導航:首頁 > 裝置知識 > 裝置設計書

裝置設計書

發布時間:2022-07-10 13:57:27

① 設計已螺旋輸送機的驅動裝置設計說明書

計算內容 計算結果
一, 設計任務書
設計題目:傳送設備傳動裝置
(一)方案設計要求:
具有過載保護性能(有帶傳動)
含有二級展開式圓柱齒輪減速器
傳送帶鼓輪方向與減速器輸出軸方向平行
(二)工作機原始數據:
傳送帶鼓輪直徑___ mm,傳送帶帶速___m/s
傳送帶主動軸所需扭矩T為___N.m
使用年限___年,___班制
工作載荷(平穩,微振,沖擊)
(三)數據:
鼓輪D 278mm,扭矩T 248N.m
帶速V 0.98m/s,年限 9年
班制 2 ,載荷 微振
二.電機的選擇計算
1. 選擇電機的轉速:
a. 計算傳動滾筒的轉速
nw= 60V/πd=60×0.98/3.14×0.278=67.326 r/min
b.計算工作機功率
pw= nw/9.55×10³=248×67.326/9.55×10³=1.748Kw
2. 工作機的有效功率
a. 傳動裝置的總效率
帶傳動的效率η1= 0.96
彈性聯軸器的效率η2= 0.99

滾筒的轉速
nw=67.326 r/min
工作機功率
pw=1.748Kw

計算內容 計算結果
滾動軸承的效率 η3=0.99
滾筒效率 η4=0.96
齒輪嚙合效率 η5=0.97
總效率 η=η1×η2×η34×η4×η5²=
0.95×0.99×0.994×0.96×0.97²=0.816
c. 所需電動機輸出功率Pr=Pw/η=1.748/0.816=2.142kw
3. 選擇電動機的型號:
查參考文獻[10] 表16-1-28得 表1.1
方案
號 電機
型號 電機
質量
(Kg) 額定
功率
(Kw) 同步
轉速(r/min) 滿載
轉速
(r/min) 總傳
動比
1 Y100L1-4 34 2.2 1500 1420 21.091
2 Y112M-6 45 2.2 1000 940 13.962
根據以上兩種可行同步轉速電機對比可見,方案2傳動比小且質量價格也比較合理,所以選擇Y112M-6型電動機。
三.運動和動力參數的計算
1. 分配傳動比取i帶=2.5
總傳動比 i=13.962
i減=i/i帶=13.962/2.5=5.585
減速器高速級傳動比i1= =2.746
減速器低速級傳動比i2= i減/ i1=2.034
2. 運動和動力參數計算:

總效率
η=0.816

電動機輸出功率
Pr=2.142kw

選用三相非同步電動機Y112M-6
p=2.2 kw
n=940r/min
中心高H=1112mm,外伸軸段D×E=28×60

i=13.962
i12=2.746
i23=2.034

P0=2.142Kw

計算內容 計算結果
0軸(電動機軸):
p0=pr=2.142Kw
n0=940r/min
T0=9.55103P0/n0=9.551032.119/940=21.762N.m
Ⅰ軸(減速器高速軸):
p1=p.η1=2.1420.95=2.035Kw
n1= n0/i01=940/2.5=376
T1=9.55103P1/n1=51.687 N.m
Ⅱ軸(減速器中間軸):
p2=p1η12=p1η5η3=2.0350.970.99
=1.954 Kw
n2= n1/i12=376/2.746=136.926 r/min
T2=9.55103 P2/n2=136.283N.m

Ⅲ軸(減速器低速軸):
p3=p2η23= p2η5η3=1.876 Kw
n3= n2/i23=67.319 r/min
T3=9.55103 P3/n3=266.133 N.m
Ⅳ軸(鼓輪軸):
p4=p3η34=1.839 Kw
n4= n3=67.319 r/min
T4=9.55103 P4/n4=260.884 N.m
四.傳動零件的設計計算
(一)減速器以外的傳動零件
1.普通V帶的設計計算
(1) 工況系數取KA=1.2
確定dd1, dd2:設計功率pc=KAp=1.22.2=2.64Kw n0=940r/min
T0=21.762N.m
p1=2.035Kw
n1=376r/min
T1=51.687N.m
p2=1.954Kw
n2=136.926 r/min
T2=136.283 N.m
p3=1.876Kw
n3=67.319 r/min
T3=266.133N.m

p4=1.839 Kw
n4=67.319r/min
T4=260.884 N.m

小帶輪轉速n1= n0=940 r/min
選取A型V帶 取dd1=118mm
dd2=(n1/n2)dd1=(940/376) 118=295mm
取標准值dd2=315mm
實際傳動i=dd1/ dd2=315/118=2.669
所以n2= n1/i=940/2.669=352.192r/min(誤差為6.3%>5%)
重取 dd1=125mm,
dd2=(n1/n2)dd1=(940/376)125=312.5mm
取標准值dd2=315mm
實際傳動比i= dd1/ dd2=315/125=2.52
n2= n1/i=940/2.52=373.016
(誤差為8% 允許)
所選V帶帶速v=πdd1 n1/(601000)=3.14
125940/(601000)=6.152m/s
在5 ~25m/s之間 所選V帶符合
(2)確定中心距
①初定a0 :0.7(dd1 +dd2)≤a0≤ 2(dd1 +dd2)

308≤a0≤880 取a0=550mm
②Lc=2 a0+(π/2)( dd1 +dd2)+( dd2 -dd1)²/4 a0
=2550+(3.14/2) (315+125)+(315-125)²/4550=1807.559
③取標准值:Ld=1800mm
④中心距:a=a0+ (Ld­Lc)/2=550+(1800-1807.559)/2

計算內容 計算結果
=546.221mm
取a=547mm,a的調整范圍為:
amax=a+0.03 Ld=601mm
amin=a-0.015Ld=520mm

(2)驗算包角:
α≈180°-(dd2-dd1) 60° /a=180°-(315-125) 60°/547=159°>120°,符合要求。
(3)確定根數:z≥pc/p0』
p0』=Kα(p0+Δp1+Δp2)
Kα=1.25(1- )=0.948
對於A型帶:c1=3.7810-4,c2=9.8110-3,
c3=9.610-15,c4=4.6510-5
L0=1700mm
ω1= = =98.437rad/s
p0= dd1ω1[c1- - c3 (dd1ω1)²- c4lg(dd1ω1)]
=12598.437[3.7810-4- -9.6
10-15 (12598.437)²- 4.6510-5
lg(12598.437)]=1.327
Δp1= c4dd1ω1 =0.148
Δp2=c4dd1ω1 =0.0142
p0』=0.948 (1.327+0.149+0.0142)=1.413 Kw

確定根數:z≥ ≤Zmax
z= = 取z=2
(4)確定初拉力F0
F0=500 =500×
=175.633KN
(5)帶對軸的壓力Q
Q=2 F0zsin =2 =690.768KN
(二)減速器以內的零件的設計計算
1.齒輪傳動設計
(1)高速級用斜齒輪
① 選擇材料
小齒輪選用40Cr鋼,調質處理,齒面硬度250~280HBS大齒輪選用ZG340~ 640,正火處理,齒面硬度170 ~ 220HBS
應力循環次數N:
N1=60n1jLh=60×376×(9×300×16)=9.74×108
N2= N1/i1=9.74×108 ÷2.746=3.549×108
查文獻[2]圖5-17得:ZN1=1.02 Z N2=1.11(允許有一點蝕)
由文獻[2]式(5-29)得:ZX1 = ZX2=1.0,取SHmin=1.0,Zw=1.0,ZLVR=0.92
按齒面硬度250HBS和170HBS由文獻[2]圖(5-16(b))得:σHlim1=690Mpa, σHlim2=450 Mpa
許用接觸應力[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=647.496 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=459.540 Mpa
因[σH]2〈[σH]1,所以計算中取[σH]= [σH]2 =459.540 Mpa
②按接觸強度確定中心距
初定螺旋角β=12° Zβ= =0.989
初取KtZεt2=1.12 由文獻[2]表5-5得ZE=188.9 ,減速傳動u=i1 =2.746,取Φa=0.4
端面壓力角αt=arctan(tanαn/cosβ)=arctan(tan20°/cos12°)=20.4103°
基圓螺旋角βb= arctan(tanβ×cosαt)= arctan(tan12°×cos20.4103°)=11.2665°
ZH= = =2.450
計算中心距a:

計算內容 計算結果
a≥
=
=111.178mm
取中心距 a=112mm
估算模數mn=(0.007~0.02)a=(0.007~0.02)×=
0.784~2.24
取標准模數mn=2
小齒輪齒數

實際傳動比: 傳動比誤差 在允許范圍之內
修正螺旋角β=
10°50′39〃
與初選β=12°相近,Zβ,ZH可不修正。
齒輪分度圓直徑

圓周速度
由文獻[2]表5-6 取齒輪精度為8級
③驗算齒面接觸疲勞強度
按電機驅動,載荷平穩,由文獻[2]表5-3 取 KA=1.25
由文獻[2]圖5-4(b),按8級精度和
取KV=1.023
齒寬 ,取標准b=45mm
由文獻[2]圖5-7(a)按b/d1=45/61.091=0.737,取Kβ=1.051
由文獻[2]表5-4,Kα=1.2
載荷系數K= KAKVKβKα=
計算重合度:
齒頂圓直徑
端面壓力角:
齒輪基圓直徑: mm
mm
端面齒頂壓力角:

高速級斜齒輪主要參數:
mn=2
z1=30, z2=80
β=
10°50′39〃
mt= mn/cosβ=2.036mm
d1=61.091mm
d2=162.909mm
da1=65.091mm
da2=166.909mm
df1= d1-2(ha*+ c*) mn=56.091mm
df2= d2-2(ha*+ c*) mn=157.909mm
中心距a=1/2(d1+d2)=112mm
齒寬b2=b=
45mm
b1= b2+(5~10)=50mm

計算內容 計算結果

齒面接觸應力
安全
④驗算齒根彎曲疲勞強度
由文獻[2]圖5-18(b)得:
由文獻[2]圖5-19得:
由文獻[2]式5-23:

計算許用彎曲應力:

計算內容

計算結果

由文獻[2]圖5-14得:
由文獻[2]圖5-15得:
由文獻[2]式5-47得計算

由式5-48: 計算齒根彎曲應力:

均安全。
⑵低速級直齒輪的設計
①選擇材料
小齒輪材料選用40Cr鋼,齒面硬度250—280HBS,大齒輪材料選用ZG310-570,正火處理,齒面硬度162—185HBS
計算應力循環次數N:同高速級斜齒輪的計算 N1=60 n1jL h=1.748×108
N2= N1/i1=0.858×108
計算內容

計算結果
查文獻[2]圖5-17得:ZN1=1.12 Z N2=1.14
按齒面硬度250HBS和162HBS由文獻[2]圖(5-16(b))得:σHlim1=690Mpa, σHlim2=440 Mpa
由文獻[2]式5-28計算許用接觸應力:
[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=710.976 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=461.472 Mpa
因[σH]2〈[σH]1,所以取[σH]= [σH]2 =461.472 Mpa
②按接觸強度確定中心距
小輪轉距T1=136.283N.m=136283N.m
初取KtZεt2=1.1 由文獻[2]表5-5得ZE=188.9 ,減速傳動u=i23=2.034,取Φa=0.35

計算中心距a: a≥
=145.294mm
取中心距 a=150mm估算模數m=(0.007~0.02)a=(0.007~0.02)×150=
1.05~3
取標准模數m=2
小齒輪齒數

齒輪分度圓直徑

齒輪齒頂圓直徑:

齒輪基圓直徑: mm
mm
圓周速度
由文獻[2]表5-6 取齒輪精度為8級
按電機驅動,載荷平穩,而工作機載荷微振,由文獻[2]表5-3 取 KA=1.25
按8級精度和 取KV=1.02
齒寬 b= ,取標准b=53mm
由文獻[2]圖5-7(a)按b/d1=53/100=0.53,取Kβ=1.03
由文獻[2]表5-4,Kα=1.1
載荷系數K= KAKVKβKα=
計算端面重合度:

安全。
③校核齒根彎曲疲勞強度
按z1=50, z2=100,由文獻[2]圖5-14得YFa1=2.36 ,YFa2=2.22
由文獻[2]圖5-15得YSa1= 1.71,YSa2=1.80。
Yε=0.25+0.75/ εα=0.25+0.75/1.804=0.666
由文獻[2]圖5-18(b),σFlim1=290Mp, σFlim2=152Mp
由文獻[2]圖5-19,YN1= YN2=1.0,因為m=4〈5mm,YX1= YX2=1.0。
取YST=2.0,SFmin=1.4。
計算許用彎曲應力:
[σF1]= σFlim1YST YN1 YX1/SFmin=414Mp
[σF2]= σFlim2YST YN2 YX2/SFmin=217Mp
計算齒根彎曲應力:
σF1=2KT1YFa1YSa1Yε/bd1m=2×1.445×136283×2.36×1.71×0.666/53×100×2=99.866Mp〈[σF1]
σF2=σF1 YFa2YSa2/ YFa1YSa1=98.866Mp〈[σF2]
均安全。
五.軸的結構設計和軸承的選擇
a1=112mm, a2=150mm,
bh2=45mm, bh1= bh2+(5~10)=50mm
bl2=53mm, bl1= bl2+(5~10)=60mm
(h----高速軸,l----低速軸)
考慮相鄰齒輪沿軸向不發生干涉,計入尺寸s=10mm,考慮齒輪與箱體內壁沿軸向不發生干涉,計入尺寸k=10mm,為保證滾動軸承放入箱體軸承座孔內,計入尺寸c=5mm,初取軸承寬度分別為n1=20mm,n2=22,n3=22mm,3根軸的支撐跨距分別為:
計算內容

低速級直齒輪主要參數:
m=2
z1=50, z1=50 z2=100
u=2.034
d1=100mm
d2=200mm
da1=104mm
da2=204mm
df1=
d1-2(ha*+ c*) m=95mm
df2=
d2-2(ha*+ c*) m=195mm
a=1/2(d2+ d1)=150mm
齒寬b2 =b=53mm
b1=b2+
(5~10)=60mm

計算結果
l1=2(c+k)+bh1+s+bl1+n1=2×(5+10)+50+10+60+20=170mm
l2=2(c+k)+bh1+s+bl1+n2=2×(5+10)+50+10+60+20=

172mm
l3=2(c+k)+bh1+s+bl1+n3=2×(5+10)+50+10+60+20=172mm
(2)高速軸的設計:
①選擇軸的材料及熱處理
由於高速軸小齒輪直徑較小,所以採用齒輪軸,選用40r鋼,
②軸的受力分析:
如圖1軸的受力分析:

lAB=l1=170mm,
lAC=n1/2+c+k+bh1/2=20/2+5+10+50/2=50mm
lBC= lAB- lAC=170-50=120mm
(a) 計算齒輪嚙合力:
Ft1=2000T1/d1=2000×51.687/61.091=162.131N
Fr1=Ft1tanαn/cosβ1692.13×tan20°/cos10.8441°=627.083N
Fa1= Ft1tanβ×tan10.8441°=324.141N
(b) 求水平面內支承反力,軸在水平面內和垂直面的受力簡圖如下圖:

RAx= Ft1 lBC/ lAB=1692.131×120/170=1194.445N
RBx= Ft1-RAx=1692.131-1194.445=497.686N
RAy=(Fr1lBC+Fa1d1/2)/lAB=(627.083×120+324.141×
61.091/2)/170=500.888N
RBy= Fr1-RAy=627.083-500.888=126.195N
(c) 支承反力

彎矩MA= MB=0,MC1= RA lAC=64760.85N.mm
MC2= RB lBC=61612.32N.mm
轉矩T= Ft1 d1/2=51686.987N.mm
計算內容

計算結果

d≥ ③軸的結構設計
按經驗公式,減速器輸入端軸徑A0 由文獻[2]表8-2,取A0=100
則d≥100 ,由於外伸端軸開一鍵槽,
d=17.557(1+5%)=18.435取d=20mm,由於da1<2d,用齒輪軸,根據軸上零件的布置、安裝和定位的需要,初定軸段直徑和長度,其中軸頸、軸的結構尺寸應與軸上相關零件的結構尺寸聯系起來考慮。
初定軸的結構尺寸如下圖:

高速軸上軸承選擇:選擇軸承30205 GB/T297-94。
(2)中間軸(2軸)的設計:
①選擇軸的材料及熱處理
選用45號綱調質處理。
②軸的受力分析:
如下圖軸的受力分析:

計算內容

計算結果

lAB=l2=172mm,
lAC=n2/2+c+k+bh1/2=22/2+5+10+50/2=51mm
lBC= lAB- lAC=172-51=121mm
lBD=n2/2+c+k+bl1/2=22/2+5+10+60/2=56mm
(a) 計算齒輪嚙合力:
Ft2=2000T2/d2=2000×136.283/162.909=1673.118N
Fr2=Ft2tanαn/cosβ=1673.118×tan20°/cos10.8441°=620.037N
Fa2=Ft2tanβ=1673.118×tan10.8441°=320.499N
Ft3=2000T2/d3=2000×136.283/100=2725.660N
Fr3=Ft3tanα=2725.660×tan20°=992.059N
(b)求水平面內和垂直面內的支反力
RAx=(Ft2lBC+Ft3lBD )/lAB=(1673.118×121+2725.660×56)/172=2064.443N
RBx=Ft2+Ft3-RAX=1673.118+2725.660-2064.443=2334.35N
RAY=(Fa2d2/2-Fr2lBC+Fr3lBD)/lAB=(320.449×162.909/2-620.037×121+992.059×56)=190.336N
RBY=Fr3-Fr2-RAY=992.059-620.037-190.336=
計算內容

計算結果
181.656N
RA=2073.191N, RB=2341.392N
③軸的結構設計
按經驗公式, d≥A0 由文獻[2]表8-2,取A0=110
則d≥110 ,取開鍵槽處d=35mm
根據軸上零件的布置、安裝和定位的需要,初定軸段直徑和長度,其中軸頸、軸的結構尺寸應與軸上相關零件的結構尺寸聯系起來考慮。
初定軸的結構尺寸如下圖:

中間軸上軸承選擇:選擇軸承6206 GB/T276-94。
(3)低速軸(3軸)的設計:
①選擇軸的材料及熱處理
選用45號綱調質處理。
②軸的受力分析:
如下圖軸的受力分析:

計算內容

計算結果

初估軸徑:
d≥A0 =110
聯接聯軸器的軸端有一鍵槽,dmin=33.5(1+3%)=34.351mm,取標准d=35mm
軸上危險截面軸徑計算:d=(0.3~0.4)a=(0.3~0.4)×150=45~60mm 最小值dmin =45×(1+3%)=46.35mm,取標准
計算內容 計算結果
50mm
初選6207GB/T276-94軸承,其內徑,外徑,寬度為40×80×18
軸上各軸徑及長度初步安排如下圖:

③低速級軸及軸上軸承的強度校核
a、 低速級軸的強度校核
①按彎扭合成強度校核:
轉矩按脈動循環變化,α≈0.6
Mca1= Mc=106962.324N.mm
Mca2=
Mca3=αT=159679.800N.mm
計算彎矩圖如下圖:

計算內容

計算結果

Ⅱ剖面直徑最小,而計算彎矩較大,Ⅷ剖面計算彎矩最大,所以校核Ⅱ,Ⅷ剖面。
Ⅱ剖面:σca= Mca3/W=159679.8/0.1×35³=37.243Mp
Ⅷ剖面:σca= Mca2/W=192194.114/0.1×50³=15.376Mp
對於45號綱,σB=637Mp,查文獻[2]表8-3得
[σb] -1=59
Mp,σca<[σb] -1,安全。
②精確校核低速軸的疲勞強度
a、 判斷危險截面:
各個剖面均有可能有危險剖面。其中,Ⅱ,Ⅲ,Ⅳ剖面為過度圓角引起應力集中,只算Ⅱ剖面即可。Ⅰ剖面與Ⅱ剖面比較,只是應力集中影響不同,可取應力集中系數較大者進行驗算。Ⅸ--Ⅹ面比較,它們直徑均相同,Ⅸ與Ⅹ剖面計算彎矩值小,Ⅷ剖面雖然計算彎矩值最大,但應力集中影響較小(過盈配合及鍵槽引起的應力集中均在兩端),所以Ⅵ與Ⅶ剖面危險,Ⅵ與Ⅶ剖面的距離較接近(可取5mm左右),承載情況也很接近,可取應力集中系數較大值進行驗算。
計算內容

計算結果
b.較核Ⅰ、Ⅱ剖面疲勞強度:Ⅰ剖面因鍵槽引
起的應力集中系數由文獻[2]附表1-1查得:kσ=1.76, kτ=1.54
Ⅱ剖面配合按H7/K6,引起的應力集中系數由文獻[2]附表1-1得:kσ=1.97, kτ=1.51。Ⅱ剖面因過渡圓角引起的應力集中系數查文獻[2]附表1-2(用插入法): (過渡圓角半徑根據D-d由文獻[1]表4.2-13查取) kτ=1.419,故應按過渡圓角引起的應力集中系數驗算Ⅱ剖面
Ⅱ剖面產生的扭應力、應力幅、平均應力為:
τmax =T/ WT=266.133/0.2×35³=31.036Mp,
τa=τm =τmax /2=15.52Mp
絕對尺寸影響系數查文獻[2]附表1-4得:εσ =0.88,ετ =0.81,表面質量系數查文獻[2]附表1-5:βσ =0.92,βτ =0.92
Ⅱ剖面安全系數為:
S=Sτ=
取[S]=1.5~1.8,S>[S] Ⅱ剖面安全。
b、 校核Ⅵ,Ⅶ剖面:
Ⅵ剖面按H7/K6配合,引起的應力集中系數查附表1-1,kσ=1.97, kτ=1.51
Ⅵ剖面因過渡圓角引起的應力集中系數查附表1-2, ,kσ=1.612,kτ=1.43
Ⅶ剖面因鍵槽引起的應力集中系數查文獻[2]附表1-1得:kσ=1.82, kτ=1.62。故應按過渡圓角引起
計算內容

計算結果
的應力集中系數來驗算Ⅵ剖面
MVⅠ=113 RA=922.089×113=104196.057N.mm, TVⅠ=266133N.mm
Ⅵ剖面產生的正應力及其應力幅、平均應力:
σmax= MVⅠ/W=104196.057/0.1×50³=8.336Mp
σa=σmax=8.366 σm=0
Ⅵ剖面產生的扭應力及其應力幅,平均應力為:
τmax =TⅥ/ WT=266133/0.2×50³
絕對尺寸影響系數由文獻[2]附表1-4得:εσ =0.84,ετ
=0.78
表面質量系數由文獻[2]附表1-5查得:βσ =0.92,βτ =0.92
Ⅵ剖面的安全系數:
Sσ =
Sτ=
S=
取[S]= 1.5~1.8,S>[S] Ⅵ剖面安全。
六.各個軸上鍵的選擇及校核
1.高速軸上鍵的選擇:
初選A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm,查文獻[2]表2-10,許用擠壓應力[σp]=110Mp,σp= 滿足要求;

計算內容

高速軸上
選A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm
中間軸
選A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm,

計算結果
2.中間軸鍵的選擇:
A處:初選A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm, [σp]=110Mp
σp= 滿足要求;
B處:初選A型10×45 GB1095-79:
b=10mm,h=8mm,L=32mm,l=22mm,[σp]=110Mp
σp= 滿足要求.
3. 低速軸上鍵的選擇:
a.聯軸器處選A型普通平鍵
初選A型10×50 GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm,查文獻[2]表2-10,許用擠壓應力[σp]=110Mp
σp= 滿足要求.
b. 齒輪處初選A型14×40 GB1096-79:b=14mm,h=9mm,L=40mm,l=26mm, [σp]=110Mp
σp= 滿足要求.
七.聯軸器的選擇
根據設計題目的要求,減速器只有低速軸上放置一聯軸器。
查表取工作情況系數K=1.25~1.5 取K=1.5
計算轉矩 Tc=KT=1.5×266.133=399.200Mp
選用HL3型聯軸器:J40×84GB5014-85,[T]=630N.m, Tc<[T],n<[n],所選聯軸器合適。
低速軸
聯軸器處選A型10×50GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm
低速軸
齒輪處初選A型14×40GB1096-79:
b=14mm,h=9mm,L=40mm,l=26mm

選用HL3型聯軸器:J40×84GB5014-85
參考資料:機械課程設計,理論力學

② 求:電動卷揚機傳動(V帶傳動)裝置設計說明書

電動卷揚機傳動(V帶傳動)裝置設計說明書
這個是不是要CAD 機械,參數
肯定

③ 機械課程設計----輸送傳動裝置設計說明書

是齒輪減速箱嗎》

④ 求一份設計用於皮帶輪運輸機的傳動裝置設計任務書

僅供參考

一種傳輸編程
第二組數據:一個圓柱形的齒輪減速器的設計帶式輸送機齒輪
(1)工作環境:可使用年限為10年,每年300天,兩班倒的工作負載順利。
(2)的原始數據:滾筒圓周力F = 1.7KN;帶速度V = 1.4米/秒;
滾筒直徑D = 220mm的
?運動圖
其次,選擇的電機
1,電機類??型和結構類型的選擇:已知的工作要求和條件,選擇Y系列三相非同步電動機。
2,確定電機功率:
總有效率的發送裝置(1):
聯軸器總η=η×η2軸承×η齒輪×η×η鼓
= 0.96×0.992×0.97×0.99×0.95
= 0.86
(2)電機功率:
PD =FV/1000η總
= 1700×1.4/1000×0.86
= 2.76KW
如圖3所??示,確定電機轉速:
輥軸速度的工作:
NW = 60×1000V/πD的
= 60×1000×1.4 /π×220
= 121.5r/min

根據[2]表2.2推薦合理的,考慮一個V型皮帶傳動的傳動比范圍內的單級的圓筒狀的齒輪比的范圍比IV = 2?4,集成電路= 3?5,合理的總的傳動比的范圍內的i = 6?20,所以電機的可選擇的范圍的速度是第二=×凈重=(6?20)×121.5 = 729?2430r/min
符合此范圍內的同步轉速為960 r / min和1420r/min。表8.1 [2]確定了三種適用的電機模型,如下表所示
傳動比的傳輸方案電機型號額定功率電機的轉速(轉/分)
?KW轉整圈的整體齒輪與齒輪比
1 Y132S-6 3 1000 960 7.9 3 2.63
2 Y100L2 4 3 1500 1420 11.68 3 3.89

考慮到電機和齒輪的尺寸,重量,價格和皮帶傳動,減速器的傳動比,比較這兩個方案被稱為:方案1,由於電機的轉速,齒輪尺寸較大的價格較高。方案2是溫和的。被選為電機型號Y100L2-4。
確定電機型號
根據上述選擇電機的類型,所需的額定功率和同步速度,所選擇的電動機型號
Y100L2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩的2.2。
第三,計算的總的傳動比,在輸電和配電水平比
1,總傳動比:我總= N電/ N桶= 1420/121.5 = 11.68
如圖2所示,在所有各級的傳動比分配
(1)我= 3
(2)∵,共i =齒×我與π
∴我的牙齒= I / I = 11.68 / 3 = 3.89
的運動參數和動態參數
1,計算的軸的轉速(轉/分鍾)的
NI = NM / I = 1420/3 = 473.33(轉/分)
NII = NI / I牙= 473.33/3.89 = 121.67(轉/分)
鼓NW =凈利息收入= 473.33/3.89 = 121.67(轉/分)
2,計算每個軸功率(KW)
PI = PD×η= 2.76×0.96 = 2.64KW
PII = PI×η軸承×η齒輪= 2.64×0.99×0.97 = 2.53KW

如圖3所??示,計算各軸的轉矩
TD = 9.55Pd/nm = 9550×2.76/1420 = 18.56N?中號
???TI = 9.55p2到/ N1 = 9550x2.64/473.33 = 53.26N?中號
???
??TII = 9.55p2到/ N2 = 9550x2.53/121.67 = 198.58N?中號
???
傳動部件的設計和計算
1輪驅動設計
(1)選擇普通V帶類型
教科書[1] P189表10-8為:Ka = 1.2,P = 2.76KW
PC = KAP = 1.2×2.76 = 3.3KW
PC = 3.3KW和n1 = 473.33r/min的的
教科書[1] P189圖10-12是可選的V型皮帶A型
(2)確定的帶輪的基準直徑,並檢查磁帶速度
[1]教材P190表10-9,採取其所=95毫米> dmin的= 75
DD2 = i與其所(1-ε)= 3×95×(1-0.02)=279.30毫米
通過教科書[1] P190表10-9,採取DD2 = 280
帶速V:V =πdd1n1/60×1000
=Π×95×1420/60×1000
=7.06米/ s的??????
5?25m / s的范圍內,適當的速度。
(3)確定帶子的長度和中心距
暫定中心距離a0 =500毫米
Ld為= 2A0 +π(其所+ DD2)/ 2 +(DD2-DD1)2/4a0
= 2×500 3.14(95 280)+(280-95)2/4×450
=1605.8毫米
據的教科書[1]表(10-6),以選擇一個類似的Ld為=1600毫米
確定中心距a≈a0的+(Ld為 - LD0)/ 2 = 500 +(1600-1605.8)/ 2
=497毫米
??(四)檢查小滑輪包角
α1= 1800-57.30×(DD2-DD1)/
= 1800-57.30×(280-95)/ 497
= 158.670> 1200(適用)
?(5),以確定的數目根
V帶傳動額定功率的單。根據DD1和N1,檢查課本圖10-9為:P1 = 1.4KW
I≠1時,單根增量的額定功率的V形皮帶。根據帶型,我檢查[1]表10-2△P1 = 0.17KW
檢查[1]表10-3 5月Kα= 0.94;調查[1]表10-4 KL = 0.99
Z = PC / [(P1 +△P1)KαKL]
= 3.3 /(1.4 +0.17)×0.94×0.99]
= 2.26(坐3)
??(6)計算軸壓力
通過教科書[1]表10-5調查q = 0.1公斤/米的教科書(10-20)初始張力的V型皮帶單位根:
F0 = 500PC/ZV [(2.5/Kα)-1] + qV2 = 500x3.3 / 3x7.06(2.5/0.94-1),+0.10 x7.062 = 134.3kN
根據軸承的壓力FQ
FQ = 2ZF0sin(α1/ 2)= 2×3×134.3sin(158.67o / 2)
= 791.9N

2,齒輪的設計計算
(1)選擇齒輪材料及熱處理的齒輪傳動裝置的設計被關閉的傳輸,通常
製成的軟齒面齒輪。查找表[1]表6-8,易於製造的材料選擇價格便宜的小齒輪材料為45鋼,淬火和回火齒面硬度260HBS,大齒輪材料45鋼,正火硬度215HBS;
精度等級:運輸機通用機械,高速,8位精度。
(2)所述的齒面接觸疲勞強度設計
D1≥(6712×KT1(U +1)/φ[σH] 2)1/3
確定的參數如下:傳動比i齒= 3.89
舉一個小齒輪Z1 = 20。大齒輪Z2 = IZ1 =×20 = 77.8 Z2 = 78
從教科書表6-12φD= 1.1
(3)的轉矩T1
T1 = 9.55×106×P1/n1 = 9.55×106×2.61/473.33 = 52660N?毫米
(4)負荷系數K:K = 1.2
(5)允許的接觸應力[σH]
[ΣH=σHlimZN / SHmin的教科書[1]圖6-37理查德:
σHlim1= 610MpaσHlim2= 500MPa級
聯系疲勞壽命系數鋅:一年300天,每天16小時計算公式N = 60njtn
N1 = 60×473.33×10×300×18 = 1.36x109
N2 = N / I = 1.36x109 / 3.89 = 3.4×108
檢查[1]圖6-38,ZN1的教科書中曲線1 = 1 ZN2 = 1.05
按要求選擇可靠性的的安全系數SHmin = 1.0
[ΣH] 1 =σHlim1ZN1/SHmin= 610x1 / 1 = 610兆帕
[ΣH] 2 =σHlim2ZN2/SHmin= 500x1.05 / 1 = 525Mpa
因此,它可以是:
D1≥(6712×KT1(U +1)/φ[σH] 2)1/3
=49.04毫米
模數:M = d1/Z1 = 49.04/20 =2.45毫米
以教科書[1]值的P79標准模數第一系列,M = 2.5
(6)檢查齒根彎曲疲勞強度
σBB = 2KT1YFS/bmd1
確定有關參數和系數
的節圓直徑為d1 =就是MZ1 = 2.5×20mm的= 50毫米
?????????D2 = MZ2 = 2.5×78毫米=195毫米
齒寬:B =φdd1= 1.1×50毫米=55毫米
以B2 =55毫米B1 =60毫米
(7)復合齒因素的YFS教科書[1]圖6-40:YFS1 = 4.35,YFS2,3.95
(8)容許彎曲應力[σbb]
根據教科書[1] P116:
[Σbb=σbblimYN / SFmin的
教科書[1]圖6-41彎曲疲勞極限σbblim的,應該:σbblim1= 490MPa級σbblim2= 410Mpa
教科書[1]圖6-42的彎曲疲勞壽命系數YN:YN1 = 1 YN2 = 1
最小安全系數的彎曲疲勞SFmin:一般可靠性的要求,採取SFmin = 1
計算彎曲應力疲勞許
[Σbb1σbblim1YN1/SFmin = 490×1/1 = 490MPa級
[Σbb2] =σbblim2YN2/SFmin = 410×1/1 = 410Mpa
校核計算
σbb1= 2kT1YFS1 / b1md1 = 71.86pa [σbb1]
σbb22kT1YFS2 / b2md1 = 72.61Mpa <[σbb2]
齒根彎曲疲勞強度足夠
(9)中的一個齒輪的中心矩
=(D1 + D2)/ 2 =(50 +195)/ 2 =122.5毫米
(10)的圓周速度的齒輪五
計算的圓周速度V =πn1d1/60×1000 = 3.14×473.33×50/60×1000 =1.23米/ s的
由於V <6米/秒,所以他們選擇適當的8位精度。

軸的設計計算
??從動軸的設計
?1中,選擇的材料的軸線,以確定允許的應力
???選擇軸的材料為45鋼,淬火和回火。調查[2]表13-1中我們可以看到:
????σB= 650MPa以下,強度σs= 360Mpa調查[2]表13-6所示:[ΣB+1] BB = 215Mpa
????[Σ0] BB = 102Mpa,[σ-1] BB = 60Mpa
?2,根據估計的抗扭強度軸的最小直徑
???單級的低速軸的齒輪減速器的軸,輸出耦合階段,
考慮從結構的要求,輸出端子軸應最小,最小直徑為:
????????D≥C
????調查[2]表13-5可用45鋼取C = 118
????D≥118×(2.53/121.67)1/3mm =32.44毫米
???考慮鍵槽影響的耦合孔系列標準的,取D = 35毫米
??3,齒輪受力計算
???齒輪扭矩:T = 9.55×106P / N = 9.55×106×2.53/121.67 = 198 582?
???齒輪力:
?????????圓周力:FT = 2T / D = 2×198582/195N = 2036N
?????????徑向力:FR = Fttan200 = 2036×tan200 = 741N
??4,軸的結構設計
???需要考慮固定的大小相匹配的部分軸結構的設計,軸類零件軸,軸按比例繪制的結構示意圖。
???(1),選擇的耦合
???????可用於彈性柱銷聯軸器,檢查[2]表9.4耦合模型HL3耦合:35×82 GB5014-85
???(2)確定軸類零件的位置和固定方式
???單級減速齒輪,你可以安排中央齒輪箱軸承對稱布置
??論齒輪兩側。依靠客戶端安裝軸伸聯軸器,齒輪油環和套筒
固定的軸向位置,並與實現的星期依靠平鍵和干擾來固定,該軸的兩端
承套筒的軸向定位的實現,依靠的干擾符合環固定軸
兩端的軸承蓋的軸向定位聯軸器依靠軸肩平,關鍵盈
軸向定位和周向定位
(3),以確定的直徑的軸的每個段
將估計的軸D = 35毫米比賽(如圖),作為外伸端直徑d1和接頭
考慮耦合軸向定位軸肩,在第二個段落的直徑為D2 = 40mm的
負載從左側的左端的齒輪和軸承,考慮要求易於裝配,拆卸,和零件固定安裝的軸在d3上應該是大於d2,d3上= 4毫米,容易齒輪組件與該部和拆卸與齒輪軸直徑d4應該是大於d3,採取d4上= 50毫米。帶齒輪的時間用的套筒固定左端,右端的凸緣定位頸直徑d5上
滿足齒輪的位置的同時,還應該滿足安裝要求的右側的軸承確定根據選定軸承模型的右軸承軸承模型相同的左端,採取D6 =45毫米。
????????(4)選擇[1] P270初選深溝球軸承,代號為6209的軸承型號,手動可供選擇:軸承寬度B = 19,安裝尺寸D = 52,所以領子直徑D5 =52毫米的。
????????(5)確定的軸的直徑,每個區段的長度
Ⅰ段:D1 = 35mm長度L1 = 50

第二部分:D2 = 40mm的
6209深溝球軸承,內徑45毫米的主,
的寬度為19mm。考慮到齒輪的端面和殼體壁,軸承的端面和殼體的內壁有一定的距離。以袖子的長度為20mm,長度應根據密封帽軸部分的密封帽的寬度,並考慮聯軸器和櫃外壁應該是某一時刻,段長度為55mm,安裝齒輪段長度應較小的寬度比輪子2毫米,這是一個很長的段落II:
L2 =(2 20 19 55)=96毫米
III段直徑d3 =45毫米
L3 = L1-L = 50-2 =48毫米
Ⅳ段直徑d4 = 50
相同的長度和在套筒到右側,即L4 = 20mm的
Ⅴ段直徑D5 =52毫米的長度L5 =19毫米
可被視為由長度的軸的軸線支撐跨距L =96毫米
(6)矩復合材料強度
(1)要求的節圓直徑:已知D1 =195毫米
(2)尋找扭矩:T2 = 198.58N?中號
③求圓周力:FT
根據課本P127(6-34)
尺= 2T2/d2 = 2×198.58/195 = 2.03N
④求徑向力Fr
根據課本P127(6-35)
= FT神父?若tanα= 2.03×tan200 = 0.741N
(5)由於該軸的兩個軸承的對稱性,所以:= LB =48毫米

(1)繪制軸力圖(圖一)
(2)畫一條垂直的平面的彎矩圖(圖二)
支座反力:
FAY = FBY = FR / 2 = 0.74 / 2 = 0.37N
FAZ = FBZ = FT / 2 = 2.03 / 2 = 1.01N
的兩側左右對稱的,它是已知的交叉C節對稱的彎矩。在垂直平面內的時刻的C節
MC1 = FAyL / 2 = 0.37×96÷2 = 17.76N?中號
的彎曲力矩,在水平面中的C節:
MC2 = FAZL / 2 = 1.01×96÷2 = 48.48N?中號
(4)繪制的彎矩圖(圖d)
MC =(MC12 + MC22)1/2 =(17.762 48.482)1/2 = 51.63N?中號
(5)繪制一個的轉矩圖(圖e)
扭矩:T = 9.55×(P2/n2)×106 = 198.58N?中號
(6)繪制的等效彎矩圖(圖f)
扭矩產生的扭轉剪切文治武功力的脈動周期的變化,取α= 0.2,在等效力矩的截面C:
MEC = [MC2 +(αT)2] 1/2
= [51.632 +(0.2×198.58)2] 1/2 = 65.13N?中號
(7)檢查強度的危險C節
由式(6-3)中


ΣE= 65.13/0.1d33 = 65.13x1000/0.1×453
= 7.14MPa <[σ-1] = 60MPa
∴,軸具有足夠的強度。


傳動軸設計????
???1,選擇軸的材料,以確定許用應力
???選擇軸的材料為45鋼,淬火和回火。調查[2]表13-1中我們可以看到:
????σB= 650MPa以下,強度σs= 360Mpa調查[2]表13-6所示:[ΣB+1] BB = 215Mpa
????[Σ0] BB = 102Mpa,[σ-1] BB = 60Mpa
?2,根據估計的抗扭強度軸的最小直徑
???單級的低速軸的齒輪減速器的軸,輸出耦合階段,
考慮從結構的要求,輸出端子軸應最小,最小直徑為:
????????D≥C
????調查[2]表13-5可用45鋼取C = 118
????D≥118×(2.64/473.33)1/3mm =20.92毫米
???考慮鍵槽一系列標準的影響,採取e=22毫米
??3,齒輪受力計算
???收到的齒輪扭矩:T = 9.55×106P / N = 9.55×106×2.64/473.33 = 53265?
???齒輪力:
?????????圓周力:FT = 2T / D = 2×53265/50N = 2130N
?????????徑向力:FR = Fttan200 = 2130×tan200 = 775N
??????確定軸類零件的位置和固定方式
???單級減速齒輪,你可以安排中央齒輪箱軸承對稱布置
??論齒輪兩側。齒輪依靠油環和軸向定位並固定在套筒上
依靠平鍵和周向固定的干擾,該軸的兩端
承套筒的軸向定位的實現,依靠的干擾符合環固定軸
兩端的軸承蓋來實現軸向定位,
的第4段,以確定軸的直徑和長度
6206深溝球軸承,內徑30毫米的主,
的寬度為16mm。考慮齒輪的端面和殼體壁,軸承的端面和殼體的內壁有一定的時刻,然後採取套筒長度20mm,那麼段的長度36毫米安裝輪轂寬度的齒輪部的長度2毫米。
(2)復合材料的彎曲和扭轉強度計算
(1)要求已知的節圓直徑:D2 = 50
(2)向已知扭矩:T = 53.26N?中號
(3)向圓周力Ft:根據課本P127(6-34)
尺= 2T3/d2 = 2×53.26/50 = 2.13N
④求徑向力Fr的課本P127(6-35)
= FT神父?若tanα= 2.13×0.36379 = 0.76N
⑤∵兩軸承對稱
∴LA = LB = 50
(1)求支座反力FAX,FBY,FAZ,FBZ
FAX = FBY = FR / 2 = 0.76 / 2 = 0.38N
FAZ = FBZ = FT / 2 = 2.13 / 2 = 1.065N
(2)橫截面在垂直平面矩
MC1 = FAxL / 2 = 0.38×100/2 = 19N?中號
(3)的橫截面中的C的水平的彎曲力矩
MC2 = FAZL / 2 = 1.065×100/2 = 52.5N?中號
(4)計算的合成的矩
MC =(MC12 + MC22)1/2
=(192 52.52)1/2
= 55.83N?中號
(5)計算的等效彎矩:根據課本P235α= 0.4
MEC = [MC2 +(αT)2] 1/2 = [55.832 +(0.4×53.26)2] 1/2
= 59.74N?中號
(6)檢查的力度危險的C節
由式(10-3)中
ΣE= MEC /(0.1d3)= 59.74x1000 /(0.1×303)
= 22.12Mpa <[σ-1] = 60Mpa
∴此軸具有足夠的強度

(7)滾動選擇和檢查計算
????從動軸的軸承
預期壽命的條件下,軸承
L'H = 10×300×16 = 48000h
(1)初選軸承型號:6209,
???檢查[1]表14-19所示:D = 55毫米,外徑D = 85毫米,寬度B = 19MM,基本額定動負荷C = 31.5KN基本額定靜負荷CO = 20.5KN
???調查[2]表10.1極限轉速9000r/min
??????
????(1)已知NII = 121.67(轉/分)

兩軸承的徑向反作用力:FR1 = FR2 = 1083N
根據教科書的P265(11-12)軸承內部的軸向力
FS = 0.63FR那麼FS1 = FS2 = 0.63FR1 = 0.63x1083 = 682N
(2)∵FS1 + FA = FS2 FA = 0
因此,應採取按任何一端,現在就按結束結束
FA1 = FS1 = 682N FA2 = FS2 = 682N
(3)求系數X,Y
FA1/FR1 = 682N/1038N = 0.63
FA2/FR2 = 682N/1038N = 0.63
根據課本P265表(14-14)= 0.68
FA1/FR1 E X1 = 1 FA2/FR2 <E x2 = 1
Y1 = 0 Y2 = 0
(4)計算的等效載荷P1,P2
根據教材P264表(14-12)取f P = 1.5
(14-7)風格的基礎上課本P264
P1 = FP(x1FR1 + y1FA1)= 1.5×(1×1083 +0)= 1624N
P2 = FP(x2FR1 + y2FA2)= 1.5×(1×1083 +0)= 1624N
(5)的軸承壽命的計算
∵P1 = P2,所以他們選擇了P = 1624N
∵深溝球軸承ε= 3
根據手冊6209-CR = 31500N
我們獲得課本P264(14-5)
LH = 106(ftCr / P),ε/60n
= 106(1×1624分之31500)3/60X121.67 = 998953h> 48000h
∴預期壽命是足夠的

??????????
??????主動軸軸承:
???(1)軸承初選型號:6206
??查[1]表14-19,:D = 30毫米,外徑D =62毫米,寬度B = 16毫米,
基本額定動載荷C = 19.5KN基本的靜載荷CO = 111.5KN
????調查[2]表10.1極限轉速13000r/min
??????預期壽命的條件,對軸承
L'H = 10×300×16 = 48000h
????(1)已知NI = 473.33(轉/分)
兩軸承的徑向反作用力:FR1 = FR2 = 1129N
根據教科書的P265(11-12)軸承內部的軸向力
FS = 0.63FR那麼FS1 = FS2 = 0.63FR1 = 0.63x1129 = 711.8N
(2)∵FS1 + FA = FS2 FA = 0
因此,應採取按任何一端,現在就按結束結束
FA1 = FS1 = 711.8N FA2 = FS2 = 711.8N
(3)求系數X,Y
FA1/FR1 = 711.8N/711.8N = 0.63
FA2/FR2 = 711.8N/711.8N = 0.63
根據課本P265表(14-14)= 0.68
FA1/FR1 E X1 = 1 FA2/FR2 <E x2 = 1
Y1 = 0 Y2 = 0
(4)計算的等效載荷P1,P2
根據教材P264表(14-12)取f P = 1.5
(14-7)風格的基礎上課本P264
P1 = FP(x1FR1 + y1FA1)= 1.5×(1×1129 +0)= 1693.5N
P2 = FP(x2FR1 + y2FA2)= 1.5×(1×1129 +0)= 1693.5N
(5)的軸承壽命的計算
∵P1 = P2,所以他們選擇了P = 1693.5N
∵深溝球軸承ε= 3
根據手冊是6206-CR = 19500N
我們獲得課本P264(14-5)
LH = 106(ftCr / P),ε/60n
= 106(1×19500/1693.5)3/60X473.33 = 53713h> 48000h
∴預期壽命是足夠的

七鍵連接的選擇,並且檢查計算
1。據的長軸直徑的大小,由[1]表12-6中
高速軸(驅動軸),V型皮帶輪聯軸器鍵:鍵8×36,GB1096-79
大齒輪和軸連接鍵:的鑰匙14×45 GB1096-79
聯軸器鍵:鍵10×40 GB1096-79
2。關鍵的強度校核
?大齒輪和軸的關鍵:關鍵14×45 GB1096-79
B×H = 14×9,L = 45,LS = L - B =31毫米
圓周力:FR = 2TII / D = 2×198五十零分之五百八十零= 7943.2N
擠壓強度:= 56.93 <125?150MPA = [ΣP]
因此,擠壓強度足夠
剪切強度:= 36.60 <120MPA = []
因此,剪切強度是足夠的
8×36的關鍵GB1096-79和鍵10×40 GB1096-79檢查,根據上述步驟,並符合要求。

八,減速齒輪箱,蓋子及配飾設計
1,減速機附件
曝氣機
室內使用時,選擇通風(一次過濾),採用M18×1.5
油位指示器
選擇游標M12的
起重設備
採用蓋耳片箱座。

放油塞
選擇外六角油塞和墊片M18×1.5
根據「機械設計課程設計表5.3選擇合適的型號:
從蓋螺絲型號:GB/T5780 M18×30,材質Q235
高速軸軸承蓋螺栓:GB5783?86 M8X12,材質Q235
低速軸軸承蓋螺栓:GB5783?86 M8×20,材質Q235
博爾特:GB5782?86 M14×100,材質Q235
案例的主要尺寸:

???(1)箱座壁厚Z = 0.025A +1 = 0.025×122.5 +1 = 4.0625 Z = 8
?????????(2)油箱蓋和牆壁厚度Z1 = 0.02A +1 = 0.02×122.5 +1 = 3.45
????????????????????????? ???????以Z1 = 8
?????????(3)蓋法蘭厚度B1 = 1.5z1 = 1.5×8 = 12
?????????(4)箱座法蘭厚度B = 1.5z = 1.5×8 = 12
????????(5)的厚度的框座底部凸緣B2 = 2.5z = 2.5×8 = 20

?????????(6)接地螺釘直徑df = 0.036a +12 =
????????????????????0.036×122.5 +12 = 16.41(共18個)
?????????(7)數的接地螺釘N = 4(<250)
????????(8)的軸承旁的連接螺栓直徑d1 = 0.75df = 0.75×18 = 13.5(一個14)
????????蓋(9)和所述座椅連接的螺栓直徑d2 =(0.5-0.6)自由度= 0.55×18 = 9.9(二,10)
?????????(10)連??接螺栓D2的間距L = 150?200
?????????(11)軸承蓋螺栓直D3 =(0.4?0.5),DF = 0.4×18 = 7.2(N = 8)
?????????(12)檢查孔蓋螺絲D4 =(0.3-0.4),DF = 0.3×18 = 5.4(6)
????????的定位銷(13)的直徑D =(0.7-0.8)d2的= 0.8×10 = 8
????????(14)df.d1.d2的方塊距離C1的外壁上的
?????????(15)Df.d2
?????????
????????(16)凸台高度:確定在根據與低速的軸承座的外徑,以扳手操作為准。
外槽壁(17)從端面的軋輥軸承座C1 + C2 +(5?10)的距離
(18)齒輪的齒頂圓與內箱壁間距離:> 9.6毫米
(19)的齒輪內盒的端壁間的距離:= 12毫米
(20)蓋,箱座肋厚:M1 = 8毫米,M2 = 8毫米
(21)的軸承蓋的外徑(D)+(5?5.??5)d3上

????????D?軸承外徑
(22)軸承:盡可能靠近旁邊的連接螺栓距離,遵守不幹涉對方的MD1和MD3一般取S = D2。

九,潤滑與密封
1齒輪的潤滑
使用浸油潤滑,單級圓柱齒輪減速機,速度ν<12米/秒,當m <20時,浸油深度h牙齒的高度,但不小於10毫米,所以油浸泡過的高度約36毫米。
2滾動軸承的潤滑
軸承圓周速度,所以應該開設油溝,飛濺潤滑。
3。潤滑油的選擇
與同種潤滑油的齒輪和軸承是更方便的小型設備,考慮到設備,選擇GB443-89損耗系統用油L-AN15潤滑油。
4的密封方法的選擇
可選法蘭端蓋調整方便,悶蓋安裝在框架旋轉軸唇形密封的密封。密封模型由組件GB894.1-86-25的軸承蓋的結構的大小是由軸承位置的外徑的軸直徑確定的。

10,設計總結
課程設計的經驗
課程設計需要勤奮和努力鑽研的精神。步驟一步克服的事情會在第一時間,第一,似乎沒有人有感情的挫折,遇到困難,可能需要持續幾個小時,十幾個小時的不停工作,研究的最終結果的那一刻快樂是很容易的,嘆了口氣!
課程設計過程中,幾乎所有在過去所學的知識不扎實,很多計算方法,公式都忘了,不斷地把信息,閱讀,和同學們互相探討。雖然過程很辛苦,有時不得不打消了這個念頭,但一直堅持了下來,完成了設計,也學會了要回很多以前沒學好的知識,並同時鞏固這方面的知識,提高運用所學知識的能力。

11,參考的數據目錄
[1]「機械設計基礎課程設計,高等教育出版社,陳立德主編,第二版,2004年7月;
[2]「機械設計基礎,機械工業出版社的編輯胡甲秀2007年7月第一版

⑤ 機械密封試驗裝置的設計說明書

什麼形式的機械密封

⑥ 機械設計基礎課程設計指導書——設計輸送機傳動裝置課程設計

給你做個參考
一、前言
(一)
設計目的:
通過本課程設計將學過的基礎理論知識進行綜合應用,培養結構設計,計算能力,熟悉一般的機械裝置設計過程。
(二)
傳動方案的分析
機器一般是由原動機、傳動裝置和工作裝置組成。傳動裝置是用來傳遞原動機的運動和動力、變換其運動形式以滿足工作裝置的需要,是機器的重要組成部分。傳動裝置是否合理將直接影響機器的工作性能、重量和成本。合理的傳動方案除滿足工作裝置的功能外,還要求結構簡單、製造方便、成本低廉、傳動效率高和使用維護方便。
本設計中原動機為電動機,工作機為皮帶輸送機。傳動方案採用了兩級傳動,第一級傳動為帶傳動,第二級傳動為單級直齒圓柱齒輪減速器。
帶傳動承載能力較低,在傳遞相同轉矩時,結構尺寸較其他形式大,但有過載保護的優點,還可緩和沖擊和振動,故布置在傳動的高速級,以降低傳遞的轉矩,減小帶傳動的結構尺寸。
齒輪傳動的傳動效率高,適用的功率和速度范圍廣,使用壽命較長,是現代機器中應用最為廣泛的機構之一。本設計採用的是單級直齒輪傳動。
減速器的箱體採用水平剖分式結構,用HT200灰鑄鐵鑄造而成。
二、傳動系統的參數設計
原始數據:運輸帶的工作拉力F=0.2 KN;帶速V=2.0m/s;滾筒直徑D=400mm(滾筒效率為0.96)。
工作條件:預定使用壽命8年,工作為二班工作制,載荷輕。
工作環境:室內灰塵較大,環境最高溫度35°。
動力來源:電力,三相交流380/220伏。
1
、電動機選擇
(1)、電動機類型的選擇: Y系列三相非同步電動機
(2)、電動機功率選擇:
①傳動裝置的總效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作機所需的輸入功率:
因為 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③電動機的輸出功率:
=3.975/0.87=4.488KW
使電動機的額定功率P =(1~1.3)P ,由查表得電動機的額定功率P = 5.5KW 。
⑶、確定電動機轉速:
計算滾筒工作轉速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』 =3~6。取V帶傳動比I』 =2~4,則總傳動比理時范圍為I』 =6~24。故電動機轉速的可選范圍為n』 =(6~24)×96=576~2304r/min
⑷、確定電動機型號
根據以上計算在這個范圍內電動機的同步轉速有1000r/min和1500r/min,綜合考慮電動機和傳動裝置的情況,同時也要降低電動機的重量和成本,最終可確定同步轉速為1500r/min ,根據所需的額定功率及同步轉速確定電動機的型號為Y132S-4 ,滿載轉速 1440r/min 。
其主要性能:額定功率:5.5KW,滿載轉速1440r/min,額定轉矩2.2,質量68kg。
2
、計算總傳動比及分配各級的傳動比
(1)、總傳動比:i =1440/96=15
(2)、分配各級傳動比:
根據指導書,取齒輪i =5(單級減速器i=3~6合理)
=15/5=3
3
、運動參數及動力參數計算
⑴、計算各軸轉速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵計算各軸的功率(KW)
電動機的額定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶計算各軸扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、傳動零件的設計計算
(一)齒輪傳動的設計計算
(1)選擇齒輪材料及精度等級
考慮減速器傳遞功率不大,所以齒輪採用軟齒面。小齒輪選用40Cr調質,齒面硬度為240~260HBS。大齒輪選用45#鋼,調質,齒面硬度220HBS;根據指導書選7級精度。齒面精糙度R ≤1.6~3.2μm
(2)確定有關參數和系數如下:
傳動比i
取小齒輪齒數Z =20。則大齒輪齒數:
=5×20=100
,所以取Z
實際傳動比
i =101/20=5.05
傳動比誤差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齒數比:
u=i
取模數:m=3 ;齒頂高系數h =1;徑向間隙系數c =0.25;壓力角 =20°;

h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圓直徑:d =×20mm=60mm
d =3×101mm=303mm
由指導書取
φ
齒寬:
b=φ =0.9×60mm=54mm
=60mm ,
b
齒頂圓直徑:d )=66,
d
齒根圓直徑:d )=52.5,
d )=295.5
基圓直徑:
d cos =56.38,
d cos =284.73
(3)計算齒輪傳動的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液壓絞車≈182mm
(二)軸的設計計算
1
、輸入軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質,硬度217~255HBS
根據指導書並查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴選d=25mm
⑵、軸的結構設計
①軸上零件的定位,固定和裝配
單級減速器中可將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面由軸肩定位,右面用套筒軸向固定,聯接以平鍵作過渡配合固定,兩軸承分別以軸肩和大筒定位,則採用過渡配合固定
②確定軸各段直徑和長度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以長度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L =(2+20+55)=77mm
III段直徑:
初選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直徑:
由手冊得:c=1.5
h=2c=2×1.5=3mm
此段左面的滾動軸承的定位軸肩考慮,應便於軸承的拆卸,應按標准查取由手冊得安裝尺寸h=3.該段直徑應取:d =(35+3×2)=41mm
因此將Ⅳ段設計成階梯形,左段直徑為41mm
+2h=35+2×3=41mm
長度與右面的套筒相同,即L
Ⅴ段直徑:d =50mm. ,長度L =60mm
取L
由上述軸各段長度可算得軸支承跨距L=80mm
Ⅵ段直徑:d =41mm, L
Ⅶ段直徑:d =35mm, L <L3,取L
2
、輸出軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質鋼,硬度(217~255HBS)
根據課本P235頁式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考慮有鍵槽,將直徑增大5%,則
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、軸的結構設計
①軸的零件定位,固定和裝配
單級減速器中,可以將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面用軸肩定位,右面用套筒軸向定位,周向定位採用鍵和過渡配合,兩軸承分別以軸承肩和套筒定位,周向定位則用過渡配合或過盈配合,軸呈階狀,左軸承從左面裝入,齒輪套筒,右軸承和皮帶輪依次從右面裝入。
②確定軸的各段直徑和長度
初選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長42.755mm,安裝齒輪段長度為輪轂寬度為2mm。

d =42mm
L
= 50mm
L
= 55mm
L
= 60mm
L
= 68mm
L
=55mm
L
四、滾動軸承的選擇
1
、計算輸入軸承
選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
2
、計算輸出軸承
選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm
五、鍵聯接的選擇
1
、輸出軸與帶輪聯接採用平鍵聯接
鍵的類型及其尺寸選擇:
帶輪傳動要求帶輪與軸的對中性好,故選擇C型平鍵聯接。
根據軸徑d =42mm ,L =65mm
查手冊得,選用C型平鍵,得: 卷揚機
裝配圖中22號零件選用GB1096-79系列的鍵12×56
則查得:鍵寬b=12,鍵高h=8,因軸長L =65,故取鍵長L=56
2
、輸出軸與齒輪聯接用平鍵聯接
=60mm,L
查手冊得,選用C型平鍵,得:
裝配圖中 赫格隆36號零件選用GB1096-79系列的鍵18×45
則查得:鍵寬b=18,鍵高h=11,因軸長L =53,故取鍵長L=45
3
、輸入軸與帶輪聯接採用平鍵聯接
=25mm
L
查手冊
選A型平鍵,得:
裝配圖中29號零件選用GB1096-79系列的鍵8×50
則查得:鍵寬b=8,鍵高h=7,因軸長L =62,故取鍵長L=50
4
、輸出軸與齒輪聯接用平鍵聯接
=50mm
L
查手冊
選A型平鍵,得:
裝配圖中26號零件選用GB1096-79系列的鍵14×49
則查得:鍵寬b=14,鍵高h=9,因軸長L =60,故取鍵長L=49
六、箱體、箱蓋主要尺寸計算
箱體採用水平剖分式結構,採用HT200灰鑄鐵鑄造而成。箱體主要尺寸計算如下:
七、軸承端蓋
主要尺寸計算
軸承端蓋:HT150 d3=8
n=6 b=10
八、減速器的
減速器的附件的設計
1
、擋圈 :GB886-86
查得:內徑d=55,外徑D=65,擋圈厚H=5,右肩軸直徑D1≥58
2
、油標 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
設計參考資料目錄
1、吳宗澤、羅聖國主編.機械設計課程設計手冊.北京:高等教育出版社,1999.6
2、解蘭昌等編著.緊密儀器儀表機構設計.杭州:浙江大學出版社,1997.11

⑦ 想設計一個小型電動機械裝置,需要看那些專業書籍才可以獨立完成設計任務

除了《機械設計基礎》,還有《機電傳動控制》

基礎水平要在高中以上

⑧ 帶式輸送機傳動裝置設計說明書及其計算

你的郵箱?

閱讀全文

與裝置設計書相關的資料

熱點內容
為什麼現代化學儀器需要玻璃吹制 瀏覽:566
空調三通閥門壞有什麼症狀 瀏覽:468
材料和設備應當如何存儲 瀏覽:170
鎮海森林城堡兒童游樂設備哪個好 瀏覽:6
寶馬閥門排氣有什麼用 瀏覽:296
天語sx4儀表盤燈不亮怎麼回事 瀏覽:802
超達維修閥門廠 瀏覽:964
王牌戰爭封設備如何解封 瀏覽:485
粗食鹽提純需要什麼儀器 瀏覽:229
蔚領機械鑰匙怎麼開門視頻 瀏覽:249
面盆水龍頭閥門漏水怎麼辦 瀏覽:363
什麼情況下選擇鑄造生產零件 瀏覽:713
機床剛性攻絲有什麼參數 瀏覽:670
蒸汽閥門上用什麼填料 瀏覽:309
如何天正快速連接設備與水管 瀏覽:263
如何安裝儀表小燈 瀏覽:317
水閥門脫口怎麼辦 瀏覽:449
汽車製冷機啟動沒有反應什麼故障 瀏覽:623
bestdon機械表怎麼上發條 瀏覽:94
清河市五金機電城 瀏覽:544