A. 火車的制動原理是什麼
制動裝置一般可分為兩大組成部分:
()「制動機」——產生制動原動力並進行操縱和控制的部分。
(2)「基礎制動裝置」——傳送制動原動力並產生制動力的部分。
列車制動在操縱上按用途可分為兩種。
(l)「常用制動」——正常情況下為調節或控制列車速度,包括進站停車所施行的制動。其特點是作用比較緩和而且制動力可以調節,通常只用列車制動能力的20%~80%,多數情況下只用50%左右。
(2)「緊急制動」—一緊急情況下為使列車盡快停住而施行的制動(在我國,也稱「非常制動」),其特點是作用比較迅猛,而且要把列車制動能力全部用上。
從司機實施制動(將制動手柄移至制動位)的瞬間起,到列車速度降為零的瞬間止,列車所駛過的距離,稱為列車「制動距離」。這是綜合反映列車制動裝置的性能和實際制動效果的主要技術指標。
閘瓦制動,又稱踏面制動,是自有鐵路以來使用最廣泛的一種制動方式。它用鑄鐵或其他材料製成的瓦狀制動塊(閘瓦)緊壓滾動著的車輪踏面,通過閘瓦與車輪踏面的機械摩擦將列車的動能轉變為熱能,消散於大氣,並產生制動力。其他制動方式除閘瓦制動外,鐵路機車車輛還有一些其他制動方式。
(一)盤形制動
盤形制動(摩擦式圓盤制動)是在車軸上或在車輪輻板側面裝上制動盤,一般為鑄鐵圓盤,用制動夾鉗使合成材料製成的兩個閘片緊壓制動盤側面,通過摩擦產生制動力,把列車動能轉變成熱能,消散於大氣。參看圖4—1-4。
與閘瓦制動相比,盤形制動有下列主要優點:
(1)可以大大減輕車輪踏面的熱負荷和機械磨耗。
(2)可按制動要求選擇最佳「摩擦副」(採用閘瓦制動時,作為「摩擦副」一方的車輪的構造和材質不能根據制動的要求來選擇),盤形制動的制動盤可以設計成帶散熱筋的,旋轉時它具有半強迫通風的作用,以改善散熱性能,為採用摩擦性能較好的合成材料閘片創造了有利的條件,適宜於高速列車。
(3)制動平穩,幾乎沒有雜訊。
但是,盤形制動也有它不足之處:
(1)車輪踏面沒有閘瓦的磨刮,輪軌粘著將惡化,所以,還要考慮加裝踏面清掃器(或稱清掃閘瓦),或採用以盤形為主、盤形加閘瓦的混合制動方式,否則,即使有防滑器,制動距離也比閘瓦制動要長。
(2)制動盤使簧下重量及其引起的沖擊振動增大,運行中還要消耗牽引功率。
盤形制動的制動力
(二)磁軌制動
磁軌制動(摩擦式軌道電磁製動)是在轉向架的兩個側架下面,在同側的兩個車輪之間,各安置一個制動用的電磁鐵(或稱電磁靴),制動時將它放下並利用電磁吸力緊壓鋼軌,通過電磁鐵上的磨耗板與鋼軌之間的滑動摩擦產生制動力,並把列車動能變為熱能,消散於大氣。參看圖4—1-5。
磁軌制動的制動力
式中K——每個電磁鐵的電磁吸力;
φ一一電磁鐵與鋼軌間的滑動摩擦系數。
與閘瓦和盤形制動相比,磁軌制動的優點是,它的制動力不是通過輪軌粘著產生的,自然也不受該粘著的限制。高速列車加上它,就可以在粘著力以外再獲得一份制動力,使制動距離不致於太長。磁軌制動的不足之處是,它是靠滑動摩擦來產生制動力的,電磁鐵要磨耗,鋼軌的磨耗也要增大,而且,滑動摩擦力無論如何也沒有粘著力大。所以,磁軌制動只能作
為緊急制動時的一種輔助的制動方式,用於粘著力不能滿足緊急制動距離要求的高速列車上,在施行緊急制動時與閘瓦(或盤形)制動一起發揮作用。
(三)軌道渦流制動
軌道渦流制動又稱線性渦流制動或渦流式軌道電磁製動。它與上述磁軌制動(摩擦式軌道電磁製動)很相似,也是把電磁鐵懸掛在轉向架側架下面同側的兩個車輪之間。不同的是,軌道渦流制動的電磁鐵在制動時只放下到離軌面幾毫米處而不與鋼軌接觸。它是利用電磁鐵和鋼軌的相對運動使鋼軌感應出渦流,產生電磁吸力作為制動力,並把列車動能變為熱能消散於大氣。
軌道渦流制動既不通過輪軌粘著(不受其限制),也沒有磨耗問題。但是,它消耗電能太多,約為磁軌制動的10倍,電磁鐵發熱也很厲害,所以,它也只是作為高速列車緊急制動時的一種輔助制動方式。
(四)旋轉渦流制動
旋轉渦流制動(渦流式圓盤制動)是在牽引電動機軸上裝金屬盤,制動時金屬盤在電磁鐵形成的磁場中旋轉,盤的表面被感應出渦流,產生電磁吸力,並發熱消散於大氣,從而產生制動作用。
與盤形制動(摩擦式圓盤制動)相比,旋轉渦流制動(渦流式圓盤制動)的圓盤雖然沒有裝在輪對上,但同樣要通過輪軌粘著才能產生制動力,也要受粘著限制。而且,與軌道渦流制動相似,旋轉渦流制動消耗的電能也太多。
(五)電阻制動
電阻制動廣泛用於電力機車、電動車組和電傳動內燃機車。它是在制動時將原來驅動輪對的自勵的牽引電動機改變為他勵發電機,由輪對帶動它發電,並將電流通往專門設置的電阻器,採用強迫通風,使電阻發生的熱量消散於大氣,從而產生制動作用。
(六)再生制動
與電阻制動相似,再生制動也是將牽引電動機變為發電機。不同的是,它將電能反饋回電網,使本來由電能或位能變成的列車動能獲得再生,而不是變成熱能消散掉。顯然,再生制動比電阻制動在經濟上合算,但是技術上比較復雜,而且它只能用於由電網供電的電力機車和電動車組,反饋回電網的電能要馬上由正在牽引運行的電力機車或電動車組接收和利用。
上述各種制動方式中,除磁軌制動和軌道渦流制動外,都要通過輪軌粘著來產生制動力並受粘著限制,所以習慣上統稱為「粘著制動」,並把不通過粘著者統稱為「非粘(著)制動」。
制動機種類
按制動原動力和操縱控制方法的不同,機車車輛制動機可分類為:手制動機、空氣制動機、真空制動機、電空制動機和電(磁)制動機。
(一)手制動機
手制動機的特點是以人力為原動力,以手輪的轉動方向和手力的大小來操縱控制。它構造簡單、費用低廉,是鐵路上歷史最悠久、生命力最頑強的制動機。鐵路發展初期,機車車輛上都只有這種制動機,每車或幾個車配備一名制動員,按司機的笛聲號令協同操縱。由於它制動力弱、動作緩慢、不便於司機直接操縱,所以很快就被非人力的制動機所代替。非人力的制動機成了主要的制動機,手制動機退居次要地位,成了輔助的備用的制動機。但是它的這個「配角」的地位很牢固。在調車作業、車站停放或者主要制動機突然失靈時,手機仍然是一個簡單有效的救急的制動手段。
(二)空氣制動機
空氣制動機的特點是以壓力空氣(它與大氣的壓差,即壓力空氣的相對壓強)作為原一以改變空氣壓強來操縱控制。它的制動力大、操縱控制靈敏便利。
我國鐵路上習慣於把壓力空氣簡稱為「風」,把空氣制動機簡稱為「風閘」。依此類推風缸、風泵、風管、風壓、風表等名稱均由此而來。直通式空氣制動機的基本特點是:列車管直接通向制動缸(「直通」),列車管充氣(增壓)時制動缸也充氣(增壓),發生制動;列車管排氣(減壓)時制動缸也排氣鹼壓),發生緩解。它的優點是構造簡單,並且既有階段制動,又有階段緩解,操縱非常靈活方便。缺點是當列車發生分離事故、制動軟管被拉斷時,將徹底喪失制動能力,而且,列車前後部發生制動作用的時間差太大,不適用於編組較長的列車。因此,列車操縱後來就改用了自動式空氣制動機。
2.自動式空氣制動機
自動空氣制動機包括機車制動機和車輛制動機,分別安裝在機車和車輛上,構成制動機的一個整體。自動空氣制動機由下列主要部件組成,並分別用管路連接。
(1)空氣壓縮機——一般稱為風泵。利用機車的蒸汽或柴油機、電動機作動力,將空氣壓縮成壓力空氣,供製動系統及其他風動裝置使用。在制動機中稱壓力空氣為風或氣。
(3)總風缸——機車貯存壓力空氣的容器。因沒有壓力調整器,能自動控制空氣壓縮機的運轉或停止,使總風缸的空氣壓力始終保持為8~9kgf/cm2。
(3)給風閥——為調節壓力空氣的部件,總風缸的高壓空氣經給風閥調整為規定的風壓後,送入制動管。我國規定貨物列車制動管風壓(簡稱定壓)為5kgf/cm2,旅客列車為6kgf/cm2。
(4)自動制動閥——簡稱大閘或自閥,是司機操縱列車制動機的部件。機車上還裝設單獨調動閥(或稱小閘、單閥),單機運行時,司機使用單獨制動閥操縱機車制動機。
(5)副風缸——是每個車輛貯存壓力空氣的容器。機車上因有總風缸,不另設副風缸。
(6)制動缸——是將空氣壓力轉變為制動原動力的部件。利用壓力空氣推動制動缸活塞,壓縮緩解彈簧,使活塞桿推出產生制動作用;如排出制動缸的壓力空氣則緩解彈簧推回活塞,使制動機緩解。機車車輛都裝有制動缸。
(7)三通閥——裝設在車輛上,是依靠制動管風壓的變化使制動機形成制動或緩解等作用的部件。機車上使用的是分配閥,它控制機車(及深水車)的制動和理解等作用。
與直通式相比,在組成上每輛車多了一個三通閥6和一個副風缸8。「三通」指的是:一通列車管,二通副風缸,三通制動缸。
(四)電空制動機
電空制動機為電控空氣制動機的簡稱。它是在空氣制動機的基礎上加裝電磁閥等電氣控制部件而形成的。它的特點是制動作用的操縱控制用電,但制動作用的原動力還是壓力空氣(它與大氣的壓差)。在制動機的電控因故失靈時,它仍可以實行空氣壓強控制(氣控),臨時變成空氣制動機。
(五)電磁製動機
操縱控制和原動力都用電的制動機稱為電磁製動機,簡稱電制動機。例如軌道渦流制動和旋轉渦流制動,其操縱控制和原動力都用電,所以,採用這兩種制動方式的制動機都屬於電磁製動機的范疇(其實,對於這種制動方式,制動機和基礎制動已很難截然分開了)。
B. 制動力對列車的作用表現在哪幾個方面
(1)制動力是由制動裝置引起的與列車運行方向相反的外力,是縱向力。回
(2)制動力比列車運行阻力(自然產答生的)大得多。
(3)列車制動減速過程中,制動力起主要作用(盡管列車運行阻力也起作用)。
(4)與牽引力一樣,制動力同樣受黏著限制(非黏著制動除外)。
C. 列車制動軟管的作用
老兄,列車的制動是靠壓縮空氣的,叫空氣制動機。
每節車廂的空氣制動裝置都是通過主風管(就是你看到的那根氣管)與機車頭相連,並由機車頭提供壓力。在列車管排氣(減壓)時制動缸充氣(增壓),發生緩解,這時候列車才能走。制動時候,通過調節風管內的壓力來控制制動力的大小。當列車發生分離事故,制動軟管被拉斷時,列車管風壓急劇下降,這時候制動機內無壓力,制動閘就會壓緊車輪,列車自動迅速制動直至停車
(你聽到的放氣聲是列車正在緩解)
至於你動的那個閘門,很不幸,你已經觸犯了相關法規。你還是祈禱鐵路不會來找你麻煩吧
因為那個叫緊急制動閥,屬於「危險勿動」的列車特殊設備,旅客決不可以隨便擺弄。只有當列車在運行中遇到緊急情況需要緊急停車,而司機又未能及時採取停車措施時,運轉車長或其它列車乘務人員才可以拉動這個,迫使列車緊急停車。一旦使用,列車非正常停車,不僅會打亂正常的運行秩序,而且會因為緊急制動是「抱死閘」,車輪不能再滾動,而在巨大慣性的作用下滑過鋼軌,造成車輪踏面和軌面擦傷,影響正常運行甚至報廢。因此,在使閥停車前,必須准確判斷,不得盲動。如果在萬不得已的情況下使用緊急制動閥,停車後,運轉車長應將列車運行中發生的問題及使用緊急制動閥的情況及時報告列車調度員和有關單位。
D. 火車制動的介紹
火車制動就是人為地制止列車的運動,包括使它減速,不加速或停止回運行。對已制動的列車或機車答解除或減弱其制動作用,則稱為「緩解」。為施行制動和緩解而安裝在列車上的一整套設備,總稱為列車「制動裝置」。「制動」和「制動裝置」俗稱為「閘」。施行制動常簡稱為「上閘」或「下閘」,施行緩解則簡稱為「松閘」。
E. 火車的制動缸干什麼用的
19世紀初,以蒸汽為動力的火車出現了。在1829年舉行的一次「火車競賽」中,斯蒂芬森駕駛著滿載的「火箭」號機車,以時速56公里創造了陸地第一個車輛奔跑速度。此後不久,呼嘯的火車開始賓士在美國和歐洲大陸。形成了鐵路交通運輸業蓬勃發展的新時代。
但是,這時的火車還不夠完善。致命的缺點是剎車不靈,經常導致運行事故。在一般公眾眼裡,火車也是一種不安全的交通工具,有人將它戲稱為「踏著輪子的混世魔王」。
當時的火車剎車裝置十分原始,最初僅僅裝在車頭上,完全憑司機的體力扳動閘把來剎車,很難使沉重的列車迅速停下來。後來改進為每節車廂上都安一個單獨的機械制動閘,配備一個專門的制動員,遇有情況,由司機發出信號,各個制動員再狠命接下閘把。這樣雖然稍好一些,但仍然不能迅速地剎住列車。因此,發明一種靈敏有效的火車剎車裝置,已成了鐵路系統一項亟待解決的大問題。
很多人都曾致力於改進火車剎車裝置的研究,但誰也沒想到,最終獲得成功的卻是一位貧困的美國年輕人——威斯汀豪斯,他發明了一種靈敏可靠的空氣制動閘,給火車這匹巨大不羈的「鐵馬」,繫上了「韁繩」,在鐵路安全運輸史上豎立了一個值得紀念的里程碑。
威斯汀豪斯發明新型火車空氣閘的念頭,是由一次偶然的事件激發起來的。他在一次旅行中,恰好趕上了因火車剎車不靈造成的嚴重撞車事故。目睹了一場車毀人亡的慘劇,他當時就下定決心,要發明一種有效的制動閘,來避免交通事故的發生,保障鐵路運輸的安全。
他首先想到了蒸汽。既然列車是蒸汽推動的,為什麼不能用蒸汽來制動呢?他設計了一套裝置,用管路把鍋爐和各個車廂連接起來,試圖用蒸汽來推動汽缸活塞,從而壓緊閘瓦,達到剎車的目的。但由於高壓蒸汽在長長的管路里迅速冷凝,喪失壓力,實驗未能取得預想的效果。
威斯汀豪斯正在一籌莫展時,有一天他偶然買了一份《生活時代》報,一條報道法國開鑿塞尼山隧道,介紹壓縮空氣驅動大型鑿岩機的消息,使他聯想到苦思冥索的制動閘:既然壓縮空氣可以驅動鑿岩機,開掘堅硬的岩石,或許也能夠驅動火車制動閘。
基於這個想法,威斯汀豪斯終於製成了新型的空氣閘。其原理並不復雜,只要增加一台由機車帶動的空氣壓縮機,通過管道將壓縮空氣送往各個車廂的汽缸就行了。剎車時,只要一打開閥門,壓縮空氣就會推動各車廂的汽缸活塞,將閘瓦壓緊,使列車迅速停下來。
1868年,年僅23歲的威斯汀豪斯取得了空氣制動閘的專利權,組成了威斯汀豪斯制動閘公司。直到今天,空氣制動閘仍然是火車和汽車運行的安全保障。
F. 火車的制動原理
制動裝置一般可分為兩大組成部分:
(1)「制動機」——產生制動原動力並進行操縱和控制的部分。
(2)「基礎制動裝置」——傳送制動原動力並產生制動力的部分。
列車制動在操縱上按用途可分為兩種。
(l)「常用制動」——正常情況下為調節或控制列車速度,包括進站停車所施行的制動。其特點是作用比較緩和而且制動力可以調節,通常只用列車制動能力的20%~80%,多數情況下只用50%左右。
(2)「緊急制動」—一緊急情況下為使列車盡快停住而施行的制動(在我國,也稱「非常制動」),其特點是作用比較迅猛,而且要把列車制動能力全部用上。
從司機實施制動(將制動手柄移至制動位)的瞬間起,到列車速度降為零的瞬間止,列車所駛過的距離,稱為列車「制動距離」。這是綜合反映列車制動裝置的性能和實際制動效果的主要技術指標。
閘瓦制動,又稱踏面制動,是自有鐵路以來使用最廣泛的一種制動方式。它用鑄鐵或其他材料製成的瓦狀制動塊(閘瓦)緊壓滾動著的車輪踏面,通過閘瓦與車輪踏面的機械摩擦將列車的動能轉變為熱能,消散於大氣,並產生制動力。其他制動方式除閘瓦制動外,鐵路機車車輛還有一些其他制動方式。
(一)盤形制動
盤形制動(摩擦式圓盤制動)是在車軸上或在車輪輻板側面裝上制動盤,一般為鑄鐵圓盤,用制動夾鉗使合成材料製成的兩個閘片緊壓制動盤側面,通過摩擦產生制動力,把列車動能轉變成熱能,消散於大氣。參看圖4—1-4。
與閘瓦制動相比,盤形制動有下列主要優點:
(1)可以大大減輕車輪踏面的熱負荷和機械磨耗。
(2)可按制動要求選擇最佳「摩擦副」(採用閘瓦制動時,作為「摩擦副」一方的車輪的構造和材質不能根據制動的要求來選擇),盤形制動的制動盤可以設計成帶散熱筋的,旋轉時它具有半強迫通風的作用,以改善散熱性能,為採用摩擦性能較好的合成材料閘片創造了有利的條件,適宜於高速列車。
(3)制動平穩,幾乎沒有雜訊。
但是,盤形制動也有它不足之處:
(1)車輪踏面沒有閘瓦的磨刮,輪軌粘著將惡化,所以,還要考慮加裝踏面清掃器(或稱清掃閘瓦),或採用以盤形為主、盤形加閘瓦的混合制動方式,否則,即使有防滑器,制動距離也比閘瓦制動要長。
(2)制動盤使簧下重量及其引起的沖擊振動增大,運行中還要消耗牽引功率。
盤形制動的制動力
(二)磁軌制動
磁軌制動(摩擦式軌道電磁製動)是在轉向架的兩個側架下面,在同側的兩個車輪之間,各安置一個制動用的電磁鐵(或稱電磁靴),制動時將它放下並利用電磁吸力緊壓鋼軌,通過電磁鐵上的磨耗板與鋼軌之間的滑動摩擦產生制動力,並把列車動能變為熱能,消散於大氣。參看圖4—1-5。
磁軌制動的制動力
式中K——每個電磁鐵的電磁吸力;
φ一一電磁鐵與鋼軌間的滑動摩擦系數。
與閘瓦和盤形制動相比,磁軌制動的優點是,它的制動力不是通過輪軌粘著產生的,自然也不受該粘著的限制。高速列車加上它,就可以在粘著力以外再獲得一份制動力,使制動距離不致於太長。磁軌制動的不足之處是,它是靠滑動摩擦來產生制動力的,電磁鐵要磨耗,鋼軌的磨耗也要增大,而且,滑動摩擦力無論如何也沒有粘著力大。所以,磁軌制動只能作
為緊急制動時的一種輔助的制動方式,用於粘著力不能滿足緊急制動距離要求的高速列車上,在施行緊急制動時與閘瓦(或盤形)制動一起發揮作用。
(三)軌道渦流制動
軌道渦流制動又稱線性渦流制動或渦流式軌道電磁製動。它與上述磁軌制動(摩擦式軌道電磁製動)很相似,也是把電磁鐵懸掛在轉向架側架下面同側的兩個車輪之間。不同的是,軌道渦流制動的電磁鐵在制動時只放下到離軌面幾毫米處而不與鋼軌接觸。它是利用電磁鐵和鋼軌的相對運動使鋼軌感應出渦流,產生電磁吸力作為制動力,並把列車動能變為熱能消散於大氣。
軌道渦流制動既不通過輪軌粘著(不受其限制),也沒有磨耗問題。但是,它消耗電能太多,約為磁軌制動的10倍,電磁鐵發熱也很厲害,所以,它也只是作為高速列車緊急制動時的一種輔助制動方式。
(四)旋轉渦流制動
旋轉渦流制動(渦流式圓盤制動)是在牽引電動機軸上裝金屬盤,制動時金屬盤在電磁鐵形成的磁場中旋轉,盤的表面被感應出渦流,產生電磁吸力,並發熱消散於大氣,從而產生制動作用。
與盤形制動(摩擦式圓盤制動)相比,旋轉渦流制動(渦流式圓盤制動)的圓盤雖然沒有裝在輪對上,但同樣要通過輪軌粘著才能產生制動力,也要受粘著限制。而且,與軌道渦流制動相似,旋轉渦流制動消耗的電能也太多。
(五)電阻制動
電阻制動廣泛用於電力機車、電動車組和電傳動內燃機車。它是在制動時將原來驅動輪對的自勵的牽引電動機改變為他勵發電機,由輪對帶動它發電,並將電流通往專門設置的電阻器,採用強迫通風,使電阻發生的熱量消散於大氣,從而產生制動作用。
(六)再生制動
與電阻制動相似,再生制動也是將牽引電動機變為發電機。不同的是,它將電能反饋回電網,使本來由電能或位能變成的列車動能獲得再生,而不是變成熱能消散掉。顯然,再生制動比電阻制動在經濟上合算,但是技術上比較復雜,而且它只能用於由電網供電的電力機車和電動車組,反饋回電網的電能要馬上由正在牽引運行的電力機車或電動車組接收和利用。
上述各種制動方式中,除磁軌制動和軌道渦流制動外,都要通過輪軌粘著來產生制動力並受粘著限制,所以習慣上統稱為「粘著制動」,並把不通過粘著者統稱為「非粘(著)制動」。
制動機種類
按制動原動力和操縱控制方法的不同,機車車輛制動機可分類為:手制動機、空氣制動機、真空制動機、電空制動機和電(磁)制動機。
(一)手制動機
手制動機的特點是以人力為原動力,以手輪的轉動方向和手力的大小來操縱控制。它構造簡單、費用低廉,是鐵路上歷史最悠久、生命力最頑強的制動機。鐵路發展初期,機車車輛上都只有這種制動機,每車或幾個車配備一名制動員,按司機的笛聲號令協同操縱。由於它制動力弱、動作緩慢、不便於司機直接操縱,所以很快就被非人力的制動機所代替。非人力的制動機成了主要的制動機,手制動機退居次要地位,成了輔助的備用的制動機。但是它的這個「配角」的地位很牢固。在調車作業、車站停放或者主要制動機突然失靈時,手機仍然是一個簡單有效的救急的制動手段。
(二)空氣制動機
空氣制動機的特點是以壓力空氣(它與大氣的壓差,即壓力空氣的相對壓強)作為原一以改變空氣壓強來操縱控制。它的制動力大、操縱控制靈敏便利。
我國鐵路上習慣於把壓力空氣簡稱為「風」,把空氣制動機簡稱為「風閘」。依此類推風缸、風泵、風管、風壓、風表等名稱均由此而來。直通式空氣制動機的基本特點是:列車管直接通向制動缸(「直通」),列車管充氣(增壓)時制動缸也充氣(增壓),發生制動;列車管排氣(減壓)時制動缸也排氣鹼壓),發生緩解。它的優點是構造簡單,並且既有階段制動,又有階段緩解,操縱非常靈活方便。缺點是當列車發生分離事故、制動軟管被拉斷時,將徹底喪失制動能力,而且,列車前後部發生制動作用的時間差太大,不適用於編組較長的列車。因此,列車操縱後來就改用了自動式空氣制動機。
2.自動式空氣制動機
自動空氣制動機包括機車制動機和車輛制動機,分別安裝在機車和車輛上,構成制動機的一個整體。自動空氣制動機由下列主要部件組成,並分別用管路連接。
(1)空氣壓縮機——一般稱為風泵。利用機車的蒸汽或柴油機、電動機作動力,將空氣壓縮成壓力空氣,供製動系統及其他風動裝置使用。在制動機中稱壓力空氣為風或氣。
(3)總風缸——機車貯存壓力空氣的容器。因沒有壓力調整器,能自動控制空氣壓縮機的運轉或停止,使總風缸的空氣壓力始終保持為8~9kgf/cm2。
(3)給風閥——為調節壓力空氣的部件,總風缸的高壓空氣經給風閥調整為規定的風壓後,送入制動管。我國規定貨物列車制動管風壓(簡稱定壓)為5kgf/cm2,旅客列車為6kgf/cm2。
(4)自動制動閥——簡稱大閘或自閥,是司機操縱列車制動機的部件。機車上還裝設單獨調動閥(或稱小閘、單閥),單機運行時,司機使用單獨制動閥操縱機車制動機。
(5)副風缸——是每個車輛貯存壓力空氣的容器。機車上因有總風缸,不另設副風缸。
(6)制動缸——是將空氣壓力轉變為制動原動力的部件。利用壓力空氣推動制動缸活塞,壓縮緩解彈簧,使活塞桿推出產生制動作用;如排出制動缸的壓力空氣則緩解彈簧推回活塞,使制動機緩解。機車車輛都裝有制動缸。
(7)三通閥——裝設在車輛上,是依靠制動管風壓的變化使制動機形成制動或緩解等作用的部件。機車上使用的是分配閥,它控制機車(及深水車)的制動和理解等作用。
與直通式相比,在組成上每輛車多了一個三通閥6和一個副風缸8。「三通」指的是:一通列車管,二通副風缸,三通制動缸。
(四)電空制動機
電空制動機為電控空氣制動機的簡稱。它是在空氣制動機的基礎上加裝電磁閥等電氣控制部件而形成的。它的特點是制動作用的操縱控制用電,但制動作用的原動力還是壓力空氣(它與大氣的壓差)。在制動機的電控因故失靈時,它仍可以實行空氣壓強控制(氣控),臨時變成空氣制動機。
(五)電磁製動機
操縱控制和原動力都用電的制動機稱為電磁製動機,簡稱電制動機。例如軌道渦流制動和旋轉渦流制動,其操縱控制和原動力都用電,所以,採用這兩種制動方式的制動機都屬於電磁製動機的范疇(其實,對於這種制動方式,制動機和基礎制動已很難截然分開了)。
G. 火車剎車系統的組成和工作原理
眾所周知,當我們踩下制動踏板時,汽車會減速直到停車。但這個工作是怎麼樣完成的?你腿部的力量是怎麼樣傳遞到車輪的?這個力量是什麼樣被擴大以至能讓一台笨重的汽車停下來?首先我們把制動系統分成6部分,從踏板到車輪依次解釋每部分的工作原理,在了解汽車制動原理之前我們先了解一些基本理論,附加部分包括制動系統的基本操作方式。基本的制動原理當你踩下制動踏板時,機構會通過液壓把你腳上的力量傳遞給車輪。但實際上要想讓車停下來必須要一個很大的力量,這要比人腿的力量大很多。所以制動系統必須能夠放大腿部的力量,要做到這一點有兩個辦法:?杠桿作用?利用帕斯卡定律,用液力放大制動系統把力量傳遞給車輪,給車輪一個摩擦力,然後車輪也相應的給地面一個摩擦力。在我們討論制動系統構成原理之前,讓我們了解三個原理:?杠桿作用?液壓作用?摩擦力作用杠桿作用制動踏板能夠利用杠桿作用放大人腿部的力量,然後把這個力量傳遞給液壓系統。如上圖,在杠桿的左邊施加一個力F,杠桿左邊的長度(2X)是右邊(X)的兩倍。因此在杠桿右端可以得到左端兩倍的力2F,但是它的行程Y只有左端行程2Y的一半。液壓系統其實任何液壓系統背後的基本原理都很簡單:作用在一點的力被不能壓縮的液體傳遞到另一點,這種液體通常是油。絕大多數制動系統也在此中放大制動力量。下圖是最簡單的液壓系統:如圖:兩個活塞(紅色)裝在充滿油(藍色)的玻璃圓桶中,之間由一個充滿油的導管連接,如果你施一個向下的力給其中一個活塞(圖中左邊的活塞)那麼這個力可以通過管道內的液壓油傳送到第二個活塞。由於油不能被壓縮,所以這種方式傳遞力矩的效率非常高,幾乎100%的力傳遞給了第二個活塞。液壓傳力系統最大的好處就是可以以任何長度,或者曲折成各種形狀繞過其他部件來連接兩個圓桶型的液壓缸。還有一個好處就是液壓管可以分支,這樣一個主缸可以被分成多個副缸,如圖所示:使用液壓系統的另外一個好處就是能使力量成倍的增加。在液壓系統中你需要做的只是改變一個活塞和液壓缸的尺寸,如下圖:上圖表示的就是力的加倍放大,力放大的倍數要以活塞的直徑來定。左邊的活塞直徑為2寸(註:相當於5.08cm),右邊的活塞直徑為6寸(相當於15.24cm)。因為圓的面積等於Pi * r2,所以左邊的活塞面積為3.14平方厘米,右邊的活塞面積為28.26平方厘米。右邊的活塞面積比左邊的大9倍。這就意味著給左邊的活塞施加任何一個力,右邊的活塞就會產生一個比左邊大9倍的力。因此當你給左邊的活塞施加一個100磅的向下的力時,右邊的活塞就會產生一個900磅的向上的力。唯一的不足就是當左邊的活塞向下運動9寸時,右邊的活塞只能向上運動1寸。摩擦力摩擦力是一個物體在另一個物體上滑動的相互阻力,參照下圖。兩個物體的接觸面都是用相同材料做成的但其中一個較另一個重,所以不難看出哪一邊較難推動。要了解其中的原因,我們可以分析下面的例子:即使用肉眼看起來接觸面很平滑,但在顯微鏡下他們確是相當粗糙的。當你把物體平放在桌面上時,物體和桌面之間的小鋸齒會結合在一起,而他們其中有一些合適的鋸齒會相互咬合,如果給他的壓力越大,那麼咬合的鋸齒就越多,其阻力也越大,所以重的物體就更難推動。不同的材料表面,有不同的鋸齒結構;舉例來說:橡皮與橡皮之間就比鋼與鋼之間更難滑動。材料的類型決定了摩擦系數。所以摩擦力與物體接觸面上的正壓力成正比。例如:如果摩擦系數為0.1,一個物體重100磅,另一個物體重400磅,那麼如果要推動他們就必須給100磅的物體施加一個10磅的力,給400磅的物體施加一個40磅的力才能克服摩擦力前進。物體越重則需要克服更大的摩擦力。這個原理就跟制動抓緊裝置相似,如果給制動碟的壓力越大那麼車輛獲得的制動力就越大。簡單制動系統模型當踩下制動踏板時,在踏板處通過杠桿原理把制動力放大了3倍,再通過液壓機構驅動活塞把制動力又放大了3被。放大以後的制動力推動活塞移動,活塞推動蹄片帶動剎車卡鉗緊緊的夾住制動碟,由蹄片與制動碟產生的強大摩擦力,讓車減速。這就是簡單的制動模型。通過它我們就可以理解制動系統的基本原理了。
H. 列車制動裝置的正文
用以實現列車減速或停止運行,保證行車安全的設備。
組成部件及其作用 列車制動裝置由裝在機車上的供風系統和自動制動閥、分裝在機車和車輛上的制動機和基礎制動裝置,以及貫通全列車的制動管(又稱剎車管)組成。整個制動系統中充以壓縮空氣。供風系統包括空氣壓縮機和總風缸,其作用是供給整個系統所需的壓縮空氣。柴油機車和電力機車的空氣壓縮機是電動的,而在蒸汽機車上則以蒸汽機帶動,稱為風泵。自動制動閥是機車司機用以操縱列車制動系統的裝置。司機扳動自動制動閥手柄,控制制動管的排風或充風,使裝在機車和車輛上的制動機動作。
制動機包括空氣分配閥、副風缸和制動缸等。當制動管減壓時,空氣分配閥使副風缸中的壓縮空氣進入制動缸,推動韝鞴,通過基礎制動裝置中杠桿的作用,使閘瓦(或閘片)緊壓車輪踏面(或制動盤),阻滯車輪的轉動,在輪軌間粘著力的作用下使列車減速或停止運行;制動管充風升壓時,空氣分配閥截斷副風缸管路而使制動缸內的壓縮空氣排入大氣,此時制動缸內的復原彈簧使韝鞴恢復原位,閘瓦離開車輪,從而實現緩解(見圖)。基礎制動裝置由一系列傳動杠桿、制動梁和閘瓦(或閘瓦和制動盤)組成。傳動杠桿起傳遞制動缸韝鞴動作和分配韝鞴推力的作用。
自動制動閥 機車司機用以操縱列車制動機的裝置。自動制動閥最早是簡單的排風塞門,以後發展成為由給氣閥控制規定壓力,由均衡風缸間接控制制動管減壓的較為完善的結構。20世紀初,北美和歐洲鐵路所使用的自動制動閥均採用回轉式滑閥結構。50年代以後,改用柱塞閥、橡膠平面閥或彈簧調壓均衡結構。當自動制動閥手柄處於制動區的某一位置時,自動制動閥在得到相應的減壓量後能自動保壓,在制動時能自動補充制動管漏泄的壓縮空氣,以保持所需要的減壓量。歐洲型制動閥為了實現列車加快緩解功能,另設有能夠在高壓過充位和在轉向運轉位時能自動消除過充的裝置,以避免產生自然再制動。70年代法國和聯邦德國鐵路還採用了按鈕式自動制動閥,用電磁閥控制制動管的壓力來實現制動和緩解。
制動機 機車和車輛上實現制動和緩解作用的裝置。在早期的蒸汽機車牽引的列車上,機車和車輛的制動是分別進行的。機車使用蒸汽制動機;車輛則用手制動機,由人力操縱手輪或用杠桿撥動,使閘瓦緊壓車輪踏面。機力制動機出現後,手制動機經過改進,仍作為輔助制動設備保留在車輛上,主要是在車輛單獨停放時作為防止溜逸之用,在調車作業中也有使用。
隨著鐵路運輸的發展,先後出現了多種機力制動機,如真空制動機、直通空氣制動機、自動空氣制動機、電空制動機等。
真空制動機 真空制動機系統在機車上設有真空泵、制動閥和真空制動缸,在車輛上則僅有真空制動缸。全列車制動部件用公稱直徑 50毫米(2英寸)以上的制動管連通。司機操縱制動閥,改變制動管中的真空度,真空制動缸中便產生壓力差,從而起階段的制動或緩解作用。這種制動機是英國鐵路在1844年首先應用的。它的優點是構造簡單,但制動力不大,而且海拔越高制動力越小。它的制動作用由列車頭部車輛向後傳播的速度(制動波速)低,制動空走時間和緩解時間都較長,列車前後沖動較大。英國鐵路企業自1964年起逐步改用自動空氣制動機。使用真空制動機的國家日益減少。
直通空氣制動機 它的制動作用是:用空氣壓縮機產生壓縮空氣貯存在總風缸中,司機操縱制動閥,將總風缸中的壓縮空氣通過制動管送入機車和車輛上的制動缸實現制動,或將制動缸中的壓縮空氣排出,實現緩解。這種制動機是美國發明家G.威斯汀豪斯在1869年發明的。由於壓縮空氣由前向後逐車輸送,列車前後車輛制動機動作時間差較大,這種制動機對較長的列車不適用。當列車分離時,制動能力全部喪失,列車運行安全不能保證,因此這種制動機應用不廣。
自動空氣制動機 在直通空氣制動機基礎上發展出來的空氣制動機,有北美鐵路應用的二壓力機構(直接一次緩解)自動空氣制動機和歐洲鐵路應用的三壓力機構(階段緩解)自動空氣制動機兩個系統。二壓力機構自動空氣制動機為G.威斯汀豪斯於1872年所發明。這種制動機在車輛上設有副風缸,由制動管充風至規定壓力,司機藉助自動制動閥降低或恢復制動管壓力,在制動管和副風缸間產生壓力差(二壓力機構因此得名),以控制制動機起制動或緩解作用。這種制動機可以根據制動管減壓量的大小實現分階段制動;但當制動管壓力高於副風缸時,即可直接實現一次緩解。由於不能實現分階段緩解,在坡道地區列車不易操縱,這是它的不足之處。這種制動機由於只用一根公稱直徑為25毫米(貨物列車後來改用32毫米,按舊制分別為1和1.25英寸)的制動管,可以使用壓縮空氣(壓力0.5~0.6兆帕),副風缸和制動缸的尺寸較小,重量較輕,因此於1889年被定為北美鐵路聯運貨車的標准制動機,後來應用到客車上。隨著列車長度的增加,這種制動機增加了快動功能、局部減壓功能、常用和緊急制動後的加速緩解功能、常用制動的加速功能等。在結構上也有改進,使檢修周期大為延長。新型的二壓力機構自動空氣制動機適用於100~150輛的長大貨物列車,為重載列車的開行創造了條件。
三壓力機構自動空氣制動機是英國人漢弗萊在1892年設計成的。這種制動機是在每一車輛上除副風缸外再設一個工作風缸,以制動管和工作風缸間的壓差來控制副風缸向制動缸的充氣和排氣,並使制動缸的壓力參加力的平衡,所以稱三壓力機構。它可以按照制動管減壓量的大小和壓力恢復的多少,分階段地實施制動和緩解,並且具有在制動系統未充滿規定壓力前制動缸壓力不衰竭性能(壓縮空氣不會全部排盡)。三壓力機構自動空氣制動機適用於在山區運行的列車和短小列車,但因緩解作用慢,不適宜於長大列車。
電空制動機 以壓縮空氣為動力,利用電磁閥控制各節車輛上空氣制動機的制動和緩解作用的制動系統。按作用原理可分為:①直通式,電磁閥直接控制壓縮空氣進入或排出制動缸;②自動式,電磁閥控制制動管壓力增減,使自動空氣制動機起作用。使用電空制動機可使列車前部和後部的車輛動作一致,能有效地減弱列車的縱向沖動,縮短制動距離。因此各國的地下鐵道車輛、動車組和高速旅客列車廣泛應用這種設備,貨物列車採用尚少。
基礎制動裝置 制動缸韝鞴桿的推力通過一系列杠桿擴大適當倍數(稱為制動倍率),並分配到各閘瓦(或閘片)上,使其緊壓車輪踏面(或制動盤)產生制動力。通常客車採用雙側閘瓦,貨車用單側閘瓦,機車上則兩者均有採用。為補償閘瓦磨耗對韝鞴行程的影響,有些車輛裝有閘瓦間隙自動調整器。為了按車輛載重調整空車或重車時的制動倍率,有些車輛裝有兩級或多級空重車自動或手動調整裝置。歐洲一些高速車輛上還有用一個閘瓦托裝兩塊閘瓦以增加閘瓦作用面積和改善制動性能的。在傳統的制動裝置結構中,一輛車只有一個制動缸,安裝在底架下面。近30年來,美國有些貨車把制動缸裝在轉向架上同制動梁連成一整體,不僅簡化了結構,而且傳動效率高。在部分客車上也採用安裝在轉向架上的制動缸以提高傳動效率。柴油機車和電力機車上由於存在牽引電動機,在車輪前後的一側或兩側,單獨使用一套由制動缸、傳動機構、間隙自動調節器和閘瓦緊湊地組合而成的制動單元。有些液力傳動機車上還採用液力制動。
閘瓦 與車輪踏面接觸產生摩擦,將列車動能轉換為熱能散入大氣,達到列車減速或停止運行的部件。閘瓦按材質可分為鑄鐵閘瓦和合成閘瓦兩類。
①鑄鐵閘瓦。已有100多年使用歷史,早期是灰鑄鐵閘瓦,含磷量約0.2%左右,摩擦系數隨速度的提高而迅速下降,耐磨性也很差。改用中磷閘瓦(含磷量0.7%~1.0%)可以改善性能,但在制動時容易產生火花引起火災。高磷閘瓦(含磷量2.5%以上)產生的火花少,比較安全,但質脆容易斷裂,澆鑄時須添裝鋼制瓦背。高磷鑄鐵閘瓦的使用,日益普遍。
②合成閘瓦。又稱非金屬閘瓦,是用石棉及其他填料以樹脂或橡膠作為粘合劑混合後熱壓而成。合成閘瓦也要用鋼背加強。如果閘瓦壓製成片狀用於盤形制動則稱閘片。合成閘瓦於1907年首先在倫敦地鐵車輛上使用。50年代以來,應用日益普遍。合成閘瓦重量輕,耐磨,制動時基本上無火花。它與鋼輪間的摩擦系數隨速度提高的變化小,與輪軌間的制動粘著系數的變化基本一致,從而可以較好地利用粘著作用,改善制動性能和縮短停車制動距離。合成閘瓦有高摩擦系數和低摩擦系數之分。高摩擦系數合成閘瓦的摩擦系數約為鑄鐵閘瓦的兩倍,可使用較小直徑的制動缸和副風缸,從而減輕基礎制動裝置的重量,又能節省壓縮空氣,優點較多。低摩擦系數合成閘瓦可以直接取代鑄鐵閘瓦,適合於改造舊車之用。合成閘瓦的缺點是導熱性能較差,摩擦所產生的熱量使車輪踏面溫度升高,甚至使踏面出現局部高溫而導致熱裂。近年來,為避免對環境的污染,無石棉、無鉛等有害物質的合成閘瓦得到越來越多的採用。
盤形制動 用特設的制動盤和閘片作為摩擦副取代傳統的車輪踏面和閘瓦摩擦副,將列車動能轉換成熱能以實現列車制動,多用於時速超過160公里的車輛上,可免制動時產生過高的熱負荷而使車輪踏面熱裂。自1930年德國在柏林地鐵車輛上首次採用這種制動方式以來,對制動盤和閘片的材質、結構形式和安裝方法已作了許多改進。制動盤有安裝在車軸上的,有安裝在車輪輻極上的。鑄鐵盤和高摩擦系數合成閘片這一對摩擦副有較好的摩擦特性,應用較廣。使用盤形制動後,一般仍裝有用於清掃踏面的鑄鐵閘瓦,以免因踏面油污而降低輪軌間粘著系數。在一些高速機車車輛上,踏面清掃閘瓦也承擔一部分制動力和盤形制動結合使用,可取得更好的制動效果。
I. 列車制動裝置的介紹
列車制動抄裝置是用以實現列車減襲速或停止運行,保證行車安全的設備。列車制動裝置由裝在機車上的供風系統和自動制動閥、分裝在機車和車輛上的制動機和基礎制動裝置,以及貫通全列車的制動管(又稱剎車管)組成。整個制動系統中充以壓縮空氣。
J. 列車制動
列車制動主要靠閘缸里的風使閘瓦動作,若無風源閘缸里的風會漏完,閘瓦就不管用了,故一般停車超2小時,應用鐵鞋防溜