1. 機械設計課程設計的章節目錄
?序言
前言
第一章 概述
第一節 課程設計的目的
第二節 課程設計的內容和步驟
第三節 機械設計課程設計任務書
第四節 課程設計應注意的問題
第二章 傳動裝置的總體設計
第一節 減速器的主要型式、特點及應用
第二節 初步確定減速器結構和零部件類型
第三節 擬定傳動方案
第四節 電動機的選擇
第五節 確定傳動裝置的總傳動比和分配各級傳動比
第六節 傳動裝置的運動參數和動力參數的計算
第三章 傳動零件的設計
第一節 箱外傳動件的設計要點
第二節 箱內傳動件的設計要點
第三節 軸徑初選
第四章 軸系部件設計
第一節 軸承類型的選擇
第二節 軸的結構設計及軸、軸承、鍵的強度校核
第三節 滾動軸承的組合設計
第四節 齒輪結構設計
第五章 減速器的結構
第一節 標准減速器簡介
第二節 通用減速器的結構
第三節 減速器箱體的結構設計
第四節 減速器附件設計
第六章 減速器的潤滑及密封
第一節 減速器的潤滑
第二節 減速器的密封
第七章 減速器的裝配圖設計
第一節 裝配圖的設計和繪制
第二節 裝配圖總成設計的完成
第八章 零件工作圖繪制
第一節 概述
第二節 軸類零件
第三節 齒輪類零件
第四節 箱體
第九章 編制設計計算說明書及准備答辯
第一節 設計計算說明書的內容、要求
第二節 准備答辯
第十章 參考圖例
一、典型減速器圖例
二、零件工作圖參考圖例
第十一章 一般設計資料
一、常用數據
二、課程設計常用的一般性資料
第十二章 常用材料
第十三章 常用緊固件和聯接件
一、螺栓、螺釘、螺柱
二、螺母、墊圈、擋圈
三、螺紋零件的結構要素
四、鍵聯接和銷聯接
第十四章 滾動軸承
一、常用滾動軸承
二、滾動軸承的配合
第十五章 潤滑和密封的標准和規范
一、潤滑劑
二、油杯
三、標准密封件
第十六章 聯軸器
第十七章 公差與配合
一、公差配合
二、形狀和位置公差
三、表面粗糙度
四、漸開線圓柱齒輪精度(GB10095-88)
五、蝸桿傳動精度
第十八章 電動機
主要參考文獻
2. 機械設計-課程設計-帶式運輸機傳動裝置-二級齒輪減速器
一、 設計題目:二級直齒圓柱齒輪減速器
1. 要求:擬定傳動關系:由電動機、V帶、減速器、聯軸器、工作機構成。
2. 工作條件:雙班工作,有輕微振動,小批量生產,單向傳動,使用5年,運輸帶允許誤差5%。
3. 知條件:運輸帶捲筒轉速 ,
減速箱輸出軸功率 馬力,
二、 傳動裝置總體設計:
1. 組成:傳動裝置由電機、減速器、工作機組成。
2. 特點:齒輪相對於軸承不對稱分布,故沿軸向載荷分布不均勻,要求軸有較大的剛度。
3. 確定傳動方案:考慮到電機轉速高,傳動功率大,將V帶設置在高速級。 其傳動方案如下:
三、 選擇電機
1. 計算電機所需功率 : 查手冊第3頁表1-7:
-帶傳動效率:0.96
-每對軸承傳動效率:0.99
-圓柱齒輪的傳動效率:0.96
-聯軸器的傳動效率:0.993
—捲筒的傳動效率:0.96
說明:
-電機至工作機之間的傳動裝置的總效率:
2確定電機轉速:查指導書第7頁表1:取V帶傳動比i=2 4
二級圓柱齒輪減速器傳動比i=8 40所以電動機轉速的可選范圍是:
符合這一范圍的轉速有:750、1000、1500、3000
根據電動機所需功率和轉速查手冊第155頁表12-1有4種適用的電動機型號,因此有4種傳動比方案如下:
方案 電動機型號 額定功率 同步轉速
r/min 額定轉速
r/min 重量 總傳動比
1 Y112M-2 4KW 3000 2890 45Kg 152.11
2 Y112M-4 4KW 1500 1440 43Kg 75.79
3 Y132M1-6 4KW 1000 960 73Kg 50.53
4 Y160M1-8 4KW 750 720 118Kg 37.89
綜合考慮電動機和傳動裝置的尺寸、重量、和帶傳動、減速器的傳動比,可見第3種方案比較合適,因此選用電動機型號為Y132M1-6,其主要參數如下:
額定功率kW 滿載轉速 同步轉速 質量 A D E F G H L AB
4 960 1000 73 216 38 80 10 33 132 515 280
四 確定傳動裝置的總傳動比和分配傳動比:
總傳動比:
分配傳動比:取 則
取 經計算
註: 為帶輪傳動比, 為高速級傳動比, 為低速級傳動比。
五 計算傳動裝置的運動和動力參數:
將傳動裝置各軸由高速到低速依次定為1軸、2軸、3軸、4軸
——依次為電機與軸1,軸1與軸2,軸2與軸3,軸3與軸4之間的傳動效率。
1. 各軸轉速:
2各軸輸入功率:
3各軸輸入轉矩:
運動和動力參數結果如下表:
軸名 功率P KW 轉矩T Nm 轉速r/min
輸入 輸出 輸入 輸出
電動機軸 3.67 36.5 960
1軸 3.52 3.48 106.9 105.8 314.86
2軸 3.21 3.18 470.3 465.6 68
3軸 3.05 3.02 1591.5 1559.6 19.1
4軸 3 2.97 1575.6 1512.6 19.1
六 設計V帶和帶輪:
1.設計V帶
①確定V帶型號
查課本 表13-6得: 則
根據 =4.4, =960r/min,由課本 圖13-5,選擇A型V帶,取 。
查課本第206頁表13-7取 。
為帶傳動的滑動率 。
②驗算帶速: 帶速在 范圍內,合適。
③取V帶基準長度 和中心距a:
初步選取中心距a: ,取 。
由課本第195頁式(13-2)得: 查課本第202頁表13-2取 。由課本第206頁式13-6計算實際中心距: 。
④驗算小帶輪包角 :由課本第195頁式13-1得: 。
⑤求V帶根數Z:由課本第204頁式13-15得:
查課本第203頁表13-3由內插值法得 。
EF=0.1
=1.37+0.1=1.38
EF=0.08
查課本第202頁表13-2得 。
查課本第204頁表13-5由內插值法得 。 =163.0 EF=0.009
=0.95+0.009=0.959
則
取 根。
⑥求作用在帶輪軸上的壓力 :查課本201頁表13-1得q=0.10kg/m,故由課本第197頁式13-7得單根V帶的初拉力:
作用在軸上壓力:
。
七 齒輪的設計:
1高速級大小齒輪的設計:
①材料:高速級小齒輪選用 鋼調質,齒面硬度為250HBS。高速級大齒輪選用 鋼正火,齒面硬度為220HBS。
②查課本第166頁表11-7得: 。
查課本第165頁表11-4得: 。
故 。
查課本第168頁表11-10C圖得: 。
故 。
③按齒面接觸強度設計:9級精度製造,查課本第164頁表11-3得:載荷系數 ,取齒寬系數 計算中心距:由課本第165頁式11-5得:
考慮高速級大齒輪與低速級大齒輪相差不大取
則 取
實際傳動比:
傳動比誤差: 。
齒寬: 取
高速級大齒輪: 高速級小齒輪:
④驗算輪齒彎曲強度:
查課本第167頁表11-9得:
按最小齒寬 計算:
所以安全。
⑤齒輪的圓周速度:
查課本第162頁表11-2知選用9級的的精度是合適的。
2低速級大小齒輪的設計:
①材料:低速級小齒輪選用 鋼調質,齒面硬度為250HBS。
低速級大齒輪選用 鋼正火,齒面硬度為220HBS。
②查課本第166頁表11-7得: 。
查課本第165頁表11-4得: 。
故 。
查課本第168頁表11-10C圖得: 。
故 。
③按齒面接觸強度設計:9級精度製造,查課本第164頁表11-3得:載荷系數 ,取齒寬系數
計算中心距: 由課本第165頁式11-5得:
取 則 取
計算傳動比誤差: 合適
齒寬: 則取
低速級大齒輪:
低速級小齒輪:
④驗算輪齒彎曲強度:查課本第167頁表11-9得:
按最小齒寬 計算:
安全。
⑤齒輪的圓周速度:
查課本第162頁表11-2知選用9級的的精度是合適的。
八 減速器機體結構尺寸如下:
名稱 符號 計算公式 結果
箱座厚度
10
箱蓋厚度
9
箱蓋凸緣厚度
12
箱座凸緣厚度
15
箱座底凸緣厚度
25
地腳螺釘直徑
M24
地腳螺釘數目
查手冊 6
軸承旁聯結螺栓直徑
M12
蓋與座聯結螺栓直徑
=(0.5 0.6)
M10
軸承端蓋螺釘直徑
=(0.4 0.5)
10
視孔蓋螺釘直徑
=(0.3 0.4)
8
定位銷直徑
=(0.7 0.8)
8
, , 至外箱壁的距離
查手冊表11—2 34
22
18
, 至凸緣邊緣距離
查手冊表11—2 28
16
外箱壁至軸承端面距離
= + +(5 10)
50
大齒輪頂圓與內箱壁距離
>1.2
15
齒輪端面與內箱壁距離
>
10
箱蓋,箱座肋厚
9
8.5
軸承端蓋外徑
+(5 5.5)
120(1軸)
125(2軸)
150(3軸)
軸承旁聯結螺栓距離
120(1軸)
125(2軸)
150(3軸)
九 軸的設計:
1高速軸設計:
①材料:選用45號鋼調質處理。查課本第230頁表14-2取 C=100。
②各軸段直徑的確定:根據課本第230頁式14-2得: 又因為裝小帶輪的電動機軸徑 ,又因為高速軸第一段軸徑裝配大帶輪,且 所以查手冊第9頁表1-16取 。L1=1.75d1-3=60。
因為大帶輪要靠軸肩定位,且還要配合密封圈,所以查手冊85頁表7-12取 ,L2=m+e+l+5=28+9+16+5=58。
段裝配軸承且 ,所以查手冊62頁表6-1取 。選用6009軸承。
L3=B+ +2=16+10+2=28。
段主要是定位軸承,取 。L4根據箱體內壁線確定後在確定。
裝配齒輪段直徑:判斷是不是作成齒輪軸:
查手冊51頁表4-1得:
得:e=5.9<6.25。
段裝配軸承所以 L6= L3=28。
2 校核該軸和軸承:L1=73 L2=211 L3=96
作用在齒輪上的圓周力為:
徑向力為
作用在軸1帶輪上的外力:
求垂直面的支反力:
求垂直彎矩,並繪制垂直彎矩圖:
求水平面的支承力:
由 得
N
N
求並繪制水平面彎矩圖:
求F在支點產生的反力:
求並繪制F力產生的彎矩圖:
F在a處產生的彎矩:
求合成彎矩圖:
考慮最不利的情況,把 與 直接相加。
求危險截面當量彎矩:
從圖可見,m-m處截面最危險,其當量彎矩為:(取摺合系數 )
計算危險截面處軸的直徑:
因為材料選擇 調質,查課本225頁表14-1得 ,查課本231頁表14-3得許用彎曲應力 ,則:
因為 ,所以該軸是安全的。
3軸承壽命校核:
軸承壽命可由式 進行校核,由於軸承主要承受徑向載荷的作用,所以 ,查課本259頁表16-9,10取 取
按最不利考慮,則有:
則 因此所該軸承符合要求。
4彎矩及軸的受力分析圖如下:
5鍵的設計與校核:
根據 ,確定V帶輪選鑄鐵HT200,參考教材表10-9,由於 在 范圍內,故 軸段上採用鍵 : ,
採用A型普通鍵:
鍵校核.為L1=1.75d1-3=60綜合考慮取 =50得 查課本155頁表10-10 所選鍵為:
中間軸的設計:
①材料:選用45號鋼調質處理。查課本第230頁表14-2取 C=100。
②根據課本第230頁式14-2得:
段要裝配軸承,所以查手冊第9頁表1-16取 ,查手冊62頁表6-1選用6208軸承,L1=B+ + + =18+10+10+2=40。
裝配低速級小齒輪,且 取 ,L2=128,因為要比齒輪孔長度少 。
段主要是定位高速級大齒輪,所以取 ,L3= =10。
裝配高速級大齒輪,取 L4=84-2=82。
段要裝配軸承,所以查手冊第9頁表1-16取 ,查手冊62頁表6-1選用6208軸承,L1=B+ + +3+ =18+10+10+2=43。
③校核該軸和軸承:L1=74 L2=117 L3=94
作用在2、3齒輪上的圓周力:
N
徑向力:
求垂直面的支反力
計算垂直彎矩:
求水平面的支承力:
計算、繪制水平面彎矩圖:
求合成彎矩圖,按最不利情況考慮:
求危險截面當量彎矩:
從圖可見,m-m,n-n處截面最危險,其當量彎矩為:(取摺合系數 )
計算危險截面處軸的直徑:
n-n截面:
m-m截面:
由於 ,所以該軸是安全的。
軸承壽命校核:
軸承壽命可由式 進行校核,由於軸承主要承受徑向載荷的作用,所以 ,查課本259頁表16-9,10取 取
則 ,軸承使用壽命在 年范圍內,因此所該軸承符合要求。
④彎矩及軸的受力分析圖如下:
⑤鍵的設計與校核:
已知 參考教材表10-11,由於 所以取
因為齒輪材料為45鋼。查課本155頁表10-10得
L=128-18=110取鍵長為110. L=82-12=70取鍵長為70
根據擠壓強度條件,鍵的校核為:
所以所選鍵為:
從動軸的設計:
⑴確定各軸段直徑
①計算最小軸段直徑。
因為軸主要承受轉矩作用,所以按扭轉強度計算,由式14-2得:
考慮到該軸段上開有鍵槽,因此取
查手冊9頁表1-16圓整成標准值,取
②為使聯軸器軸向定位,在外伸端設置軸肩,則第二段軸徑 。查手冊85頁表7-2,此尺寸符合軸承蓋和密封圈標准值,因此取 。
③設計軸段 ,為使軸承裝拆方便,查手冊62頁,表6-1,取 ,採用擋油環給軸承定位。選軸承6215: 。
④設計軸段 ,考慮到擋油環軸向定位,故取
⑤設計另一端軸頸 ,取 ,軸承由擋油環定位,擋油環另一端靠齒輪齒根處定位。
⑥ 輪裝拆方便,設計軸頭 ,取 ,查手冊9頁表1-16取 。
⑦設計軸環 及寬度b
使齒輪軸向定位,故取 取
,
⑵確定各軸段長度。
有聯軸器的尺寸決定 (後面將會講到).
因為 ,所以
軸頭長度 因為此段要比此輪孔的長度短
其它各軸段長度由結構決定。
(4).校核該軸和軸承:L1=97.5 L2=204.5 L3=116
求作用力、力矩和和力矩、危險截面的當量彎矩。
作用在齒輪上的圓周力:
徑向力:
求垂直面的支反力:
計算垂直彎矩:
.m
求水平面的支承力。
計算、繪制水平面彎矩圖。
求F在支點產生的反力
求F力產生的彎矩圖。
F在a處產生的彎矩:
求合成彎矩圖。
考慮最不利的情況,把 與 直接相加。
求危險截面當量彎矩。
從圖可見,m-m處截面最危險,其當量彎矩為:(取摺合系數 )
計算危險截面處軸的直徑。
因為材料選擇 調質,查課本225頁表14-1得 ,查課本231頁表14-3得許用彎曲應力 ,則:
考慮到鍵槽的影響,取
因為 ,所以該軸是安全的。
(5).軸承壽命校核。
軸承壽命可由式 進行校核,由於軸承主要承受徑向載荷的作用,所以 ,查課本259頁表16-9,10取 取
按最不利考慮,則有:
則 ,
該軸承壽命為64.8年,所以軸上的軸承是適合要求的。
(6)彎矩及軸的受力分析圖如下:
(7)鍵的設計與校核:
因為d1=63裝聯軸器查課本153頁表10-9選鍵為 查課本155頁表10-10得
因為L1=107初選鍵長為100,校核 所以所選鍵為:
裝齒輪查課本153頁表10-9選鍵為 查課本155頁表10-10得
因為L6=122初選鍵長為100,校核
所以所選鍵為: .
十 高速軸大齒輪的設計
因 採用腹板式結構
代號 結構尺寸和計算公式 結果
輪轂處直徑
72
輪轂軸向長度
84
倒角尺寸
1
齒根圓處的厚度
10
腹板最大直徑
321.25
板孔直徑
62.5
腹板厚度
25.2
電動機帶輪的設計
代號 結構尺寸和計算公式 結果
手冊157頁 38mm
68.4mm
取60mm
81mm
74.7mm
10mm
15mm
5mm
十一.聯軸器的選擇:
計算聯軸器所需的轉矩: 查課本269表17-1取 查手冊94頁表8-7選用型號為HL6的彈性柱銷聯軸器。
十二潤滑方式的確定:
因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度。
十三.其他有關數據見裝配圖的明細表和手冊中的有關數據。
十四.參考資料:
《機械設計課程設計手冊》(第二版)——清華大學 吳宗澤,北京科技大學 羅聖國主編。
《機械設計課程設計指導書》(第二版)——羅聖國,李平林等主編。
《機械課程設計》(重慶大學出版社)——周元康等主編。
《機械設計基礎》(第四版)課本——楊可楨 程光蘊 主編。
3. 誰能提供一下,鍋爐燃燒控制系統不同負荷下,惰性區和導前區的傳遞函數,最好是有原理框圖,和結構圖。
鍋爐過熱器和再熱器出口蒸汽溫度是單元機組運行中必須保持在一定范圍的重要參數。隨著機組容量的增大,過熱器和再熱器管道也隨之加長,這就使得其熱慣性和調節滯後都大大增加,從而造成汽溫控制系統投自動困難,或被調參數的動、靜態品質指標差。鍋爐過熱器是回收鍋爐煙氣能量的,使鍋爐出來的蒸汽可以獲得加熱,變為干蒸汽,有利於提高鍋爐熱效率,也有利於蒸汽輪機避免水擊 回熱器是從蒸汽輪機的乏蒸汽中回收能量,加熱進入鍋爐的循環水 此外還有回熱器,可以將高壓級排出的蒸汽再熱,回收鍋爐的能量,這些裝置都是大型鍋爐蒸汽系統的輔助集熱裝置,都有利於提高鍋爐系統的能量效率,只不過過熱器、再熱器是回收煙氣能量,回熱器是回收蒸汽能量。
採用自適應控制技術需要對被控對象的動態特性進行辨識,目前通用的計算機分散控制系統( DCS )中還沒有提供一套對被控對象進行實時動態地系統辨識的軟體工具,其次在應用領域真正能夠掌握和運用自適應控制技術的人才也很缺乏。DCS控制系統(DISTributed Control System,分散控制系統)是隨著現代大型工業生產自動化的不斷興起和過程式控制制要求的日益復雜應運而生的綜合控制系統。它是計算機技術、系統控制技術、網路通訊技術和多媒體技術相結合的產物,可提供窗口友好的人機界面和強大的通訊功能,是完成過程式控制制、過程管理的現代化設備,具有廣闊的應用前景。
現場實時控制的應用效果展示了該項技術的先進性和實用性。狀態觀測器根據系統的外部變數(輸入變數和輸出變數)的實測值得出狀態變數估計值的一類動態系統,也稱為狀態重構器。60年代初期,為了對控制系統實現狀態反饋或其他需要,D.G.呂恩伯格、R.W.巴斯和J.E.貝特朗等人提出狀態觀測器的概念和構造方法,通過重構的途徑解決了狀態的不能直接量測的問題。狀態觀測器的出現,不但為狀態反饋的技術實現提供了實際可能性,而且在控制工程的許多方面也得到了實際應用,例如復制擾動以實現對擾動的完全補償等。工業生產過程中,對於生產裝置的溫度、壓力、流量、液位等工藝變數常常要求維持在一定的數值上,或按一定的規律變化,以滿足生產工藝的要求。PID控制器是根據PID控制原理對整個控制系統進行偏差調節,從而使被控變數的實際值與工藝要求的預定值一致。不同的控制規律適用於不同的生產過程,必須合理選擇相應的控制規律,否則PID控制器將達不到預期的控制效果。
2. 狀態反饋系統的基本概念及幾個主要結論
狀態反饋的基本特點是採用對狀態向量的線性反饋律來構成閉環控制系統,由於控製作用是系統狀態的函數,可使控制效果得到很大地改善,從而比輸出反饋具有一系列更好的控制特性。
自動控制原理指是指在沒有人直接參與的情況下,利用外加的設備或裝置(稱控制裝置或控制器),使機器,設備或生產過程(統稱被控對象)的某個工作狀態或參數(即被控制量)自動地按照預定的規律運行。控制系統的各種特性,或其各種品質指標,很大程度上是由系統的極點位置所決定的。而所謂極點配置問題,就是通過反饋陣的選擇,使閉環系統的極點,恰好處於所希望的一組極點的位置上。
極點配置定理回答了在怎樣的條件下,僅僅通過狀態反饋,就能任意配置極點的問題。它可簡述為:若動態方程 可控,則利用狀態反饋式 可以任意配置閉環系統的特徵值,若特徵值中有復數,必共軛成對地出現。
3. 運用觀測器理論解決蒸汽溫度調節對象的狀態重構問題
對於完全能控的線性定常系統,可以通過線性狀態反饋任意配置極點,以使系統實現其在Ляпунов意義下是漸進穩定的,亦即是能鎮定的。但是,通常並不是全部狀態變數都能直接量測的,從而給狀態反饋的物理實現造成了障礙。
3.1 狀態觀測器的定義及其實現問題
狀態觀測器有如下定義 : 設線性定常系統 ∑ o =( A , B , C )的狀態 X 是不能直接測量的, 稱動態系統∑ g 是∑ o 的一個狀態觀測器,如果
( 1 )∑ g 以∑ o 的輸入 u 和輸出 y 作為輸入量;
( 2 )∑ g 的輸出 W ( t )滿足如下的等價性指標
(4)
觀測器的存在性:狀態觀測器存在的充分必要條件是∑ o 的不能觀測部分漸近穩定。如果對給定的一個傳遞函數陣 W ( s ),能找到一個狀態方程( A,B,C )並使之成立
C ( sI - A ) - 1 B = W ( s ) (5) 則稱( A,B,C )為具有傳遞特性 W ( s )的系統的一個實現。實現就其本質而言,是在狀態空間法的領域內尋找一個假想結構,使之與真實系統具有相同的傳遞特性。並不是任意給定的 W ( s )都可找到其實現的,通常,它必須滿足物理可實現條件。
實現的不唯一性:與給定的 W ( s )具有相同的傳遞特性的實現不是唯一的。對於給定的 W ( s ),一定存在一類維數最低的實現,稱為最小實現,它反映了具有給定傳遞函數特性 W ( s )的假想結構的最簡形式。最小實現也不是唯一的,但它們的維數必是相等的,且必是代數等價的。
3.2 鍋爐蒸汽溫度被控對象的動態特性及其狀態觀測器的一種實現
鍋爐蒸汽溫度被控對象包括過熱器出口主蒸汽溫度和再熱器出口的再熱蒸汽溫度。集總參數模型則是將單相受熱管的介質狀態參數看成是均一的,並在空間位置上選定一個有代表性的點,就用這一點介質的參數作為環節的集總參數。進一步還可推斷出單相受熱管的多段集總參數模型,通常把整個管段均分成若干小段,每個分段內集總參數的選擇要一致。因此每個分段模型的形式與整個管段模型的形式是相同的,整個管段的模型則由各個分段(設共有 n 段)模型串聯而成,也就是分段模型的 n 次冪。這時,對每個分段來說,須將總熱流量、總金屬量、總容積等分別除以分段數 n 。關於進出口溫度之間的傳遞函數。
這個公式含有近十個參數,對於實際應用並不方便。它的意義在於提供了一個十分有用的概念,即可以把過熱器和再熱器等單相受熱管理解成由若干個分段所組成,各分段傳遞函數的形式相同,段數 n 越大,每段傳遞函數表達式中的時間常數就成比例地減少。再熱器實質上是一種把作過功的低壓蒸汽再進行加熱並達到一定溫度的蒸汽過熱器,再熱器的作用進一步提高了電廠循環的熱效率,並使汽輪機末級葉片的蒸汽溫度控制在允許的范圍內。
實際工程問題中往往把解析法和系統辨識方法結合起來,通過對系統基本結構及工作原理的了解,初步推斷出系統模型的結構,或估計出系統模型的結構形式,然後再用辨識方法確定模型中的參數。
圖 1 所示為過熱器的狀態觀測器,整個過熱器劃分為四段,對每一分段又可簡化為一階慣性環節,整個過熱器就是四階慣性環節。至於時間常數 T 通常是單元機組負荷的函數,可作為狀態反饋控制系統中的一個待定因變數,在運行過程中通過觀測試驗進行參數整定。
圖 1 過熱器的狀態觀測器及其狀態反饋示圖
為了更好地反映被控對象的動態特性,故將過熱器的狀態觀測器設計為「增量形式」,即將過熱器入口溫度偏差和出口溫度偏差引入狀態觀測器,這樣觀測到的狀態變數更明確地反映了溫度的變化方向,同時過熱器入口溫度偏差的引入使狀態觀測器具有了預測控制的某些特點。為適應過熱器參數的變化,入口溫度設定值,出口溫度設定值及時間常數 T 均為鍋爐負荷的函數。
設過熱器導前區傳遞函數為 ,惰性區傳遞函數為
則
狀態觀測器的反饋矩陣 Kc=[K c1 , K c2 , K c3 , K c4 ] ;狀態反饋矩陣 K=[K 1 , K 2 , K 3 , K 4 , K 5 ] ,其中 K 1 為過熱器導前區的反饋增益。
惰性區傳遞函數的增益 K 2 可以查閱鍋爐的熱力計算書,取不同工況的平均值。而過熱器惰性區時間常數 T 2 的辨識則可以利用狀態觀測器來完成。首先,令狀態反饋控制開環 , 狀態反饋矩陣 Kc=[0 , 0 , 0 , 0] ;然後,調節觀測器時間常數,使觀測器輸出值和過熱器出口值的變化基本保持一致,此時的觀測器時間常數即可認為是惰性區傳遞函數的時間常數。
4 狀態觀測器、狀態反饋控制與常規 PID 調節相結合的工程應用實例
4.1 狀態反饋- PID 控制的結構與特點
狀態反饋— PID 控制的原理框圖見圖 2 。
圖 2. 狀態反饋— PID 控制的原理框圖
與傳統的 PID 控制相比,採用狀態反饋控制能方便的通過配置閉環極點的方法,改變系統的特性,達到提高控制精度的目的。這對控制具有遲延環節的工業對象來說,無疑是一種較好的控制方案。但是,由於單相受熱管的動態特性與熱流量有關,單靠狀態反饋配置極點還難以保證在不同的工況下使鍋爐蒸汽溫度控制系統的指標均達到理想的要求,而 PID 控制恰好具有魯棒性好和抗高頻干擾能力強的優點,二者的優勢可以互補。動態特性:當被測量隨時間迅速變化時,輸出量與輸入量之間的關系稱為動態特性,可以用微分方程表示。熱流量是一定面積的物體兩側存在溫差時,單位時間內由導熱、對流、輻射方式通過該物體所傳遞的熱量。通過物體的熱流量與兩側溫度差成正比,與厚度成反比,並與材料的導熱性能有關。單位面積的熱流量為熱流通量。穩態導熱通過物體熱流通量不隨時間改變,其內部不存在熱量的蓄積;不穩態導熱通過物體的熱流通量與內部溫度分布隨時間而變化。
利用狀態反饋改善系統的閉環特性,提高系統響應速度。這是控制的第一個層次。然後,將這個品質比較好的廣義被控對象交由 PID 控制,改善系統的魯棒性,使系統的適應性提高。這是控制的第二個層次。
4.2 狀態反饋- PID 控制的模擬研究
設 , ,令觀測器為 , Kc=[188.8458 , 329.2705 , 159.7069,22.8667] , K=[0.06659 , 3.6134 , 4.8962 , 2.9486 , 0.6659]
第一級調節器參數為: K p =0.08 , I=50s
第二級調節器參數為: K p =1.0 , I=0.0s
4.2.1 狀態反饋- PID 控制與 PID 串級控制系統的比較
PID 串級控制系統第一級調節器參數為: Kp=1 , I=25s
第二級調節器參數為: Kp=1.0 , I=0.0s
圖 3 是定值在發生單位階躍擾動時的響應曲線。
由圖 3 可以看出,狀態反饋- PID 控制系統的控制效果明顯優於傳統的 PID 串級控制系統
圖 3 狀態反饋— PID 控制與 PID 串級控制的響應特性比較
4.2.2 改變觀測器的時間常數 T 0 (其它參 數不變)
令 T 0 =5 , 8 , 10 , 15 時,系統的設定值擾動響應見圖 4 。由圖 4 可以看出在模型失配時,狀態反饋- PID 控制系統的表現。當觀測器的時間常數 T0 小於惰性區時間常數 T2 (10s) 時,系統響應加快,但 T0 越小出現的超調越大。當 T0 大於 T2 時,系統響應變慢。應該注意到,當 T0 與 T2 相差較大時,系統響應變差。因此,在實際應用中可以令觀測器的時間常數 T0 是負荷的函數,以適應惰性區時間常數 T2 的變化。
圖 4. 在不同的觀測器時間常數下系統的響應曲線
4.2.3 改變觀測器的增益 K0 (其它參數不變)
令 K0= 1.0 , 1.1 , 1.2 , 1.5 時,系統的設定值擾動響應見圖 5 。由圖 5 可見,系統對 K0 的變化不敏感;而實際系統的惰性區增益的變化范圍也基本在 1.1-1.5 之間。
圖 5. 在不同的觀測器增益下系統的響應曲線
改變狀態反饋矩陣 K (其它參數不變)
系統的設定值擾動響應見圖 6 。
理論上講, T 0 , K0 , KC 和 K 的變化均會導致系統閉環極點位置的變化。但是,如果 T 0 和 K0 的變化范圍已知,就可以找到一蔟滿足設計期望的 KC 和 K 。由圖 4 , 5 , 6 , 7 不難看出,狀態反饋- PID 控制系統中參數的變化范圍是比較大的,而系統的控制指標仍舊很好,說明系統具有比較強的魯棒性。
圖 6. 在不同的狀態反饋矩陣下系統的響應曲線
4.3 狀態反饋- PID 控制的工程應用
陝西寶雞第二發電廠新建工程 1 號 300MW 單元機組,鍋爐為亞臨界、自然循環中間再熱汽包爐。主蒸汽溫度為三級噴水調節,其中二級和三級過熱器分為 A 、 B 兩側,再熱汽溫度以燃燒器擺動火嘴調節為主,加微量噴水及事故工況噴水調節。燃燒器是使燃料和空氣以一定方式噴出混合(或混合噴出)燃燒的裝置統稱。熱工控制系統硬體為引進美國西屋公司的 WDPF-II 型分散控制系統,應用軟體的設計組態以及工程服務由國電智深承擔。在機組 168 小時考核試運期間,過(再)熱汽溫度控制系統一直處於連續的自動控制狀態。計算機統計的結果表明,蒸汽溫度的偏差不超過± 2 ℃ 。圖 8 為三級過熱器 A 側 24 小時運行曲線。
5 結論
為了實現對大滯後復雜對象的高質量控制,本文將狀態反饋控制與 PID 控制相綜合,提出了狀態反饋 -PID 控制方案。對汽溫控制進行的模擬研究和現場調試結果表明,本方案具有優良的控制性能,並具有較強的魯棒性。
與其它現代控制方法相比,狀態反饋 -PID 控制的演算法簡單,計算量小,且容易理解,可直接利用 DCS 系統中標准控制演算法實現,有很好的推廣應用價值。
之二:基於自抗擾控制器的蒸汽溫度控制系統
1. 汽溫調節對象的動態特性
過熱蒸汽溫度控制的任務是維持過熱器出口蒸汽溫度在允許范圍之內,並保護過熱器使其管壁溫度不超過允許的工作溫度。為了提高機組熱循環的經濟性,減小汽輪機末級葉片中蒸汽濕度,而採用中間再熱循環系統。
大型鍋爐的過熱器一般布置在爐膛上部和高溫煙道中,過熱器往往分成多段,中間設置噴水減溫器,減溫水由鍋爐給水系統提供。噴水減溫器按冷卻水噴入調溫水蒸氣的結構不同,可分為文丘里式、旋渦式和多孔噴管式等型式。噴水減溫器一般布置在兩級過熱器之間。因噴水直接與水蒸氣混合,故對水質要求較高。對給水品質好的凝汽式電廠,可直接用給水作噴水。對給水品質較差的中、高壓電廠,還可採用自製冷凝水的噴水減溫系統。其原理是將部分飽和水蒸氣用給水冷卻成冷凝水噴入減溫器中調溫。水的噴射依靠冷凝器和減溫器之間的壓差來實現,不需專門的減溫水泵。噴水減溫器的特點是結構簡單,調溫幅度大(可達50℃--65'C),調節溫度靈敏,易於實現自動化,因此,鍋爐中普遍採用。缺點為對噴水品質要求高。
影響過熱器出口汽溫的因素很多,主要是以下三種擾動。
A. 蒸汽流量擾動
B. 煙氣側傳熱量的擾動
C. 減溫噴水量擾動
其中 1 和 2 的擾動響應曲線類似,因為兩者的擾動是沿整個過熱器長度方向上同時發生的,響應具有自平衡特性,而且慣性和遲延都比較小。
對於第 3 種擾動考慮到使控制系統結構簡單,易於實現,目前大多採用噴水量作為調節量,因此噴水量擾動就是基本擾動。
2 、通常的汽溫控制系統
通常採用兩種方法對汽溫系統進行控制即帶有導前微分信號的雙信號汽溫控制系統和汽溫串級控制系統,另外還可以增加相位補償迴路或前饋控制迴路,提高控制系統的品質。
3 、自抗擾控制器介紹
自抗擾控制器自PID控制器演變過來,採取了PID誤差反饋控制的核心理念。傳統PID控制直接引取輸出於參考輸入做差作為控制信號,導致出現響應快速性與超調性的矛盾出現。自抗擾控制器主要由三部分組成:跟蹤微分器(tracking differentiator),擴展狀態觀測器 (extended state observer) 和非線性狀態誤差反饋控制律(nONlinear state error feedback law)。跟蹤微分器的作用是安排過渡過程,給出合理的控制信號,解決了響應速度與超調性之間的矛盾。擴展狀態觀測器用來解決模型未知部分和外部未知擾動綜合對控制對象的影響。雖然叫做擴展狀態觀測器,但與普通的狀態觀測器不同。擴展狀態觀測器設計了一個擴展的狀態量來跟蹤模型未知部分和外部未知擾動的影響。然後給出控制量補償這些擾動。將控制對象變為普通的積分串聯型控制對象。設計擴展狀態觀測器的目的就是觀測擴展出來的狀態變數,用來估計未知擾動和控制對象未建模部分,實現動態系統的反饋線性化,將控制對象變為積分串聯型。非線性誤差反饋控制律給出被控對象的控制策略。
自抗擾控制器 (ADRC) 基本結構是由如下三種功能組合而成 :
用一個跟蹤微分器 (TD) 來安排過渡過程並提取其微分信號;
用擴張狀態觀測器 (ESO) 來估計對象的狀態變數和未知擾動的實時作用量;
安排的過渡過程與對象狀態估計量之間誤差的適當非線性組合和未知擾動估計量的補償來生成控制信號。
下面以二階 ADRC 為例:
(1) 跟蹤微分器
跟蹤微分器是這樣的非線性環節:對它輸入一個信號 , 它給出這個信號的跟蹤信號 及其微分信號 . 是安排的過渡過程 , 而 是這個過渡過程的微分信號 . 跟蹤微分器的動態方程為
其中 , 為如下方式定義的非線性函數:
;
;
;
;
;
;
當 為控制目標 - 設定值時, 給出 0 到設定值的無超調的過渡過程曲線,而 是此過渡過程的微分信號。過渡過程的快慢就取決於參數 的選取, 大,過渡過程快, 小,過渡過程慢。
(2)擴張狀態觀測器
擴張狀態觀測器 (ESO) 的動態方程為
其中 , 非線性函數 為
是對象的輸入 , 是對象的輸出 , 它們都是 ESO 的輸入量 . 變數 將估計出產生信號 的對象的狀態變數 , 而 將估計出產生信號 的對象的模型作用 ( 內擾 ) 和外擾作用的實時總和作用 . 是 ESO 的可調參數 . 調好了參數 , 這個 ESO 能給出很滿意的估計結果 . 這是獨立於產生信號 的對象模型和外擾作用的觀測器 .
(3) 控制信號的生成
控制信號 將由安排的過渡過程 、 ESO 給出的估計 共同生成。
設對象描述為
把系統的輸入 和輸出 一同輸入到 ESO 中, ESO 的 分別估計出對象的 , 及 。
現在把控制量 分解成兩個分量:
並把控制分量 取成
那麼被控對象近似地變成
-- 純粹的積分器串聯形對象
把對象的「內擾」和「外擾」作用全部補償掉了 . 這是 ADRC 具有抗擾能力的根本原因 .
至於控制量的另一分量 的構造方法如下:
由安排的過渡過程 與 ESO 給出的狀態估計 來形成兩個誤差量
;
然後用誤差 和 的適當非線性函數 來產生 ,具體可取
一般 , . 如果 , 那麼這種反饋符合「小誤差大增益 , 大誤差小增益」的規律。
(4)自抗擾控制器的結構
自抗擾控制器的方塊圖 (Block Diagram of ADRC) 為
ADRC 的結構圖
(5) 自抗擾控制器的特點與應用前景
自抗擾控制器是由過渡過程安排、擴張狀態觀測器、擾動補償、狀態誤差的非線性反饋等特殊形式非線性結構所組成 .
自抗擾控制器能夠自動檢測並補償對象的 " 內擾 ( 模型 )" 和 " 外擾 " 作用,從而在各種惡劣環境之下也能保證很高的控制精度。利用自抗擾控制器進行控制系統設計時,可以把系統中的許多不同因素歸類為對系統的這種,或那種「擾動」,然後用擴張狀態觀測器來分別進行估計、補償。動檢測就是在測量和檢驗過程中完全不需要或僅需要很少的人工干預而自動進行並完成的。實現自動檢測可以提高自動化水平和程度,減少人為干擾因素和人為差錯,可以提高生產過程或設備的可靠性及運行效率。自動檢測的任務主要有兩種,一是將被測參數直接測量並顯示出來,以告訴人們或其他系統有關被測對象的變化情況,即通常而言的自動檢測或自動測試;二是用作自動控制系統的前端系統,以便根據參數的變化情況做出相應的控制決策,實施自動控制。
自抗擾控制器的演算法簡單,容易實現,而且其參數適應范圍廣,是一種理想的實用數字控制器。
自抗擾控制器具有如下優特點:
A. 獨立於對象數學模型的固定結構;
B. 能實現快速、無超調、無靜差控制;
C. 被調參數物理意義明確,易整定參數;
D. 演算法簡單,能實現高速、高精度控制的理想數字控制器;
E. 無需量測外擾而能消除其影響;
F. 不用區分線性、非線性,時變、時不變對象;
G. 對象模型已知更好,未知也無妨;
H. 易實現大時滯對象控制;
I. 解耦控制特別簡單;所謂解耦控制系統,就是採用某種結構,尋找合適的控制規律來消除系統種各控制迴路之間的相互耦合關系,使每一個輸入只控制相應的一個輸出,每一個輸出又只受到一個控制的作用。 解耦控制是一個既古老又極富生命力的話題,不確定性是工程實際中普遍存在的棘手現象。解耦控制是多變數系統控制的有效手段。
目前,絕大部分工業控制器都以數字控制器形式出現,舊的模擬式控制器也被數字式控制器所取代。數字控制器,Digital Controller ,電子控制器的一類,計算機控制系統的核心部分,一般與系統中反饋部分的元件、設備相連,該系統中的其他部分可能是數字的也可能是模擬的。數字控制器通常是利用計算機軟體編程,完成特定的控制演算法。通常數字控制器應具備: A/D轉換、D/A轉換、一個完成輸入信號到輸出信號換算的程序。
自抗擾控制器為適應這個新時代的要求而誕生,它將以更高的效率和精度去替代過程式控制制中廣泛採用的 PID 和現行各種形式「先進控制器」。
自抗擾控制器的結構已經成型,對不同類型對象 ,只需調整相應參數就可實用 .
自抗擾控制器已在機械人的高速、高精度控制;力學持久機群控;爐溫控制;發電機勵磁控制;磁懸浮浮距控制;四液壓缸協調控制;傳動裝置的運動控制;非同步電機變頻調速控制;高速高精度加工車床控制等不同裝置的實物實驗中均取得了很理想的控制效果。
在過程式控制制領域,一種新型的非線性數字控制器 -- 「自抗擾控制器」以更好的控制能力和更高的控制精度,將會取代 PID 而發揮它應有的作用。
4 、利用自抗擾控制器的汽溫控制系統
汽溫控制對象一般為減溫器和過熱器,減溫器可看成一個一階慣性環節,過熱器通常是 4-6 階慣性環節。通常我們可以將對象簡化為一個二階慣性環節加遲延的控制對象,我們可以利用二階(或三階) ADRC 來控制。如上圖,被控對象就是過熱器和減溫器對象。將其控制思想於 DCS 常規演算法於自定義演算法相結合,取得了較好的控制效果。
4. 機械設計基礎課程設計指導書——設計輸送機傳動裝置課程設計
給你做個參考
一、前言
(一)
設計目的:
通過本課程設計將學過的基礎理論知識進行綜合應用,培養結構設計,計算能力,熟悉一般的機械裝置設計過程。
(二)
傳動方案的分析
機器一般是由原動機、傳動裝置和工作裝置組成。傳動裝置是用來傳遞原動機的運動和動力、變換其運動形式以滿足工作裝置的需要,是機器的重要組成部分。傳動裝置是否合理將直接影響機器的工作性能、重量和成本。合理的傳動方案除滿足工作裝置的功能外,還要求結構簡單、製造方便、成本低廉、傳動效率高和使用維護方便。
本設計中原動機為電動機,工作機為皮帶輸送機。傳動方案採用了兩級傳動,第一級傳動為帶傳動,第二級傳動為單級直齒圓柱齒輪減速器。
帶傳動承載能力較低,在傳遞相同轉矩時,結構尺寸較其他形式大,但有過載保護的優點,還可緩和沖擊和振動,故布置在傳動的高速級,以降低傳遞的轉矩,減小帶傳動的結構尺寸。
齒輪傳動的傳動效率高,適用的功率和速度范圍廣,使用壽命較長,是現代機器中應用最為廣泛的機構之一。本設計採用的是單級直齒輪傳動。
減速器的箱體採用水平剖分式結構,用HT200灰鑄鐵鑄造而成。
二、傳動系統的參數設計
原始數據:運輸帶的工作拉力F=0.2 KN;帶速V=2.0m/s;滾筒直徑D=400mm(滾筒效率為0.96)。
工作條件:預定使用壽命8年,工作為二班工作制,載荷輕。
工作環境:室內灰塵較大,環境最高溫度35°。
動力來源:電力,三相交流380/220伏。
1
、電動機選擇
(1)、電動機類型的選擇: Y系列三相非同步電動機
(2)、電動機功率選擇:
①傳動裝置的總效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作機所需的輸入功率:
因為 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③電動機的輸出功率:
=3.975/0.87=4.488KW
使電動機的額定功率P =(1~1.3)P ,由查表得電動機的額定功率P = 5.5KW 。
⑶、確定電動機轉速:
計算滾筒工作轉速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』 =3~6。取V帶傳動比I』 =2~4,則總傳動比理時范圍為I』 =6~24。故電動機轉速的可選范圍為n』 =(6~24)×96=576~2304r/min
⑷、確定電動機型號
根據以上計算在這個范圍內電動機的同步轉速有1000r/min和1500r/min,綜合考慮電動機和傳動裝置的情況,同時也要降低電動機的重量和成本,最終可確定同步轉速為1500r/min ,根據所需的額定功率及同步轉速確定電動機的型號為Y132S-4 ,滿載轉速 1440r/min 。
其主要性能:額定功率:5.5KW,滿載轉速1440r/min,額定轉矩2.2,質量68kg。
2
、計算總傳動比及分配各級的傳動比
(1)、總傳動比:i =1440/96=15
(2)、分配各級傳動比:
根據指導書,取齒輪i =5(單級減速器i=3~6合理)
=15/5=3
3
、運動參數及動力參數計算
⑴、計算各軸轉速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵計算各軸的功率(KW)
電動機的額定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶計算各軸扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、傳動零件的設計計算
(一)齒輪傳動的設計計算
(1)選擇齒輪材料及精度等級
考慮減速器傳遞功率不大,所以齒輪採用軟齒面。小齒輪選用40Cr調質,齒面硬度為240~260HBS。大齒輪選用45#鋼,調質,齒面硬度220HBS;根據指導書選7級精度。齒面精糙度R ≤1.6~3.2μm
(2)確定有關參數和系數如下:
傳動比i
取小齒輪齒數Z =20。則大齒輪齒數:
=5×20=100
,所以取Z
實際傳動比
i =101/20=5.05
傳動比誤差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齒數比:
u=i
取模數:m=3 ;齒頂高系數h =1;徑向間隙系數c =0.25;壓力角 =20°;
則
h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圓直徑:d =×20mm=60mm
d =3×101mm=303mm
由指導書取
φ
齒寬:
b=φ =0.9×60mm=54mm
=60mm ,
b
齒頂圓直徑:d )=66,
d
齒根圓直徑:d )=52.5,
d )=295.5
基圓直徑:
d cos =56.38,
d cos =284.73
(3)計算齒輪傳動的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液壓絞車≈182mm
(二)軸的設計計算
1
、輸入軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質,硬度217~255HBS
根據指導書並查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴選d=25mm
⑵、軸的結構設計
①軸上零件的定位,固定和裝配
單級減速器中可將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面由軸肩定位,右面用套筒軸向固定,聯接以平鍵作過渡配合固定,兩軸承分別以軸肩和大筒定位,則採用過渡配合固定
②確定軸各段直徑和長度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以長度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L =(2+20+55)=77mm
III段直徑:
初選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直徑:
由手冊得:c=1.5
h=2c=2×1.5=3mm
此段左面的滾動軸承的定位軸肩考慮,應便於軸承的拆卸,應按標准查取由手冊得安裝尺寸h=3.該段直徑應取:d =(35+3×2)=41mm
因此將Ⅳ段設計成階梯形,左段直徑為41mm
+2h=35+2×3=41mm
長度與右面的套筒相同,即L
Ⅴ段直徑:d =50mm. ,長度L =60mm
取L
由上述軸各段長度可算得軸支承跨距L=80mm
Ⅵ段直徑:d =41mm, L
Ⅶ段直徑:d =35mm, L <L3,取L
2
、輸出軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質鋼,硬度(217~255HBS)
根據課本P235頁式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考慮有鍵槽,將直徑增大5%,則
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、軸的結構設計
①軸的零件定位,固定和裝配
單級減速器中,可以將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面用軸肩定位,右面用套筒軸向定位,周向定位採用鍵和過渡配合,兩軸承分別以軸承肩和套筒定位,周向定位則用過渡配合或過盈配合,軸呈階狀,左軸承從左面裝入,齒輪套筒,右軸承和皮帶輪依次從右面裝入。
②確定軸的各段直徑和長度
初選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長42.755mm,安裝齒輪段長度為輪轂寬度為2mm。
則
d =42mm
L
= 50mm
L
= 55mm
L
= 60mm
L
= 68mm
L
=55mm
L
四、滾動軸承的選擇
1
、計算輸入軸承
選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
2
、計算輸出軸承
選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm
五、鍵聯接的選擇
1
、輸出軸與帶輪聯接採用平鍵聯接
鍵的類型及其尺寸選擇:
帶輪傳動要求帶輪與軸的對中性好,故選擇C型平鍵聯接。
根據軸徑d =42mm ,L =65mm
查手冊得,選用C型平鍵,得: 卷揚機
裝配圖中22號零件選用GB1096-79系列的鍵12×56
則查得:鍵寬b=12,鍵高h=8,因軸長L =65,故取鍵長L=56
2
、輸出軸與齒輪聯接用平鍵聯接
=60mm,L
查手冊得,選用C型平鍵,得:
裝配圖中 赫格隆36號零件選用GB1096-79系列的鍵18×45
則查得:鍵寬b=18,鍵高h=11,因軸長L =53,故取鍵長L=45
3
、輸入軸與帶輪聯接採用平鍵聯接
=25mm
L
查手冊
選A型平鍵,得:
裝配圖中29號零件選用GB1096-79系列的鍵8×50
則查得:鍵寬b=8,鍵高h=7,因軸長L =62,故取鍵長L=50
4
、輸出軸與齒輪聯接用平鍵聯接
=50mm
L
查手冊
選A型平鍵,得:
裝配圖中26號零件選用GB1096-79系列的鍵14×49
則查得:鍵寬b=14,鍵高h=9,因軸長L =60,故取鍵長L=49
六、箱體、箱蓋主要尺寸計算
箱體採用水平剖分式結構,採用HT200灰鑄鐵鑄造而成。箱體主要尺寸計算如下:
七、軸承端蓋
主要尺寸計算
軸承端蓋:HT150 d3=8
n=6 b=10
八、減速器的
減速器的附件的設計
1
、擋圈 :GB886-86
查得:內徑d=55,外徑D=65,擋圈厚H=5,右肩軸直徑D1≥58
2
、油標 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
設計參考資料目錄
1、吳宗澤、羅聖國主編.機械設計課程設計手冊.北京:高等教育出版社,1999.6
2、解蘭昌等編著.緊密儀器儀表機構設計.杭州:浙江大學出版社,1997.11
5. 有哪位高人知道沖壓雙向送料是怎麼回事
這是三層沖壓模,並不少見.
主要是為了提高生產效率.
6. 機械設計課程設計任務書
目 錄
設計計劃任務書 ﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎1
傳動方案說明﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎2
電動機的選擇﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎3
傳動裝置的運動和動力參數﹎﹎﹎﹎﹎﹎﹎﹎5
傳動件的設計計算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎6
軸的設計計算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎8
聯軸器的選擇﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎10
滾動軸承的選擇及計算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎13
鍵聯接的選擇及校核計算﹎﹎﹎﹎﹎﹎﹎﹎﹎14
減速器附件的選擇﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎15
潤滑與密封﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎16
設計小結﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎16
參考資料﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎17
1.擬定傳動方案
為了估計傳動裝置的總傳動比范圍,以便選擇合適的傳動機構和傳動方案,可先由已知條件計算其驅動捲筒的轉速nw,即
v=1.1m/s;D=350mm;
nw=60*1000*v/(∏*D)=60*1000*1.1/(3.14*350)
一般常選用同步轉速為1000r/min或1500r/min的電動機作為原動機,因此傳動裝置總傳動比約為17或25。
2.選擇電動機
1)電動機類型和結構形式
按工作要求和工作條件,選用一般用途的Y(IP44)系列三相非同步電動機。它為卧式封閉結構。
2)電動機容量
(1)捲筒軸的輸出功率Pw
F=2800r/min;
Pw=F*v/1000=2800*1.1/1000
(2)電動機輸出功率Pd
Pd=Pw/t
傳動裝置的總效率 t=t1*t2^2*t3*t4*t5
式中,t1,t2,…為從電動機到捲筒之間的各傳動機構和軸承的效率。由表2-4查得:
彈性聯軸器 1個
t4=0.99;
滾動軸承 2對
t2=0.99;
圓柱齒輪閉式 1對
t3=0.97;
V帶開式傳動 1幅
t1=0.95;
捲筒軸滑動軸承潤滑良好 1對
t5=0.98;
則
t=t1*t2^2*t3*t4*t5=0.95*0.99^2*0.97*0.99*0.98=0.8762
故
Pd=Pw/t=3.08/0.8762
(3)電動機額定功率Ped
由第二十章表20-1選取電動機額定功率ped=4KW。
3)電動機的轉速
為了便於選擇電動事,先推算電動機轉速的可選范圍。由表2-1查得V帶傳動常用傳動比范圍2~4,單級圓柱齒輪傳動比范圍3~6,
可選電動機的最小轉速
Nmin=nw*6=60.0241*6=360.1449r/min
可選電動機的最大轉速
Nmin=nw*24=60.0241*24=1440.6 r/min
同步轉速為960r/min
選定電動機型號為Y132M1-6。
4)電動機的技術數據和外形、安裝尺寸
由表20-1、表20-2查出Y132M1-6型電動機的方根技術數據和
外形、安裝尺寸,並列表刻錄備用。
電機型號 額定功率 同步轉速 滿載轉速 電機質量 軸徑mm
Y132M1-6 4Kw 1000 960 73 28
大齒輪數比小齒輪數=101/19=5.3158
3.計算傳動裝置總傳動比和分配各級傳動比
1)傳動裝置總傳動比
nm=960r/min;
i=nm/nw=960/60.0241=15.9936
2)分配各級傳動比
取V帶傳動比為
i1=3;
則單級圓柱齒輪減速器比為
i2=i/i1=15.9936/3=5.3312
所得i2值符合一般圓柱齒輪和單級圓柱齒輪減速器傳動比的常用范圍。
4.計算傳動裝置的運動和動力參數
1)各軸轉速
電動機軸為0軸,減速器高速軸為Ⅰ軸,低速軸為Ⅱ軸,各軸轉速為
n0=nm;
n1=n0/i1=60.0241/3=320r/min
n2=n1/i2=320/5.3312=60.0241r/min
2)各軸輸入功率
按機器的輸出功率Pd計算各軸輸入功率,即
P0=Ped=4kw
軸I 的功率
P1=P0*t1=4*0.95=3.8kw
軸II功率
P2=P1*t2*t3=3.8*0.99*0.97=3.6491kw
3)各軸轉矩
T0=9550*P0/n0=9550*4/960=39.7917 Nm
T1=9550*P1/n1=9550*3.8/320=113.4063 Nm
T2=9550*P2/n2=9550*3.6491/60.0241=580.5878 Nm
二、設計帶輪
1、計算功率
P=Ped=4Kw
一班制,工作8小時,載荷平穩,原動機為籠型交流電動機
查課本表8-10,得KA=1.1;
計算功率
Pc=KA*P=1.1*4=4.4kw
2選擇普通V帶型號
n0 =960r/min
根據Pc=4.4Kw,n0=960r/min,由圖13-15(205頁)查得坐標點位於A型
d1=80~100
3、確定帶輪基準直徑
表8-11及推薦標准值
小輪直徑
d1=100mm;
大輪直徑
d2=d1*3.5=100*3.5=350mm
取標准件
d2=355mm;
4、驗算帶速
驗算帶速
v=∏*d1*n0/60000=3.14*100*960/60000=5.0265m/s
在5~25m/s范圍內
從動輪轉速
n22=n0*d1/d2=960*100/355=270.4225m/s
n21=n0/3.5=960/3.5=274.2857m/s
從動輪轉速誤差=(n22-n21)/n21=270.4225-274.2857/274.2857
=-0.0141
5、V帶基準長度和中心距
初定中心距
中心距的范圍
amin=0.75*(d1+d2)=0.75*(100+355)=341.2500mm
amax=0.8*(d1+d2)=0.8*(100+355)=364mm
a0=350mm;
初算帶長
Lc=2*a0+pi*(d1+d2)/2+(d2-d1)^2/4/a0
Lc = 1461.2mm
選定基準長度
表8-7,表8-8查得
Ld=1600mm;
定中心距
a0+(Ld-Lc)/2=(1600-1461.3)/2=419.4206mm
a=420mm;
amin=a-0.015*Ld=420-0.015*1600=396mm
amax=a+0.03*Ld=420+0.03*1600=468mm
6、驗算小帶輪包角
驗算包角
=180-(d2-d1)*57.3/a=180-(355-100)*57.3/a
145.2107 >120度 故合格
7、求V帶根數Z
由式(13-15)得
查得 n1=960r/min , d1=120mm
查表13-3 P0=0.95
由式13-9得傳動比
i=d2/(d1(1+0.0141)=350/(100*(1+0.0141)=3.5
查表(13-4)得
由包角145.21度
查表13-5得Ka=0.92
KL=0.99
z=4.4/((0.95+0.05)*0.92*0.99)=3
8、作用在帶上的壓力F
查表13-1得q=0.10
故由13-17得單根V帶初拉力
三、軸
初做軸直徑:
軸I和軸II選用45#鋼 c=110
d1=110*(3.8/320)^(1/3)=25.096mm
取d1=28mm
d2=110*(3.65/60)^(1/3)=43.262mm
由於d2與聯軸器聯接,且聯軸器為標准件,由軸II扭矩,查162頁表
取YL10YLd10聯軸器
Tn=630>580.5878Nm 軸II直徑與聯軸器內孔一致
取d2=45mm
四、齒輪
1、齒輪強度
由n2=320r/min,P=3.8Kw,i=3
採用軟齒面,小齒輪40MnB調質,齒面硬度為260HBS,大齒輪用ZG35SiMn調質齒面硬度為225HBS。
因 ,
SH1=1.1, SH2=1.1
,
,
因: , ,SF=1.3
所以
2、按齒面接觸強度設計
設齒輪按9級精度製造。取載荷系數K=1.5,齒寬系數
小齒輪上的轉矩
按 計算中心距
u=i=5.333
mm
齒數z1=19,則z2=z1*5.333=101
模數m=2a/(z1+z2)=2.0667 取模數m=2.5
確定中心矩a=m(z1+z1)/2=150mm
齒寬b=
b1=70mm,b2=60mm
3、驗算彎曲強度
齒形系數YF1=2.57,YF2=2.18
按式(11-8)輪齒彎曲強度
4、齒輪圓周速度
按162頁表11-2應選9做精度。與初選一致。
五、軸校核:
圓周力Ft=2T/d1
徑向力Fr=Ft*tan =20度 標准壓力角
d=mz=2.5*101=252.5mm
Ft=2T/d1=2*104.79/252.5=5852.5N
Fr=5852.5*tan20=2031.9N
1、求垂直面的支承壓力Fr1,Fr2
由Fr2*L-Fr*L/2=0
得Fr2=Fr/2=1015.9N
2、求水平平面的支承力
FH1=FH2=Ft/2=2791.2N
3、畫垂直面彎矩圖
L=40/2+40/2+90+10=140mm
Mav=Fr2*L/2=1015.9*140/2=71.113Nm
4、畫水平面彎矩圖
MaH=FH*L/2=2791.2*140/2=195.384Nm
5、求合成彎矩圖
6、求軸傳遞轉矩
T=Ft*d2/2=2791.2*2.5*101/2=352.389Nm
7、求危險截面的當量彎矩
從圖可見a-a截面是最危險截面,其當量彎矩為
軸的扭切應力是脈動循環應力
取摺合系數a=0.6代入上式可得
8、計算危險截面處軸的直徑
軸的材料,用45#鋼,調質處理,由表14-1查得
由表13-3查得許用彎曲應力 ,
所以
考慮到鍵槽對軸的削弱,將軸的最小危險直徑d加4%。
故d=1.04*25.4=26.42mm
由實際最小直徑d=40mm,大於危險直徑
所以此軸選d=40mm,安全
六、軸承的選擇
由於無軸向載荷,所以應選深溝球軸承6000系列
徑向載荷Fr=2031.9N,兩個軸承支撐,Fr1=2031.9/2=1015.9N
工作時間Lh=3*365*8=8760(小時)
因為大修期三年,可更換一次軸承
所以取三年
由公式
式中 fp=1.1,P=Fr1=1015.9N,ft=1 (工作環境溫度不高)
(深溝球軸承系列)
由附表選6207型軸承
七、鍵的選擇
選普通平鍵A型
由表10-9按最小直徑計算,最薄的齒輪計算
b=14mm,h=9mm,L=80mm,d=40mm
由公式
所以
選變通平鍵,鑄鐵鍵
所以齒輪與軸的聯接中可採用此平鍵。
八、減速器附件的選擇
1、通氣器:
由於在外界使用,有粉塵,選用通氣室採用M18 1.5
2、油麵指示器:
選用油標尺,規格M16
3、起吊裝置:採用箱蓋吊耳,箱座吊耳
4、放油螺塞:選用外六角細牙螺塞及墊片M16 1.5
5、窺視孔及視孔蓋
選用板結構的視孔蓋
九、潤滑與密封:
1、齒輪的潤滑:採用浸油潤滑,由於低速級大齒輪的速度為:
查《課程設計》P19表3-3大齒輪浸油深度為六分之一大齒輪半徑,所以取浸油深度為30mm。
2、滾動軸承的潤滑
採用飛濺潤滑在箱座凸緣面上開設導油溝,並設擋油盤,以防止軸承旁齒輪嚙合時,所擠出的熱油濺入軸承內部,增加軸承的阻力。
3、潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備選用
L-AN15潤滑油
4、密封方式選取:
選用凸緣式端蓋,易於調整軸承間隙,採用端蓋安裝氈圈油封實現密封。
軸承蓋結構尺寸按用其定位的軸承外徑決定。
設計小結:
二、課程設計總結
設計中運用了Matlab科學工程計算軟體,用notebook命令調用MS—Word來完成設計說明書及設計總結,在設計過程中用了機械設計手冊2.0 軟體版輔助進行設計,翻閱了學過的各種關於力學,制圖,公差方面的書籍,綜合運用了這些知識,感覺提高許多,當然尤其是在計算機軟體CAD 方面的運用,深切感到計算機輔助設計給設計人員帶來的方便,各種設計,計算,制圖全套完成。
由於沒有經驗,第一次做整個設計工作,在設計過程中出現了一些錯誤比如線形,制圖規格,零件設計中的微小計算錯誤等都沒有更正,設計說明書的排版也比較混亂等等。對圖層,線形不熟悉甚至就不確定自己畫出的線,在出圖到圖紙上時實際上是什麼樣子都不知道 ,對於各種線寬度,沒有實際的概念。再比如標注較混亂,還是因為第一次做整個設計工作,沒有經驗,不熟悉。
這次設計的目的是掌握機械設計規律,綜合運用學過的知識,通過設計計算,繪圖以及運用技術標准,規范設計手冊等有關設計資料進行全面的機械設計技能訓練。目的已經達到,有許多要求、標准心中雖然明確理解掌握但是要全力,全面的應用在實際中,還有待於提高水平。
特別感謝—程莉老師。
參考資料目錄
[1]《機械設計基礎》,機械工業出版社,任成高主編,2006年2月第一版;
[2]《簡明機械零件設計實用手冊》,機械工業出版社,胡家秀主編,2006年1月第一版;
[3]《機械設計-課程設計圖冊》,高等教育出版社,龔桂義主編,1989年5月第三版;
[3]《設計手冊軟體》,網路上下載;
[4] 湖南工院學生論壇----機械制圖專欄---bbs.yeux.cn
Nw=60.0241r/min
Pw=3.08Kw
效率t=0.8762
Pd = 3.5150
Ped=4Kw
i=15.9936
i1=3
i2=5.3312
n0=960r/min
n1=320r/min
n2=60.0241r/min
P0=4Kw
P1=3.8Kw
P2=3.6491Kw
T0=39.7917Nm
T1=113.4063Nm
T2=589.5878Nm
KA=1.1
Pc=4.4Kw
d1=100mm
d2=355mm
初定中心距
a0=350mm
Lc=1461.3mm
Ld=1600mm
中心距
a=420mm
z=3根
預緊力
FQ=274.3N
d1=28mm
d2=45mm
YL10YLd10
T1=113.4063Nm
m=2.5
a=150mm
=20度
Ft=5582.5N
Fr=2031.9N
FH1=FH2=2791.2N
Mav=71.113Nm
MaH=195.38Nm
Ma=216.16Nm
Me=457.15Nm
Fr1=1015.9N
Lh=8760小時
6207型
b h L=14 9 80
輸送帶拉力 F=2800 N
輸送帶速度 V=1.1 m/s
滾筒直徑 D=350 mm
7. 求一份機械原理相關的課程設計
已發去機械原理相關的課程設計4份,供參考。