所混合稀釋,因此氧化溝系統具有很強的耐沖擊負荷能力,對不易降解的有機物也有較好的處理能力。
2) 氧化溝具有明顯的溶解氧濃度梯度,特別適用於硝化-反硝化生物處理工藝。氧化溝從整體上說又是完全混合的,而液體流動卻保持著推流前進,其曝氣裝置是定位的,因此,混合液在曝氣區內溶解氧濃度是上游高,然後沿溝長逐步下降,出現明顯的濃度梯度,到下游區溶解氧濃度就很低,基本上處於缺氧狀態。氧化溝設計可按要求安排好氧區和缺氧區實現硝化-反硝化工藝,不僅可以利用硝酸鹽中的氧滿足一定的需氧量,而且可以通過反硝化補充硝化過程中消耗的鹼度。這些有利於節省能耗和減少甚至免去硝化過程中需要投加的化學葯品數量。
3) 氧化溝溝內功率密度的不均勻配備,有利於氧的傳質,液體混合和污泥絮凝。傳統曝氣的功率密度一般僅為20-30瓦/米3,平均速度梯度G大於100秒-1。這不僅有利於氧的傳遞和液體混合,而且有利於充分切割絮凝的污泥顆粒。當混合液經平穩的輸送區到達好氧區後期,平均速度梯度G小於30秒-1,污泥仍有再絮凝的機會,因而也能改善污泥的絮凝性能。
4) 氧化溝的整體功率密度較低,可節約能源。氧化溝的混合液一旦被加速到溝中的平均流速,對於維持循環僅需克服沿程和彎道的水頭損失,因而氧化溝可比其他系統以低得多的整體功率密度來維持混合液流動和活性污泥懸浮狀態。據國外的一些報道,氧化溝比常規的活性污泥法能耗降低20%-30%。
另外,據國內外統計資料顯示,與其他污水生物處理方法相比,氧化溝具有處理流程簡單,超作管理方便;出水水質好,工藝可靠性強;基建投資省,運行費用低等特點。
傳統氧化溝的脫氮,主要是利用溝內溶解氧分布的不均勻性,通過合理的設計,使溝中產生交替循環的好氧區和缺氧區,從而達到脫氮的目的。其最大的優點是在不外加碳源的情況下在同一溝中實現有機物和總氮的去除,因此是非常經濟的。但在同一溝中好氧區與缺氧區各自的體積和溶解氧濃度很難准確地加以控制,因此對除氮的效果是有限的,而對除磷幾乎不起作用。另外,在傳統的單溝式氧化溝中,微生物在好氧-缺氧-好氧短暫的經常性的環境變化中使硝化菌和反硝化菌群並非總是處於最佳的生長代謝環境中,由此也影響單位體積構築物的處理能力。
氧化溝缺點
盡管氧化溝具有出水水質好、抗沖擊負荷能力強、除磷脫氮效率高、污泥易穩定、能耗省、便於自動化控制等優點。但是,在實際的運行過程中,仍存在一系列的問題。
4.1 污泥膨脹問題
當廢水中的碳水化合物較多,N、P含量不平衡,pH值偏低,氧化溝中污泥負荷過高,溶解氧濃度不足,排泥不暢等易引發絲狀菌性污泥膨脹;非絲狀菌性污泥膨脹主要發生在廢水水溫較低而污泥負荷較高時。微生物的負荷高,細菌吸取了大量營養物質,由於溫度低,代謝速度較慢,積貯起大量高粘性的多糖類物質,使活性污泥的表面附著水大大增加,SVI值很高,形成污泥膨脹。
針對污泥膨脹的起因,可採取不同對策:由缺氧、水溫高造成的,可加大曝氣量或降低進水量以減輕負荷,或適當降低MLSS(控制污泥迴流量),使需氧量減少;如污泥負荷過高,可提高MLSS,以調整負荷,必要時可停止進水,悶曝一段時間;可通過投加氮肥、磷肥,調整混合液中的營養物質平衡(BOD5:N:P=100:5:1);pH值過低,可投加石灰調節;漂白粉和液氯(按干污泥的0.3%~0.6%投加),能抑制絲狀菌繁殖,控制結合水性污泥膨脹[11]。
4.2 泡沫問題
由於進水中帶有大量油脂,處理系統不能完全有效地將其除去,部分油脂富集於污泥中,經轉刷充氧攪拌,產生大量泡沫;泥齡偏長,污泥老化,也易產生泡沫。用表面噴淋水或除沫劑去除泡沫,常用除沫劑有機油、煤油、硅油,投量為0.5~1.5mg/L。通過增加曝氣池污泥濃度或適當減小曝氣量,也能有效控制泡沫產生。當廢水中含表面活性物質較多時,易預先用泡沫分離法或其他方法去除。另外也可考慮增設一套除油裝置。但最重要的是要加強水源管理,減少含油過高廢水及其它有毒廢水的進入
4.3 污泥上浮問題
當廢水中含油量過大,整個系統泥質變輕,在操作過程中不能很好控制其在二沉池的停留時間,易造成缺氧,產生腐化污泥上浮;當曝氣時間過長,在池中發生高度硝化作用,使硝酸鹽濃度高,在二沉池易發生反硝化作用,產生氮氣,使污泥上浮;另外,廢水中含油量過大,污泥可能挾油上浮。
發生污泥上浮後應暫停進水,打碎或清除污泥,判明原因,調整操作。污泥沉降性差,可投加混凝劑或惰性物質,改善沉澱性;如進水負荷大應減小進水量或加大迴流量;如污泥顆粒細小可降低曝氣機轉速;如發現反硝化,應減小曝氣量,增大迴流或排泥量;如發現污泥腐化,應加大曝氣量,清除積泥,並設法改善池內水力條件
4.4 流速不均及污泥沉積問題
在氧化溝中,為了獲得其獨特的混合和處理效果,混合液必須以一定的流速在溝內循環流動。一般認為,最低流速應為0.15m/s,不發生沉積的平均流速應達到0.3~0.5m/s。氧化溝的曝氣設備一般為曝氣轉刷和曝氣轉盤,轉刷的浸沒深度為250~300mm,轉盤的浸沒深度為480~ 530mm。與氧化溝水深(3.0~3.6m)相比,轉刷只佔了水深的1/10~1/12,轉盤也只佔了1/6~1/7,因此造成氧化溝上部流速較大(約為0.8~1.2m,甚至更大),而底部流速很小(特別是在水深的2/3或3/4以下,混合液幾乎沒有流速),致使溝底大量積泥(有時積泥厚度達1.0m),大大減少了氧化溝的有效容積,降低了處理效果,影響了出水水質。
加裝上、下游導流板是改善流速分布、提高充氧能力的有效方法和最方便的措施。上游導流板安裝在距轉盤(轉刷)軸心4.0處(上游),導流板高度為水深的1/5~1/6,並垂直於水面安裝;下游導流板安裝在距轉盤(轉刷)軸心3.0m處。導流板的材料可以用金屬或玻璃鋼,但以玻璃鋼為佳。導流板與其他改善措施相比,不僅不會增加動力消耗和運轉成本,而且還能夠較大幅度地提高充氧能力和理論動力效率
另外,通過在曝氣機上游設置水下推動器也可以對曝氣轉刷底部低速區的混合液循環流動起到積極推動作用,從而解決氧化溝底部流速低、污泥沉積的問題。設置水下推動器專門用於推動混合液可以使氧化溝的運行方式更加靈活,這對於節約能源、提高效率具有十分重要的意義。
序批式活性污泥法(SBR-Sequencing Batch Reactor)是早在1914年英國學者Ardern和Lockett發明活性污泥法之時,首先採用的水處理工藝。70年代初,美國Natre Dame大學的R.Irvine教授採用實驗室規模對SBR工藝進行了系統深入的 研究,並於1980年在美國環保局(EPA)的資助下,在印地安那州的Culver城改建並投產了世界上第一個SBR法污水處理廠。80年代前後,由於自動化計算機等高新技術的迅速發展以及在污水處理領域的普及與應用,此項技術獲得重大進展,使得間歇活性污泥法(也稱"間歇式活性污泥法")的運行管理也逐漸實現了自動化。
1 工藝簡介
SBR工藝的過程是按時序來運行的,一個操作過程分五個階段:進水、曝氣、沉澱、潷水、閑置。由於SBR在運行過程中,各階段的運行時間、反應器內混合液體積的變化以及運行狀態都可以根據具體污水的性質、出水水質、出水質量與運行功能要求等靈活變化。對於SBR反應器來說,只是時序控制,無空間控制障礙,所以可以靈活控制。因此,SBR工藝發展速度極快,並衍生出許多新型SBR處理工藝。90年代比利時的SEGHERS公司又開發了UNITANK系統,把經典SBR的時間推流與連續的空間推流結合了起來[2] SBR工藝主要有以下變形。
間歇式循環延時曝氣活性污泥法最大特點是:在反應器進水端設一個預反應區,整個處理過程連續進水,間歇排水,無明顯的反應階段和閑置階段,因此處理費用比傳統SBR低。由於全過程連續進水,沉澱階段泥水分離差,限制了進水量。
好氧間歇曝氣系統(主體構築物是由需氧池DAT池和間歇曝氣池IAT池組成,DAT池連續進水連續曝氣,其出水從中間牆進入IAT池,IAT池連續進水間歇排水。同時,IAT池污泥迴流DAT池。它具有抗沖擊能力強的特點,並有除磷脫氮功能。
循環式活性污泥法將ICEAS的預反應區用容積更小,設計更加合理優化的生物選擇器代替。通常CASS池分三個反應區:生物選擇器、缺氧區和好氧區,容積比一般為1:5:30。整個過程連續間歇運行,進水、沉澱、潷水、曝氣並污泥迴流。該處理系統具有除氮脫磷功能。
UNITANK單元水池活性污泥處理系統它集合了SBR工藝和氧化溝工藝的特點,一體化設計使整個系統連續進水連續出水,而單個池子相對為間歇進水間歇排水。此系統可以靈活的進行時間和空間控制,適當的增大水力停留時間,可以實現污水的脫氮除磷。
改良式序列間歇反應器(MSBR-Modified Sequencing Batch Reactor)是80年代初期根據SBR技術特點結合A2-O工藝,研究開發的一種更為理想的污水處理系統,目前最新的工藝是第三代工藝。MSBR工藝中涉及的部分專利技術目前屬於美國的Aqua-Aerobic System Inc.所有[4]。反應器採用單池多方格方式,在恆定水位下連續運行。脫氮除磷能力更強。
2 SBR工藝特點及[url=http://www.studa.net/][color=#0000ff]分析[/color][/url]
SBR工藝是通過時間上的交替來實現傳統活性污泥法的整個運行過程,它在流程上只有一個基本單元,將調節池、曝氣池和二沉池的功能集於一池,進行水質水量調節、微生物降解有機物和固、液分離等。經典SBR反應器的運行過程為:進水→曝氣→沉澱→潷水→待機。
2.1 優點
通過分析可將SBR反應器的優點歸納如表1。
[align=center]表1 SBR工藝的優點[/align][table][tr][td=1,1,310][align=center]優點 [/align][/td][td=1,1,310][align=center]機理 [/align][/td][/tr][tr][td=1,1,310][align=center]沉澱性能好 [/align][/td][td=1,1,310][align=center]理想沉澱[url=http://job.studa.com/][color=#0000ff]理論[/color][/url] [/align][/td][/tr][tr][td=1,1,310][align=center]有機物去除效率高[/align][/td][td=1,1,310][align=center]理想推流狀態 [/align][/td][/tr][tr][td=1,1,310][align=center]提高難降解廢水的處理效率[/align][/td][td=1,1,310][align=center]生態環境多樣性 [/align][/td][/tr][tr][td=1,1,310][align=center]抑制絲狀菌膨脹[/align][/td][td=1,1,310][align=center]選擇性准則 [/align][/td][/tr][tr][td=1,1,310][align=center]可以除磷脫氮,不需要新增反應器 [/align][/td][td=1,1,310][align=center]生態環境多樣性 [/align][/td][/tr][tr][td=1,1,310][align=center]不需要二沉池和污泥迴流,工藝簡單[/align][/td][td=1,1,310][align=center]結構本身特點 [/align][/td][/tr][/table]
2.2理論分析
SBR反應池充分利用了生物反應過程和單元操作過程的基本原理。
①流態理論
由於SBR在時間上的不可逆性,根本不存在返混現象,所以屬於理想推流式反應器。
②理想沉澱理論
其沉澱效果好是因為充分利用了靜態沉澱原理。經典的SBR反應器在沉澱過程中沒有進水的擾動,屬於理想沉澱狀態。
③推流反應器理論
假設在推流式和完全混合式反應器中有機物降解服從一級反應,那麼在相同的污泥濃度下,兩種反應器達到相同的去除率時所需反應器容積比為:
V完全混合/V推流=[(1-(1/1-η))]/ 〔ln(1-η)〕 (1)
式中 η--去除率
從數學上可以證明當去除率趨於零時V完全混合/V推流等於1,其他情況下(V完全混合/V推流)>1,就是說達到相同的去除率時推流式反應器要比完全混合式反應器所需的體積小,表明推流式的處理效果要比完全混合式好。
④選擇性准則
1973年Chudoba等人提出了在活性污泥混合培養中的動力學選擇性准則[5,這個理論是基於不同種屬的微生物在Monod方程中的參數(KS、μmax)不同,並且不同基質的生長速度常數也不同。Monod方程可以寫成:
dX/Xdt=μ=μmax [S/(KS+S)] (2)
式中 �X--生物體濃度
S--生長限制性基質濃度
KS--飽和或半速度常數
μ、μmax--分別為實際和最大比增長速率
按照Chudoba所提出的理論,具有低KS和μmax值的微生物在混合培養的曝氣池中,當基質濃度很低時其生長速率高並佔有優勢,而基質濃度高時則恰好相反。Chudoba認為大多數絲狀菌的KS和μmax值比較低,而菌膠團細菌的KS和μmax值比較高,這也解釋了完全混合曝氣池容易發生污泥膨脹的原因。有機物濃度在推流式曝氣池的整個池長上具有一定的濃度梯度,使得大部分情況下絮狀菌的生長速率都大於絲狀菌,只有在反應末期絮狀菌的生長沒有絲狀菌快,但絲狀菌短時間內的優勢生長並不會引起污泥膨脹。因此,SBR系統具有防止污泥膨脹的功能。
⑸微生物環境的多樣性
SBR反應器對有機物去除效果好,而對難降解有機物降解效果好是因為其在生態環境上具有多樣性,具體講可以形成厭氧、缺氧等多種生態條件,從而有利於有機物的降解。
2.3傳統SBR工藝的缺點
①連續進水時,對於單一SBR反應器需要較大的調節池。
②對於多個SBR反應器,其進水和排水的閥門自動切換頻繁。
③無法達到大型污水處理項目之連續進水、出水的要求。
④設備的閑置率較高。
⑤污水提升水頭損失較大。
⑥如果需要後處理,則需要較大容積的調節池。
2.4 SBR的適用范圍
SBR系統進一步拓寬了活性污泥的使用范圍。就近期的技術條件,SBR系統更適合以下情況:
1)中小城鎮生活污水和廠礦[url=http://www.studa.net/company/][color=#0000ff]企業[/color][/url]的[url=http://www.studa.net/gongxue/][color=#0000ff]工業[/color][/url]廢水,尤其是間歇排放和流量變化較大的地方。
2)需要較高出水水質的地方,如風景游覽區、湖泊和港灣等,不但要去除有機物,還要求出水中除磷脫氮,防止河湖富營養化。
3)水資源緊缺的地方。SBR系統可在生物處理後進行物化處理,不需要增加設施,便於水的回收利用。
4)用地緊張的地方。
5)對已建連續流污水處理廠的改造等。
6)非常適合處理小水量,間歇排放的工業廢水與分散點源污染的治理。
近期來隨著SBR工藝的發展,特別是連續進水、連續出水方案的改進,使SBR工藝以應用於大中心污水處理廠。
[page_break] 3 設計[url=http://www.studa.cn/][color=#0000ff]方法[/color][/url]
3.1 負荷法
該法與連續式曝氣池容積的設計相仿。已知SBR反應池的容積負荷NV或污泥負荷NS、進水量Q0及進水中BOD5濃度C0,即可由下式迅速求得SBR池容:
容積負荷法 V=nQ0C0/Nv (3)
Vmin=〔SVI·MLSS/106〕·V
污泥負荷法 Vmin=nQ0C0·SVI/Ns (4)
V=Vmin+Q0
3.2 曝氣時間內負荷法
鑒於SBR法屬間歇曝氣,一個周期內有效曝氣時間為ta,則一日內總曝氣時間為nta,以此建立如下[url=http://www.studa.net/pc/][color=#0000ff]計算[/color][/url]式:
容積負荷法 V=nQ0C0tc/Nv·ta (5)
污泥負荷法 V=24QC0/nta·MLSS·NS (6)
3.3 動力學設計法
由於SBR的運行操作方式不同,其有效容積的計算也不盡相同。根據動力學原理演算(過程略),SBR反應池容計算公式可分為下列三種情況:
限制曝氣 V=NQ(C0-Ce)tf/[MLSS·Ns·ta] (7)
非限制曝氣 V=nQ(C0-Ce)tf/[MLSS·Ns(ta+tf)] (8)
半限制曝氣 V=nQ(C0-Ce)/[LSS·Ns(ta+tf-t0)] (9)
式中: tf--充水時間,一般取1~4h。
tr--反應時間,一般在2~8h。
C0、Ce--分別為進水和反應結束時的污染物濃度。
但在實際[url=http://soft.studa.com/][color=#0000ff]應用[/color][/url]中發現上述方法存有以下[url=http://www.studa.cn/][color=#0000ff]問題[/color][/url]:
① 對負荷參數的選用依據不足,提供選用參數的范圍過大〔例如[url=http://book.studa.com/][color=#0000ff]文獻[/color][/url]推薦Nv=0.1~1.3kgBOD5/(m3·d)等〕,而未考慮水溫、進水水質、污泥齡、活性污泥量以及SBR池幾何尺寸等要素對負荷及池容的[url=http://www.studa.net/][color=#0000ff]影響[/color][/url];
② 負荷法將連續式曝氣池容計算方法移用於具有二沉池功能的SBR池容計算,存有[url=http://job.studa.com/][color=#0000ff]理論[/color][/url]上的差異,使所得結果偏小;
③ 在計算公式中均出現了SVI、MLSS、Nv、Ns等敏感的變化參數,難於全部同時根據經驗假定,忽略了底物的明顯影響,並將導致各參數間不一致甚至矛盾的現象;
④ 曝氣時間內負荷法與動力學設計法中試圖引入有效曝氣時間ta對SBR池容所產生的影響,但因其由動力學原理演算而得,假定的邊界條件不完全適應於實際各個階段的反應過程,將有機碳的去除僅限制在好氧階段的曝氣作用,而忽略了其他非曝氣階段對有機碳去除的影響,使得在同一負荷條件下所得SBR池容驚人地偏大。
上述問題的存在不僅不利於SBR法對污水的有效處理,而且進行多方案比較時也不可能全面反映SBR法的工程量,會得出投資偏高或偏低的結果。
針對以上問題,提出了一套以總污泥量為主要參數的SBR池容綜合設計方法
3.4 總污泥量綜合設計法
該法是以提供SBR反應池一定的活性污泥量為前提,並滿足適合的SVI條件,保證在沉降階段歷時和排水階段歷時內的沉降距離和沉澱面積,據此推算出最低水深下的最小污泥沉降所需的體積,然後根據最大周期進水量求算貯水容積,兩者之和即為所求SBR池容。並由此驗算曝氣時間內的活性污泥濃度及最低水深下的污泥濃度,以判別計算結果的合理性。其計算公式為:
TS=naQ0(C0-Cr)tT·S (10)
Vmin=AHmin≥TS·SVI·10-3 (11)
Hmin=Hmax-ΔH (12)
V=Vmin+ΔV (13)
式中�TS--單個SBR池內干污泥總量,kg
tT·S--總污泥齡,d
A--SBR池幾何平面積,m2
Hmax、Hmin--分別為曝氣時最高水位和沉澱終了時最低水位,m
ΔH--最高水位與最低水位差,m
Cr--出水BOD5濃度與出水懸浮物濃度中溶解性BOD5濃度之差。其值為:
Cr=Ce-Z·Cse·1.42(1-ek1t) (14)
式中�Cse--出水中懸浮物濃度,kg/m3
k1--耗氧速率,d-1
t--BOD實驗時間,d
Z--活性污泥中異養菌所佔比例,其值為:
Z=B-(B2-8.33Ns·1.072(15-T))0.5 (15)
B=0.555+4.167(1+TS0/BOD5)Ns·1.072(15-T) (16)
Ns=1/a·tT·S (17)
式中�a--產泥系數,即單位BOD5所產生的剩餘污泥量,kgMLSS/kgBOD5,其值為:
a=0.6(TS0/BOD5+1)-0.6×0.072×1.072(T-15)1/〔tT·S+0.08×1.072(T-15)〕� (18)
式中TS、BOD5--分別為進水中懸浮固體濃度及BOD 5濃度,kg/m3
T--污水水溫,℃
由式(9)計算之Vmin系為同時滿足活性污泥沉降幾何面積以及既定沉澱歷時條件下的沉降距離,此值將大於現行方法中所推算的Vmin。
必須指出的是,實際的污泥沉降距離應考慮排水歷時內的沉降作用,該作用距離稱之為保護高度Hb。同時,SBR池內混合液從完全動態混合變為靜止沉澱的初始5~10min內污泥 仍處於紊動狀態,之後才逐漸變為壓縮沉降直至排水歷時結束。它們之間的關系可由下式表示:
vs(ts+td-10/60)=ΔH+Hb (19)
vs=650/MLSSmax·SVI (20)
由式(18)代入式(17)並作相應變換改寫為:
〔650·A·Hmax/TS·SVI〕(ts+td-10/60)=ΔV/A+Hb (21)
式中 vs--污泥沉降速度,m/h
MLSSmax--當水深為Hmax時的MLSS,kg/m3
ts、td--分別為污泥沉澱歷時和排水歷時,h
式(19)中SVI、Hb、ts、td均可據經驗假定,Ts、ΔV均為已知,Hmax可依據鼓風機風壓或曝氣機有效水深設置,A為可求,同時求得ΔH,使其在許可的排水變幅范圍內保證允許的保護高度。因而,由式(10)、(11)可分別求得Hmin、Vmin和反應池容。
4 SBR在[url=http://www.studa.net/fazhan/][color=#0000ff]發展[/color][/url]中的問題
相對於傳統連續流活性污泥法,SBR工藝是一種尚處於發展、完善階段的技術,許多 研究工作剛剛起步,缺乏[url=http://www.studa.net/gongxue/][color=#0000ff]科學[/color][/url]的設計依據和方法以及成熟的運行管理經驗,另外,SBR自身的特點更加深了解決問題的難度。
SBR在現階段的發展過程中,主要存在以下方面的問題:
4.1 基礎研究方面
①關於污水在非穩定狀態下活性污泥微生物代謝理論的研究;
②關於厭氧、好氧狀態的反復交替對微生物活性和種群分布的影響;
③可同時除磷、脫氮的微生物機理的研究。
4.2 工程設計方面
①缺乏科學、可靠的設計模式;
②運行模式的選擇與設計方法脫節。
5 結束語
SBR藝是一種理想的間歇式活性污泥處理工藝,它具有工藝流程簡單、處理效果穩定、佔地面積小、耐沖擊負荷強及具有脫氮除磷能力等優點,是[url=http://mind.studa.com/][color=#0000ff]目前[/color][/url]正在深入研究的一項污水生物處理新技術。
SBR工藝應用的一個關鍵是要求自動化程度較高,因而隨著我國[url=http://www.studa.net/Economic/][color=#0000ff]經濟[/color][/url]建設的不斷發展及研究的不斷深入,預計不久的將來SBR及在其基礎上開發的ICEAS工藝和CASS等工藝在生產中的應用將有所突破。
5. 如圖所示為研究光的反射規律的簡易實驗裝置,其中O點為入射點,ON為法線,面板上每一格對應的角度為10°
如圖所示:
1、當入射光線為AO時,入射角為50°,此時反射光線0B與ON的角度為50°,即為反射角,故答案為:50°;
2、當虧陪入射光線為CO時,入射角為40°,此時反射光線OD與ON的角度為40°,即為反射角,裂空顫故答案為:40°;
3、當入射光線為EO時,入射角為20°,此時反射光線OF與ON的角度為20°,即為反射角,故答案為:20°;
由以上數據推出反射角肆敗等於入射角,即為光的反射定律之一.
故答案為:反射角等於入射角.
實驗序號 | 入射光線 | 入射角 | 反射光線 | 反射角 |
1 | AO | 50° | OB | 50° |
2 | CO | 40° | OD | 40° |
3 | EO | 20° | OF | 20° |
6. 如圖所示為研究光的反射規律的實驗裝置,其中O為入射點,ON為法線,面板上每一格對應的角度均為10°.實
(1)入射角是入射光線與法線的夾角;反射角是反射光線與法線的夾角.從圖中可知專,入射角依次為屬50°、40°、20°,反射角也依次為50°、40°、20°.
故答案為:
實驗序號 | 入射光線 | 入射角 | 反射角 |
1 | AO | 50° | 50° |
2 | CO | 40° | 40° |
3 | EO | 20° | 20° |