導航:首頁 > 裝置知識 > 環己酮合成實驗裝置圖

環己酮合成實驗裝置圖

發布時間:2022-07-04 04:38:09

❶ 設計一個大學化學合成實驗、要實驗原理、實驗目的、實驗操作、儀器、葯品、裝置圖、思考題

、(實驗 1)安全知識的講座,玻璃儀器的認領1、實驗目的要求 (1)了解有機化學實驗的一般安全知識及有機化學實驗室規則; (2)了解有機化學實驗課的要求(包括實驗紀律、實驗報告、預習、實驗記錄、實驗重做要求) (3)實驗是培養獨立工作和思維能力的重要環節,必須認真、獨立地完成。2、實驗主要內容 ⑴ 實驗基本知識的講解 ⑵ 安全知識的講解 ⑶ 實驗儀器的認領 ⑷ 實驗儀器的洗滌 1 (1)按時進入實驗室,認真聽取指導教師講解實驗、回答問題。疑難問題要及時提出,並在教師指導下做好實驗准備工作。 (2)實驗儀器和裝置裝配完畢,須經指導教師檢查同意方可接通電源進行實驗。實驗操作及儀器的使用要嚴格按照操作規程進行。 (3)實驗過程中要精力集中,仔細觀察實驗現象,實事求實地記錄實驗數據,積極思考,發現異常現象應仔細查明原因,或請教指導教師幫助分析處理。實驗記錄是科學研究的第一手資料,實驗記錄的好壞直接影響對實驗結果的分析。因此,必須對實驗的全過程進行仔細地觀察和記錄,特別對如下內容 : ①加入原料的量、順序、顏色。②隨溫度的升高,反應液顏色的變化、有無沉澱及氣體出現。③產品的量和顏色、熔點、沸點和折光等數據,要及時並真實的記錄。記錄時,要與操作一一對應,內容要簡明准確,書寫清楚。3、課堂討論選題1、怎樣寫預習報告4、課外作業選題1、如何對實驗的全過程進行仔細地觀察和記錄,二、(實驗 2)1-溴丁烷的合成(親核取代反應)1、實驗目的要求1、掌握(SN1 反應)的原理和方法;2、了解可逆反應與平衡移動;3、掌握低沸點易揮發有機物的合成方法。4、學習以溴化鈉、濃硫酸和正丁醇制備 1-溴丁烷的原理和方法。 2、實驗主要內容1、練習帶有吸收有害氣體裝置的迴流加熱操作;2、蒸餾、迴流(帶氣體吸收裝置);3、常溫過濾與熱過濾技術; 4、液體有機物的洗滌和乾燥。3、課堂討論選題1、實驗中如何對有害氣體進行吸收?4、課外作業選題1、影響 SN1 反應、和 SN2 反應的因素有哪些?三、(實驗 3)乙醚的合成(脫水反應)1、實驗目的要求1、掌握普通蒸餾、沸點和折光度測定的基本方法;2、掌握實驗室制備乙醚的原理和方法;3、掌握低沸點易燃液體的蒸餾操作。2、實驗主要內容1、常量法和微量法測定液體有機化合物沸點;2、分液漏斗和滴液漏斗的使用;3、低沸點易燃液體的蒸餾; 24、乙醚的分離。3、課堂討論選題1、實驗中如何收集低沸點的有機化合物?4、課外作業選題1、簡單醚的制備原理和方法?四、(實驗 4)正丁醚的合成(脫水反應)1、實驗目的要求1、掌握普通蒸餾、沸點和折光度測定的基本方法;2、掌握實驗室制備正丁醚的原理和方法;3、掌握掌握油水分離器的使用方法和實驗操作。4、掌握易燃液體的蒸餾操作。2、實驗主要內容1、用油水分離器迴流的方法制備正丁醚2、 正丁醚的乾燥、洗滌、蒸餾。3、分液漏斗和滴液漏斗的使用。3、課堂討論選題1、實驗中為什麼要使用油水分離器?4、課外作業選題1、混合醚的制備原理和方法?五、(實驗 5)甲基橙的合成(重氮化反應)1、實驗目的要求 1、掌握普通蒸餾、沸點和旋光度測定的基本原理; 2、通過甲基橙的制備掌握重氮化反應和偶氮化反應的原理和方法, 3、鞏固鹽析和重結晶的原理和操作。 4、進一步熟悉固體有機化合物的提純方法。2、實驗主要內容 1、甲基橙的合成、結晶、洗滌、重結晶 2、甲基橙的脫色 3、固體的乾燥 4、甲基橙的純化3、課堂討論選題1、實驗中怎樣對甲基橙脫色、純化?4、課外作業選題1、重氮化反應和偶氮化反應的原理和方法?六、(實驗 6)乙酸異戊酯的合成(酯化反應)1、實驗目的要求 1、 熟練掌握酸催化下直接酯化制備羧酸酯的原理和方法 3 2、掌握迴流方法合成有機化合物、 3、掌握乙酸乙酯液體乾燥劑的選擇及乾燥方法。 2、實驗主要內容 1、在酸催化下用迴流的方法合成乙酸異戊酯; 2、分液漏斗和滴液漏斗的使用 3、乙酸異戊酯液的乾燥 4、粗產品的分離。3、課堂討論選題1、實驗中怎樣對乙酸異戊酯進行洗滌和分離?4、課外作業選題1、酯化反應的原理和副反應?七、(實驗 7) 環己烯的合成(脫水反應)1、實驗目的要求1、 了解消去反應的基本原理;2 、學習以濃磷酸催化環己醇脫水制備環己烯的原理活動方法,3、掌握分餾和水浴蒸餾的基本操作2、實驗主要內容1 、在濃磷酸催化下環己醇脫水生成環己烯; 2、環己烯的洗滌、乾燥、蒸餾;3、用折光方法對樣品進行定性分析。3、課堂討論選題1、實驗中分餾柱的使用和水浴蒸餾的基本操作4、課外作業選題1、分餾的基本原理和方法?八、(實驗 8) 環己酮的合成(氧化反應)1、實驗目的要求1 、學習氧化法制備環己酮的原理和方法;2、通過二級醇轉變為酮的方法; 3、進一步了解醇與酮的區別。2、實驗主要內容1、用強氧化劑氧化環己醇生成環己酮; 2、攪拌裝置的使用,產物的分離;3、產品的純化,產品的紅外光譜測定。3、課堂討論選題1、實驗中攪拌的基本操作及產品的純化?4、課外作業選題1、氧化反應的基本原理和方法?九、(實驗 9) 己二酸的合成(氧化反應)1、實驗目的要求1 、了解氧化反應的原理、應用及影響反應的因素;2、 掌握強氧化劑氧化二級醇轉變為二元酸的方法; 3、掌握濃縮、過濾、重結晶等操作方法。2、實驗主要內容1、用高錳酸鉀氧化環己醇生成己二酸; 42、己二酸的重結晶分離; 3、己二酸的乾燥、熔點的測定。3、課堂討論選題1、實驗中電磁攪拌的基本操作及產品的純化?4、課外作業選題1、熔點的測定的基本原理和方法?十、(實驗 10)呋喃甲酸和呋喃甲醇的合成(歧化反應)1、實驗目的要求1、掌握歧化反應的原理和實驗方法;2、掌握歧化反應的條件、沒有α—H 的醛在強鹼催化下的氧化還原反應。3、了解氧化還原反應與平衡移動; 4、掌握有機酸和醇的合成方法及分離方法。 2、實驗主要內容1、沒有α—H 的醛在強鹼催化下合成呋喃甲酸和呋喃甲醇;2、用萃取的方法將呋喃甲酸和呋喃甲醇進行分離。 3、液體有機物的洗滌和乾燥4、呋喃甲酸的酸化及固體物質的純化。3、課堂討論選題1、歧化反應的原理和實驗方法4、課外作業選題1、發生歧化反應的條件?十一、(實驗 11)乙醯苯胺的合成(醯化反應)1、實驗目的要求1、掌握普通蒸餾、沸點和旋光度測定的基本原理;2、掌握芳胺醯化的應用,掌握苯胺乙醯化的原理和實驗操作,3、進一步熟悉固體有機化合物的提純方法。2、實驗主要內容1、分餾柱的使用、結晶、洗滌、重結晶2、掌握趁熱過濾的原理和方法 3、固體的乾燥 4、乙醯苯胺的脫色。3、課堂討論選題1、芳胺醯化的原理和實驗方法4、課外作業選題1、趁熱過濾的原理和方法?十二、(實驗 12)阿司匹林的合成及含量測定1、實驗目的要求1、掌握光譜測定的基本原理;2、通過乙醯水揚酸的制備掌握酯化化反應的原理和方法,3、學習由水楊酸和乙酸酐脂化合成阿司匹林的方法。4、進一步熟悉固體有機化合物的提純方法。2、實驗主要內容1、阿司匹林的合成、結晶、洗滌、重結晶; 2、分液漏斗和滴液漏斗的使用;3、用鹽析和重結晶的操作方法提純乙醯水揚酸; 4、阿司匹林的脫色。5、阿司匹林的分析滴定方法 6、阿司匹林的光譜分析方法。 57、高效液相色譜法定性、定量測定阿司匹林。3、課堂討論選題1、水楊酸和乙酸酐脂化合成阿司匹林的原理和實驗方法4、課外作業選題1、怎樣用高效液相色譜法定性、定量測定阿司匹林?十三、(實驗 13)呋喃丙烯酸的合成方法設計、含量測定及光譜測定。(縮合反應)1、實驗目的要求1、查閱有關文獻,設計並確定一種可行的半微量或微型實驗方案;2、掌握芳香醛和酸酐在鹼性催化劑作用下,發生羥醛縮合反應,生成α,β-不飽和芳香醛,3、了解呋喃丙烯酸的結構、物理化學性質、用途,以及反應物的物理和化學性質,查閱相關資料設計出實驗路線;4、了解還有哪些其它的合成方法,明確實驗中需要的化學試劑的毒性和防護處理要點;5、設計路線經教師同意後進行實驗的准備;6、鞏固鹽析和重結晶的原理和操作。7、高效液相色譜法定性、定量測定呋喃丙烯酸。2、實驗主要內容1、呋喃丙烯酸的合成、結晶、洗滌、重結晶 2、分液漏斗和滴液漏斗的使用3、固體的脫色洗滌、乾燥、重結晶 4、呋喃丙烯酸的分離。5、呋喃丙烯酸的光譜分析。 6、高效液相色譜法定性、定量測定呋喃丙烯酸。3、課堂討論選題1、芳香醛和酸酐在鹼性催化劑作用下,發生羥醛縮合反應的原理和實驗方法4、課外作業選題1、怎樣用高效液相色譜法定性、定量測定呋喃丙烯酸。 考核內容包括:1、實驗方法的設計 2、實驗資料的查詢 3、實驗的基本操作、4、實驗的記錄 5、產率的計算 6、實驗報告、 1、 成績評定總則 教師對學生的課前預習、儀器裝置、操作過程、基本操作、實驗安全、產品數量與質量、實驗報告、科學態度、使 用葯品及儀器的情況等進行考察,注意有針對性地及時糾正一些存在的問題,主要以每一次的實驗結果為依據 (85~90%)和實驗報告(10~15%)評定出平時的相對成績,期末進行平均。總成績中,平時成績占 60%, 期末考試占 40%。2、平時成績評定主要以每一次的實驗結果為依據(85~90%)和實驗報告(10~15%)評定出平時的相對成績,期末進行平均。3、期末考核評定 兩次期末考試,可以都安排在合成實驗中(其中一次為單人獨立操作),亦可以安排一次為筆試,另一次為單人獨 立操作合成實驗考試。

❷ 環己酮制備己二酸

對微波促進雜多酸催化劑催化雙氧水氧化環己酮制備己二酸的反應,考察了5種催化劑以及催化刺用量、反應原料、微波輻射功率和輻射時間對己二酸產率的影響。反應的優化條件為:3.5ml 環己酮、0.5g鎢酸鈉、0.5g 磺基水楊酸、15ml30%雙氧水,在微波輻射功率為400W 下反應50min,其產率達72.37%。

己二酸的合成方法

1.1 以環己醇為原料合成己二酸

蔣永生等以聚乙二醇為相轉移催化劑,在功率為50W的超聲波作用下,採用30%的硝酸氧化環己醇合成己二酸。在反應過程中,廢氣中的NO2質量濃度明顯減小,吸收處理完全,減少了NO2對大氣環境的污染,己二酸的產率可達到46%。採用稀硝酸氧化環己醇未見有明顯產品生成,表明聚乙二醇-300有較好的催化效果,當相轉移催化劑的用量為2%時,具有很明顯的催化效果。超聲波及相轉移催化劑在反應中均有重要作用,超聲波作用時間為40min最佳。

馬祖福等研究了以Na2WO4·2H2O為催化劑,磺基水楊酸為配體,採用清潔的雙氧水為氧化劑催化氧化環己醇合成己二酸。採用正交設計的方法,綜合考慮了催化劑與配體比例、催化劑用量及反應時間對反應的影響,以及各因素之間的相互作用對試驗結果的影響,確立最佳反應條件。在反應初期形成過氧鎢酸鹽有機酸配位化合物,此活性中心不但具有載活性氧物種,而且具有一定的親油性,使雙相體系中發生在水相里的氧化和水解反應易於進行,催化效果較好。該反應操作簡單,易於控制,且副產物只有水,是一種對環境友好的合成路線。

王向宇等研究了以精苯為原料制備環己烯的工藝條件。精苯在釘催化劑的存在下控制一定的溫度、壓力可以生成環己烯和環己烷。苯的轉化率為40%-50%,其中環己烯的選擇性為80%。再在高硅沸石催化劑存在下,控制一定的濃度、壓力,可使環己烯水化生成環己醇。環己烯的轉化率為10%,環己醇的選擇性為99%。環己醇被硝酸氧化即可製得己二酸。採用該工藝生產己二酸具有產品質量好,純度高的特點。此外,精苯在部分加氫時的反應條件溫和,加氫及水合反應均在液相中進行,操作安全,不需採取專門的安全措施;副產品少,環己烷是唯一的副產品,它也可以作為化學試劑出售;加氫和水合反應過程不像傳統工藝那樣產生一元酸、二元酸、酯等,廢液量少,環保投資低,具有環保優勢;生產過程不存在設備結垢問題,不存在堵塞問題,因此事故少、維修少;能耗低,生產成本較低。

宮紅等採用長鏈的伯銨或叔胺的硫酸鹽為相轉移催化劑,在Na2WO4·2H2O的作用下,以高錳酸鉀氧化環己醇制備己二酸。反應條件溫和,不產生有毒氣體,反應速度快、產率較高。值得注意的是,若不用此相轉移催化劑,且沒有控制好高錳酸鉀的滴加量,會造成沖料而引起爆炸。楊秀英用聚乙二醇(PEG-6000)、十二烷基硫酸鈉(SDS)等作為環己醇液相氧化製取己二酸的相轉移催化劑,實驗發現SDS在高錳酸鉀氧化環己醇的反應中具有較好的相轉移催化作用,改變了反應體系的微環境,能夠提高己二酸的收率。

Bfziat等使用廉價、清潔空氣作為氧化劑,用碳作為載體,鉑為催化劑C(Pt):5.4%,在液相體系中由環己醇合成了己二酸。在溫度423 K、壓力5 MP時己二酸的轉化率、選擇性均為50%,主要副產物為戊二酸和丁二酸。該反應以清潔、廉價的空氣作為氧化劑,對在水相中由環己醇合成有價值衍生物,也是一種比較理想的氧化方法。

1.2 以環己酮為原料

紀明慧等以質量分數為30%的雙氧水為氧化劑,在沒有任何有機溶劑或助催化劑存在的情況下,考察了磷鎢酸催化環己酮氧化合成己二酸的活性。結果表明,磷鎢酸在環己酮氧化合成己二酸的過程中顯示了較高的催化活性。研究了催化劑用量、過氧化氫用量、溫度、時間等因素對磷鎢酸催化活性的影響。反應的適宜條件為:n(環己酮):n(磷鎢酸):n(過氧化氫)=150:0.5:587,反應溫度為92℃,反應時間為8h,己二酸的收率可達60.6%。

蔡磊等以30%的雙氧水為氧化劑,磺基水楊酸為配體,二缺位Dawson結構雜多鹽K10Na2H2P2W16O60·18H2O為催化劑使環己酮氧化合成己二酸。雜多酸具有較強的酸性,不但具有類似於濃溶液的「擬液相」行為,而且有極強的氧化-還原能力,在均相和多相有機反應中,是理想的酸型和氧化型雙功能性的催化劑。當n(雜多酸):n(磺基水楊酸):n(環己酮):n(過氧化氫)=2:1:100:400,反應溫度為98℃,反應時間為5 h時,己二酸的分離收率可達76.7%。Dawson結構雜多鹽催化劑制備簡單,反應體系無需溶劑和相轉移劑,反應時間較短,不失為一條合成己二酸環境友好的工藝路線。

袁先友等研究了以雜多酸為催化劑,在微波輻射條件下,以過氧化氫(30%)作為氧化劑,氧化環己酮來合成己二酸,對反應物的種類、催化劑種類及用量、配體種類、微波輻射功率及反應時間等因素對合成反應的影響進行了探討,優化了催化合成己二酸的反應條件。實驗結果表明,採用3.5 mL環己酮、0.5 g鎢酸鈉、0.5 g磺基水楊酸、15mL30%雙氧水,在微波輻射功率為400W下反應50min,其產率可達到72%。

張敏等以30%的雙氧水為氧化劑,用鎢酸鈉與草酸形成的配合物為催化劑,研究了在無有機溶劑、無相轉移劑的條件下,由環己酮氧化制備己二酸的反應。結果表明,最佳反應條件為鎢酸鈉:草酸:環己酮:30%的雙氧水的物質的量比為2.0:3.3:100:350,在92℃下反應12 h,可製得80.6%的己二酸。此法具有收率高、不使用有機溶劑、反應體系中不存在任何無機或有機鹵化物等綠色化學所要求的特點。

1.3 由環己烯合成己二酸

李華明等以環己烯為原料,含30%的過氧化氫的雙氧水為氧化劑,在磷鎢酸作為助劑的條件下,採用磷鎢酸作催化劑合成己二酸。磷鎢酸在環己烯氧化合成己二酸的過程中具有一定的催化活性,草酸的加入可明顯地提高磷鎢酸的催化活性,當n(環己烯):n(磷鎢酸):n(草酸):n(雙氧水)=100:1:1:538,反應溫度為92℃,反應時間為6h時,己二酸的收率可達70.1%。此法是合成己二酸是一種環境友好的合成路線。

閻松等研究了無需有機溶劑、酸性配體及相轉移劑,以30%雙氧水為氧源,單獨使用三氧化鎢作催化劑催化氧化環己烯合成己二酸即可達到較高的產率和純度。當三氧化鎢用量為5.0 mmol,三氧化鎢:環己烯:雙氧水的物質的量比為1:40:176時,在迴流溫度下反應6h,己二酸分離產率為75,4%,己二酸純度為99.8%。三氧化鎢催化劑重復使用4次,己二酸的分離產率仍可達到70%。

若使用十聚鎢酸季銨鹽作為催化劑,用過氧化氫把環己烯直接氧化為己二酸。所用的催化劑在水中是不溶解的,但在過氧化氫的作用下,它能參與活性氧轉移的反應,並溶解於反應體系。當過氧化氫消耗完畢時,催化劑又沉澱出來,因此易於循環使用。通過催化劑的反應控制相轉移,把均相和異相催化劑的優點結合在一個反應體系中,該法避免了均相催化劑分離的困難,並提供了生產己二酸的新方法。

因單獨使用鎢酸作催化劑時活性較低,盡管鎢酸不溶於水,但鎢酸很容易溶於30%雙氧水中,因此,鎢酸作催化劑並不影響己二酸的純度。以有機溶劑為反應介質,在環己烯氧化合成己二酸的反應中,鎢酸的催化活性高於鎢磷酸。曹發斌等研究了不同的有機酸性添加劑對反應的影響。以鎢酸、有機酸性添加劑為催化體系,在無有機溶劑、相轉移劑的情況下,催化30%過氧化氫氧化環己烯合成己二酸。當鎢酸:有機酸性添加劑:環己烯:過氧化氫(物質的量比)=1:1:40:176時,使用有機酸性添加劑考察鎢酸的催化性能,結果表明以鎢酸/間苯二酚催化氧化環己烯的催化效果最優,反應8h時己二酸分離產率達90.9%、純度接近100%;而不使用有機酸性添加劑時,己二酸分離產率只有72.1%,產品純度為96.2%。當使用磺酸水楊酸、草酸、水楊酸為有機酸性添加劑時,隨反應時間的增加,己二酸分離產率均升高,但反應6h以後,己二酸分離產率隨時間的變化不明顯。當磺酸水楊酸用量為2.5mmol時,己二酸分離產率和純度均較高。鎢酸-磺酸水楊酸催化體系重復使用5次後,己二酸分離產率仍可達到80.5%。

李惠雲等報道了在無相轉移劑條件下,用磷鎢酸催化過氧化氫氧化環己烯合成己二酸,收率最高為72.6%。草酸的加入使己二酸產率明顯提高。草酸在過氧化氫反應系統中與磷鎢酸存在強的相互作用,這種相互作用在很大程度上存在著配位效應,配體通常可改變中心原子的電子雲密度以及空間環境,由於中心原子的這些變化,導致催化劑中心金屬原子上的配位發生一系列的變化,這種配體效應增加了催化劑活性中心的載活氧化性和親油性,從而有利於反應的進行。

相同情況下以鎢酸/無機酸性配體為催化體系,在無有機溶劑和相轉移劑的情況下,催化過氧化氫氧化環己烯合成己二酸。當使用磷酸、硼酸為無機酸性配體時,隨反應時間的增加,己二酸產率均升高。

製取己二酸傳統的氧化方法為硝酸氧化法,該工藝存在嚴重的氮氧化物污染,以過氧化氫氧化法合成己二酸則不存在此問題,過氧化氫是己二酸生產的一種理想的清潔氧化劑,氧化產物為己二酸和水,這從根本上消除了污染源;且具有反應條件溫和、易於控制等優點,有望取代硝酸氧化法,成為今後己二酸生產的趨勢。

用過氧化氫水溶液作氧化劑合成己二酸的過程中,催化劑至關重要。但用過氧化氫水溶液氧化環己烯合成己二酸的反應過程中,1 mol環己烯氧化生成己二酸理論上需要消耗4mol過氧化氫。據文獻報道,過氧化氫的實際消耗約需過量10%。過氧化氫消耗高是限制此法工業化生產的主要問題,用部分氧氣代替過氧化氫,以降低過氧化氫的消耗是此法研究的一個方向。

1.4採用不同的氧化法由環己烷合成己二酸

在鈷催化劑存在下,環己烷在仁60℃,1 MPa經未稀釋的空氣氧化,得含環己醇、環己酮混和油(KA)油反應混和物(單程轉化率5%左右),經精餾分離得KA油,未反應的環己烷循環使用。採用該法的優點的技術成熟,操作簡單,缺點是存在結渣問題,收率較低(單耗為1.12 kg環己烷/kgKA油)。

1.4.2甲酸催化氧化法

環己烷在硼酸催化劑存在下,在168℃,1 MPa經空氣氧化,得含KA油反應混和物(單程轉化率10%左右)經分離得KA油,未反應的環己烷循環使用。用該法的優點是收率較高(單耗為1 kg環己烷/kgKA油)。缺點是工藝路線復雜,連續性較差。

1.4.3 無催化氧化法

環己烷在180℃,2 MPa經稀釋後用空氣氧化;得環己基過氧化氫,在催化劑作用下得含KA油反應混和物(單程轉化率5%左右),經分離得KA油,未反應的環己烷循環使用。採用該方法具有上述兩者的優點。

1.5 使用苯或苯酚合成己二酸

1.5.1 苯法

精苯經催化加氫生成環己烷,環己烷經氧化生成KA油(環己酮、環己醇的混和物),再經硝酸氧化生成己二酸。該工藝的原料除精苯外還涉及氫氣、硝酸(液氨)等,工藝流程長,一次性資金投入大,副產物較多,存在工業三廢污染,產品收率不高。但該工藝成熟,是目前工業上廣泛採用的方法。目前全球採用苯法生產的己二酸合計產量為238萬t/a,占總產量的88.2%。近年,在原始苯法的基礎上,科研人員開發出一種新的己二酸生產方法,採用特殊催化劑使苯部分加氫生成環己烯,環己烯水合生成環己醇,再經硝酸氧化生成己二酸。該方法在生產環己醇過程中氫氣消耗較少,副產物為環己烷,生成環己醇的過程幾乎沒有三廢污染,產品質量好,收率較高,生產成本相對較低。目前日本旭化成和我國神馬集團均採用此法生產己二酸,總規模約為17萬t/a,佔全球總產量的6.3%。

1.5.2 苯酚法

苯酚加氫生成環己醇,而後用硝酸氧化製得己二酸。該法設備投入和生產復雜程度與苯法相差不大,適合在苯酚原料相對豐富的地區。僅在美國Hopewell、巴西Paulinia、比利時Zandvoorde、德國Zeitz和義大利Novara共5家工廠採用此法,總規模約為15萬t/a,佔全球總產量的5.5%。

1.6 KA油空氣氧化法

由於硝酸氧化所產生的氮氧化合物污染大氣,所以人們在空氣氧化方面進行了大量的研究工作。目前,應用氧氣作氧化劑的工藝研究,主要集中在環己醇、環己酮、環己烷生成己二酸催化劑的應用方面。1963年美國科學技術公司連續發表空氣氧化法制己二酸專利,同年,Rhom Hass公司用此法建成KA油空氣氧化l萬t己二酸工廠,但因質量不好未再擴建。此法的優點是環境污染小,不存在硝酸回收問題;缺點是轉化率不高,反應時間長,需要醋酸回收設備,且生成雜質多,精製工序復雜,設備費用增大。該方法目前仍處於研發階段。

1.7 以C4烯烴為原料生產己二酸

(1)孟山都工藝此工藝以PdCl2為催化劑,用1,4-二甲氧基-2-丁烯為原料進行羰基化,反應壓力為6.87 MPa,反應溫度為100℃,生產己二酸。超過100℃催化劑失活;溫度低於100℃反應速率低。該法現仍在研究開發之中。

(2)巴斯夫工藝此工藝用裂解C4中的丁二烯(不經抽提)與一氧化碳在甲醇中發生羰基化反應,經一次羰基化反應得3-戊烯酸甲酯,經二次羰基化反應得己二酸二甲酯,最後水解得己二酸,採用八羰基二鈷[CO2(CO)8]為催化劑,吡啶為促進劑,整個過程分為5步。採用丁二烯羰基化工藝制備己二酸,原料丁二烯較便宜,收率較高(72%),產品2-酸含量高,其生產成本比環己烷氧化工藝低;缺點是工藝第雜,反應條件苛刻,副產物較多。

1.8 以葡萄糖為原料

生產己二酸的傳統原料-苯、環己烷及丁二烯都來自於石油,石油是不可再生的資源,利用可再生的生物資源代替石油是化工生產可持續發展的方向。可利用D-葡萄糖生物催化合成己二酸。在酶AB2834的催化下將D-葡萄糖轉變為兒茶酚,兒茶酚在酶AB2834作用下進一步轉化為順,順-己二烯二酸,順,順-己二烯二酸在室溫和0.34 MPa下鉑催化加氫合成己二酸,氫化收率90%。

1.9 其它合成方法

Chavan等分別以環己酮和環己醇混和物、環己烯、環己酮為原料,首次通過新穎的無硝酸工藝,以空氣為氧源,使用Co/Mn簇配合物,合成己二酸。實驗表明,Co/Mn簇配合物的催化活性和選擇性比單獨使用鑽、錳的醋酸鹽高,同時己二酸的產率接近於目前使用硝酸工藝合成己二酸的產率。

周民鋒等報道在微波照射條件下,以Na2WO4·2H2O(1 mmol)為催化劑,用30%過氧化氫(44mmol)使1,2一環己二醇(10mmol)氧化開環合成己二酸。在pH=1時照射5min,分離產率可達88%。

據Chcai&EngNews,2003,81(20):36報道,中孔二氧化硅負載的雙金屬催化劑可以將己二烯二酸轉化為己二酸。己二酸在工業中廣泛用於生產尼龍66、聚醯胺、聚氨酯、潤滑劑和其它材料。目前,通過空氣氧化環己烷工業化生產2-酸,而環己烷來源於不可再生的礦物燃料。相反,己二烯二酸可以由D-葡萄糖經生物催化作用獲得。英國皇家研究院和劍橋大學採用由4種雙金屬催化劑固定的納米粒子和2種工業上可得到的單金屬催化劑,由反,反-己二烯二酸加氫合成己二酸。Rulopt2在對於己二酸的選擇性方面優於其它催化劑。這項研究對於未來在廣泛的加氫反應中使用高表面積、熱穩定的雙金屬納米催化劑是一個好的預兆,這種加氫反應可以實現由植物來源生產所希望的化學產品。

神馬集團採用環己醇硝酸氧化法生產工藝。環己醇在過量的硝酸溶液中氧化生成己二酸及副產物丁二酸、戊二酸等,利用己二酸、丁二酸、戊二酸溶解度的不同使己二酸結晶分離出來,用活性炭對己二酸進行脫色後再次結晶分離,使己二酸的純度達到99.8%以上。

除以上介紹的幾種己二酸生產方法外,還有環己烷硝酸一步氧化法、環己烯硝酸氧化法、環己烯氧-臭氧氧化法、丁二醇的羰基化法、過硫酸鹽氧化法等。

❸ 環己酮的合成路線

由苯酚在鎳作催化劑存在下加氫得環己醇,然後經催化脫氫而得。

❹ 環己酮的制備

是用重鉻酸鉀氧化環己醇么?重鉻酸鉀的氧化性比較強,如果一次加入很大量的話,會將環回己醇氧化到環己酮答,再繼續氧化開環生成己二酸,所以加入重鉻酸鉀時要分批加入,防止過度氧化。而橙紅色消失就是重鉻酸鉀反應完全的標志。
鉻酸氧化法也是類似的,在溫度過高的時候也會把環己酮氧化成己二酸,所以溫度不能過高。而溫度過低的話,反應又難以進行。另外環己醇的熔點只有25度,溫度過低會使得環己醇凝固(其實應該不至於低到如此地步……)

❺ 實驗室可用環己醇(沸點:160.84℃,微溶於水)制備環己酮(沸點:155.6℃,微溶於水),使用的氧化劑

⑴冷凝管(1分)⑵250mL(1分)⑶使所加液體能順利滴入三頸瓶中(1分)⑷除去產品中混有的醋酸雜質(2分)分液漏斗(1分)⑸155.6(1分)⑹AB(2分)

❻ 環己酮合成環己酮肟的制備方法

C6H5O(環己酮)+NH2OH·HCL(鹽酸羥胺)→(乙酸鈉做催化劑)C6H5=NOH(環己酮肟)

❼ 環己酮幾種生產方法成本對比

環己酮是一種重要的有機化工產品,具有高溶解性和低揮發性,可以作為特種溶劑,對聚合物如硝化棉及纖維素等是一種理想的溶劑;也是重要的有機化工原料,是制備己內醯胺和己二酸的主要中間體。1893年A. Bayer採用庚二酸和石灰(庚二酸鈣)干餾首先合成了環己酮。1943年德國I.G.Farben公司建成了苯酚加氫法合成環己酮生產裝置。1960年德國BASF公司採用環己烷氧化法建成大型環己酮生產裝置,使環己烷氧化技術得以迅速發展,並導致聚醯胺纖維的大規模發展。
早期,國內環己酮只是己內醯胺的中間產品,廠家的環己酮生產能力與己內醯胺裝置相匹配,只有很少量的商品環己酮供應市場。環己酮作為一個獨立的行業成長和發展起來,主要有兩個原因:一是由於環己酮的用途不斷擴大,特別是作為一種高檔的有機溶劑,在塗料、油墨、膠粘劑等行業被廣泛應用,形成了較大的商品市場;二是國產化己內醯胺存在著裝置規模、工藝技術、產品質量、生產成本等問題,導致國產化己內醯胺裝置步履艱難。目前,除巨化公司的己內醯胺還在勉強維持生產外,其它廠家只生產商品環己酮。不少廠相繼對環己酮裝置進行了擴能改造,擴大了環己酮商品量,形成了相當規模的行業,成為一種大宗石油化工產品。
2環己酮的生產工藝及開發進展
2.1 環己酮的傳統生產工藝
世界上環己酮工業生產工藝主要有兩種:環己烷液相氧化法和苯酚加氫法,目前90%以上的環己酮是採用環己烷液相氧化法生產的。
(1)環己烷液相氧化法
目前工業生產中環己烷液相氧化法有兩條氧化工藝路線,一種為催化氧化工藝,另一種為無催化氧化工藝。催化氧化工藝主要是採用鈷鹽、硼酸或偏硼酸為催化劑。
鈷鹽催化氧化法一般採用環烷酸鈷為催化劑,環己烷在鈷鹽催化作用下與空氣發生氧化反應,該過程首先是環己烷與氧氣通過自由基反應形成環己基過氧化氫,然後該過氧化物在催化劑作用下受熱分解,生成環己酮、環己醇。環己烷轉化率一般在5%左右,停留時間小於50min,溫度在160℃左右,壓力1.1MPa左右,其停留時間較短,設備要求低、利用率較高,環己醇、環己酮的選擇性在80%左右,但該反應過程中產生的羧酸易與催化劑反應,生成羧酸鈷鹽,殘留在設備及管道上,結渣堵塞管道和閥門,使裝置開車周期降低,且環己醇、環己酮的選擇性較低,消耗增高。
硼酸催化氧化法是以硼酸或偏硼酸為催化劑的環己烷空氣氧化法,可以提高環己烷轉化率和醇酮的選擇性。在氧化時,硼酸與環己基過氧化氫生成過硼酸環己醇酯,然後轉變為硼酸環己醇酯。硼酸也可以直接和環己醇反應生成硼酸環己醇酯和偏硼酸環己醇酯。環己醇成酯以後具有抗氧化性和熱穩定性,防止了進一步氧化。硼酸催化氧化可提高環己烷轉化率到10%~12%,醇酮選擇性提高到90%。硼酸氧化反應溫度165~170℃,壓力0.9~1.2lMPa,反應時間120min。硼酸氧化法增加了水解工序和硼酸回收工序。在水解工序中硼酸環己醇酯分解為環己醇和硼酸,形成兩相,硼酸留在水相中。兩相分離後,水相送到硼酸回收工序,使硼酸結晶出來再經熱處理轉化為偏硼酸循環用於氧化反應。硼酸氧化的反應產物十分復雜,水解後的有機相也必須經過進一步處理去除雜質,工藝復雜,因此逐漸被冷落。
無催化氧化法是由法國Rhone-Ponlene公司首先開發的,其特點是反應分為兩步,第一步為環己烷在160~170℃的條件下,直接被空氣氧化為環己基過氧化氫,第二步為在鹼性條件和催化劑作用下,環己基過氧化氫分解為環己醇和環己酮。該工藝的優點是反應分步進行,氧化階段不採用催化劑,避免了氧化反應器結渣的問題,使裝置在設備允許的條件下連續運行,且氧化過程中環己基過氧化氫的收率可達95%以上。其缺點是環己基過氧化氫分解過程中環己醇、環己酮的選擇性僅88%以下,且需要大量的鹼,由於該工藝環己烷單程轉化率較低,使工藝流程長,能耗較高。
(2)苯酚加氫法
苯酚合成環己酮工藝是最早應用於工業化生產環己酮的工藝,該工藝早期分為兩步:第一步苯酚加氫為環己醇,第二步環己醇脫氫生成環己酮。20世紀70年代開發成功了一步加氫法合成環己酮的新工藝。苯酚一步加氫有氣相和液相兩種方式。工業上主要是採用氣相法,該工藝採用3~5個反應器串聯,溫度為140~170℃、壓力0.1MPa,反應完全,收率可達95%。苯酚加氫法生產的環己酮質量較好,安全性高,但由於苯酚價格昂貴,並使用了貴金屬催化劑,使環己酮的生產成本較高,因此該工藝的應用受到了很大的限制。
2.2 現有工藝技術的改進
針對上述環己酮生產工藝存在的不足,許多生產企業與研究部門對環己酮生產技術進行了多方面的改進。
(1)延長開車周期。鈷鹽法的優點是反應條件溫和、溫度低、壓力低、停留時間短,對設備要求不嚴格。但鈷鹽法最大的難題是反應過程中生成的羧酸鈷鹽殘留在設備及管道上,結渣堵塞管道和閥門。為了解決此難題,各國都進行了大量的研究。工藝方面,氧化後未反應的環己烷被分離後循環使用,在氧化前的水用共沸蒸餾等方法除去,避免了反應器的結渣。反應器方面,捷克斯洛伐克專利提出環己烷液相氧化採用卧式反應器,以垂直擋板將其分割成幾個反應器。擋板上裝有水平方向的擋板置於氣體分布器的兩邊,以增強氣液混合及減少樹脂狀副產沉澱(結渣),延長了反應器兩次清洗之間的操作周期。催化劑方面,美國杜邦公司用酸性磷酸酯作助催化劑,具有塗壁功能,使氧化開車周期為4-6個月。我國採用HEDP異辛酯,自1989年4月實施以來尚未發現任何結渣現象,解決了環己烷催化氧化的結渣難題。
(2)催化分解技術的改進。傳統的分解或DSM公司開發的低溫分解技術是以鈷鹽為催化劑,鹼性條件下進行的,這種工藝的特點是環己基過氧化氫轉化率高,但存在明顯的缺點,由於在鹼性環境下,醇酮進一步縮合,導致收率降低,同時產生大量的廢鹼液,給後續處理帶來很大的困難。工藝方面改進將原一步加鹼改為兩步加鹼,降低反應溫度,調整相比和鹼濃度,既降低鹼耗,又保持較高的醇酮收率;催化劑方面改用分子篩催化劑,促進環己基過氧化氫定向分解,同時可大大減少廢鹼液的生成。
(3)控制烷蒸餾系統帶鹼。氧化粗產物經分解、廢鹼分離後有機相中仍夾帶少量的鹼水,進入烷蒸餾系統,造成再沸器結垢,需定期停車清洗,嚴重時生產周期不到半個月。在廢鹼分離系統增加水洗和油水聚結分離工序,將鹼降到5ppm以下,大大延長了開車周期,並減少停車清洗時烷和醇酮的損失。
2.3 新工藝技術的開發
(1)環己烯水合法。20世紀80年代日本旭化成開發了環己烯水合制環己醇工藝。該工藝是以苯為原料,在100~180℃、3~10MPa、釕催化劑的條件下進行不完全加氫反應制備環己烯,苯的轉化率50%~60%,環己烯的選擇性為80%,20%的副產物為環己烷,在高硅沸石ZSM-5催化劑作用下,環己烯水合生成環己醇,環己烯的單程轉化率10%~15%,環己醇的選擇性可達99.3%。該工藝消耗低,且有效避免了環己烷氧化工藝過程中產生的廢鹼液,減少了環保壓力,具有明顯的前景。
(2)仿生催化氧化法。1979年,Groves等人提出了亞碘醯苯-金屬卟啉-環己烷模擬體系,進行了細胞色素P-450單充氧酶的人工模擬反應,實現了溫和條件下高選擇性與高轉化率催化烷烴羥基化反應。國內湖南大學等單位近幾年對金屬卟啉催化環己烷氧化進行了系列研究,提出了該氧化反應的可能機理。經過連續性實驗表明,在鐵卟啉或鈷卟啉催化作用下,以及適當的溫度和壓力下,環己烷的轉化率可達7%以上,環己醇、環己酮的選擇性可達87%以上,顯示出較好的應用前景。該工藝的優點在於:降低了反應溫度和反應壓力,催化劑用量少,能均勻溶在反應液中,不需要分離,目前該技術的關鍵在於催化劑的價格,如能實現工業化,應用於現有環己烷氧化裝置擴能改造,不僅投資低,改造工作量少,而且可大大提高環己酮產量及現有裝置的技術經濟水平。
(3)金屬催化氧化法。BASF公司採用Mo基催化劑,在130~200℃,0.5~2.5MPa下反應,產物中環己烯含量0.39%,環己烯氧化物5.78%,環己酮2.03%,環己醇9.35%,環己基過氧化氫0.91%。日本UBE公司採用辛酸鈷和N-甲基咪唑為催化劑,在160℃下反應,環己醇的選擇性60.1%,環己酮的選擇性22.8%,環己烷轉化率3.9%。日本大賽爾(Daicel)化學工業公司採用N-羥基鄰苯二甲醯亞胺(NHPI)和乙醯丙酮化鈷混合物為催化劑,當環己烷、N-羥基鄰苯二甲醯亞胺混合物和乙醯丙酮化鈷投料比例為943:160:60時,在反應溫度160℃,4.0MPa下反應2h,環己烷轉化率為11%,環己醇選擇性49%,環己酮選擇性達40%。大連化物所開發的ZG-5鋯基復合氧化物催化劑具有活性高、選擇性好、反應條件溫和等優點,在155℃、1.09MPa條件下,空氣直接氧化環己烷制環己酮(醇),反應25min時,轉化率達到6.4%,環己酮(醇)選擇性達到92.8%;反應50min時,轉化率達到14.9%,環己酮(醇)選擇性達到83.6%。
對納米顆粒金屬催化劑的探索研究表明,該類催化劑具有很高的催化活性。如在醛類引發劑存在下,納米鐵粉上環己烷的轉化率達到11%,環己酮(醇)的選擇性達到95%;在金屬Co(20nm)上反應10~15h,環己烷轉化率41%,選擇性達到80%,其中產物酮/醇為0.2;而在Fe2O3(8~10nm)催化劑上,環己烷轉化率為16.5%,選擇性90%左右,產物中酮/醇為0.4。但該技術中催化劑的穩定性問題還有待解決。
(4)分子篩催化氧化法。鈦硅分子篩TS-1是目前研究較多的一種,採用TS-1分子篩作為催化劑有如下優點:反應條件溫和,可在常壓、低溫下進行,氧化的目標產物收率高,選擇性好,工藝過程簡單,環境友好。但催化劑本身合成難度較大,且活性不易穩定。石油化工科學研究院等單位採用新方法合成的HTS分子篩,解決了TS-1分子篩合成難以重復,反應活性不易穩定的問題。實驗表明,該分子篩用於環己烷氧化生成環己酮時,轉化率可達49%以上,顯示出較好的研究前景。巴西學者Spinace等人用水熱法合成TS-1。從研究中得出:環己烷在TS-1上先氧化為環己醇,再氧化為環己酮。因形狀選擇性的原因,環己醇在TS-1沸石籠內將被進一步地氧化成環己酮,在TS-1外表面則被氧化為多種氧化物。通過加入2,6-二叔丁基-4-甲基苯酚後,可有效地抑制催化劑外表面的非選擇性氧化,提高產物環己酮的選擇性。
3我國環己酮的生產現狀
我國的環己酮是伴隨著己內醯胺行業的成長而發展起來的,在己內醯胺生產技術由苯酚路線變成環己烷路線時。環己酮行業才發展成為一個獨立的行業。在早期,環己酮只是己內醯胺和聚醯胺66的中間產物,各生產廠家的產品主要是自用,並無商品量形成。隨著己內醯胺產品結構的調整和非醯胺應用領域的擴大,才形成了相當規模的商品量和環己酮行業。2002年,我國的環己酮生產能力約為30萬噸,生產量約26萬噸,其中20萬噸為生產廠家自用生產己內醯胺或聚醯胺66,約有4~6萬噸為市場商品量。加上每年進口約4萬噸,我國環己酮表現需求量約為30萬噸,商品量約為10萬噸,雖然有部分進口,但產銷總體處於平衡狀態。
我國的環己酮生產主要集中在9大生產廠家,其中3~7萬噸/年規模以上的有南京帝斯曼公司、巴陵分公司、巴陵石油化工有限責任公司、遼陽石化公司、中國神馬集團尼龍66鹽公司、巨化集團錦綸廠等6家企業。這6家企業的生產能力達到了26.5萬噸,佔全國總產能的90%以上。其中遼陽化纖和神馬集團均用於生產己二酸,而巴陵分公司、南京帝斯曼公司為引進裝置,其己內醯胺產能經擴改分別達8萬噸/年和6.5萬噸/年,配套的環己酮產能分別為7萬噸/年和5.5萬噸/年;其餘為國產化裝置,其中巴陵石油化工有限責任公司和巨化錦綸廠的環己酮裝置在消化吸收國內外先進技術的基礎上,也達到了國外的先進技術水平。其餘3家分別是太原化工廠、錦西化工總廠和山東天原化學工業公司,生產規模在1萬噸/年以下。國內環己酮主要生產廠家如表1所示。表2列出了部分廠家近幾年的生產情況。
表 1 國內環己酮主要生產廠家一覽表(單位:萬噸)
企 業 名 稱 環己酮生產能力 備 注
巴陵分公司 7 自用
南京帝斯曼公司 5.5 自用
巴陵石油化工有限責任公司 4.5 商品量
遼陽石化公司 4.5 自用
中國神馬集團尼龍66鹽公司 3 自用
巨化集團錦綸廠 3 部分商品量
太原化工廠 0.7 部分商品量
錦西化工總廠 0.6 商品量
山東天原化學工業公司 0.65 商品量

表 2 部分廠家近幾年的生產狀況 (單位:噸)
廠 家 1999 2000 2001 2002 2003
巴陵分公司 51346 58639 66195 69030 64001
南京帝斯曼 42774 51540 53488 55118 52331
巴陵石化有限責任公司 28307 34010 38059 45280 45000
巨化 11032 11506 11617 11146 16676
(數據來自各生產廠家的統計)

由於我國環己酮不能滿足國內市場需求,每年都需從國外進口。尤其是1996年至2000年,每年進口增幅都在20%以上,2000年至2002年,進口量漸趨穩定,每年在4萬噸左右(環己酮及甲基環己酮近幾年進口情況如表3所示)。
表 3 環己酮及甲基環己酮近幾年進口情況 (單位:噸)
年份 1996 1997 1998 1999 2000 2001 2002
進口量 16570 15953 21203 34722 44558 43120 45825

近年來,國內環己酮需求不斷擴大,企業出於發展的需要,紛紛考慮採用先進技術,擴大生產能力,以求達到經濟規模,提高企業經濟效益。國內擬建、在建項目見表4。若上述項目完全實施,我國環己酮產能將出現大幅度增長,達到近35萬噸/年左右,可完全滿足國內環己酮市場需求。

表 4 近期國內在建、擬建環己酮項目
(單位:萬噸/年)
企 業 名 稱 達到的產能 備 注
四川威遠建業公司 1 新建,2003年12月
投產
山東天源化學工業公司 2 擴建,商品量
巨化公司 4 擴建,已投產
巴陵石化有限責任公司 7 擴建,實施中
太原化工廠 1 擴建,籌備中

4 我國環己酮的市場概況
環己酮主要作為聚醯胺6和聚醯胺66的中間體,大部分由生產廠家自產自用,醯胺用環己酮約占環己酮總消費量的70%,少部分作為商品進入市場,非醯胺用環己酮占環己酮總消費量的30%。
己內醯胺作為聚醯胺纖維和工程塑料的單體,是一種重要的高分子原料,在國際上,己內醯胺市場總體是供大於求,增長速度緩慢,但在亞洲(除日本外)還處於高速發展階段。近年亞洲進口己內醯胺約在50~70萬噸/年左右,我國2003年凈進口36.7萬噸,呈高速增長,隨著國內己內醯胺發展,環己酮需求量也會大量增加。
近幾年,國內環己酮市場價格總體處於低潮,2002年的環己酮價格為10年來的最低水平,主要受以下因素影響:
(1)宏觀經濟。2000年國內外宏觀濟狀況較好,己內醯胺的下遊民用絲、工業絲市場需求旺盛,從而促使環己酮、己內醯胺的價格上升;2002年世界經濟疲軟,需求不旺,己內醯胺、環己酮的價格相應走低。
(2)與己內醯胺市場密切相關。環己酮最主要的用途是作為製造己內醯胺的原料,這主要是因為大型己內醯胺裝置均與環己酮裝置配套,當出現己內醯胺價格變化較大時,己內醯胺生產廠家將考慮綜合經濟效益,以確定其中間產品環己酮進入市場的商品量,供求關系的變化將影響環己酮的價格。2000年己內醯胺價格堅挺,國內市場價格在14500元/噸,環己酮也表觀良好,基本在10500元/噸;但2001~2002年底,己內醯胺價格大幅度下降,最低只有9000元/噸左右,環己酮的價格也只有6000元/噸左右。
(3)石油苯價格。石油苯是構成環己酮成本的最主要因素,其成本佔了環己酮成本的60%左右,從歷史上的石油苯和環己酮的價格分析,其價格之間存在著高度的正相關系。環己酮的市場行情走勢與石油苯的走勢十分相似。從近幾年的市場情況看,環己酮市場價格升降幅度基本上是石油苯價格的2~2.5倍,保持著一定的利潤空間,但必須注意的是,該系數逐年下跌,說明環己酮的利潤空間被逐年壓縮;環己酮與石油苯兩者價格在漲跌的步調上存在著明顯的時間差,一般情況下,環己酮價格變化往往要滯後石油苯價格約1~3個月。
(4)進口量。近幾年,隨著環己酮需求的快速增長,進口量也隨之大幅度增加。國外環己酮裝置均與己內醯胺配套,規模大、技術水平高,具有一定的價格優勢。
環己酮在最近一段時期的國內市場主要以緩慢下跌為主,價格從前期的9400元/噸以上的價格回落到9000元/噸左右,國內價格下跌的主要原因可能是國內用戶抵制高價位,下游用戶采購不積極的原因所造成的。但是價格回落較慢的原因可能是因為目前國際的純苯的價格仍舊維持在高位,在550美元/噸左右,而且國內的交易價格也在5500元/噸的水平,因此對於環己酮的生產成本還是維持在非常高的水平。
總之國內環己酮市場需求將繼續穩步增加,但裝置的超量擴建,加上進口環己酮大幅增加、出口增量不大以及近期石油苯的不確定因素,將導致國內環己酮市場劇烈波動,競爭日趨激烈,商品環己酮已經由厚利產品變為微利甚至虧損產品。
5 環己酮下游產品開發概況
國內環己酮總消費量的70%用於己內醯胺,30%用於其它用途。其中有機溶劑是國內環己酮消費的第二大領域,另外環己酮應用於環己酮-甲醛樹脂、以及其它精細化工產品等領域的生產,不過量很少,有待進一步開拓。
環己酮是一種優良的中高沸點有機溶劑,具有高溶解性和低揮發性。它可以很好地溶解高聚物,包括氯乙烯的均聚和共聚物、聚醋酸乙烯、聚氨酯、聚甲基丙烯酸酯、硝化棉及纖維素、ABS等;環己酮也是一種惰性改性溶劑,用於聚苯乙烯、酚類和醇酸樹脂、丙烯酸樹脂、天然樹脂、天然橡膠、合成橡膠、氯化橡膠、蠟和氧化油等;環己酮用作塗料溶劑時,具有良好的噴塗和塗刷性能,能改善塗料膜的表層保護,改善塗層光澤;環己酮還可以用作絲網油墨溶劑、感光材料塗布用溶劑、皮革工業的脫脂劑、拋光劑和塗飾用稀釋劑;在農葯行業,環己酮用於配製噴霧殺蟲劑、煙霧劑和水狀乳劑;環己酮也用於計算機磁碟、錄音帶磁鐵氧化物塗層、銅電線塗層、糊牆紙等。
環己酮可作為聚合物生產原料,用於生產環己酮-甲醛樹脂、卟啉樹脂、芳香聚胺固體樹脂、二聚物等。環己酮-甲醛樹脂與同類樹脂相比,具有硬度高、耐候性及抗氧性良好、粘度低、光澤度高、可與各種油漆原料混溶等優點,主要用作塗料樹脂、廣泛用於油性樹脂、醇酸樹脂、氨基樹脂、丙烯酸樹脂、環氧樹脂、氯化橡膠等漆種中,還可用於油墨、圓珠筆油的分散劑和光亮劑。卟啉樹脂具有特殊的防腐性能,能較好地耐酸腐蝕和有機物溶解;可用作防腐性塗料。環己酮催化脫水形成的二聚物是氨基甲酸酯農葯的良好溶劑、環氧樹脂的改性劑、聚合物的聯結劑、乳膠漆的聚結劑及抗皂化的增塑劑,還可用來合成鄰苯基苯酚。
環己酮可合成許多精細化工產品,如合成2,2,6,6-四氯環己酮、環氧環己烷、鄰氯環己酮、十二烷二酸、過氧化環己酮、ε-己內酯、環庚酮等。
盡管近幾年環己酮生產廠家在開發環己酮下游產品上做了大量的工作,但環己酮的新用途開拓不多。
6 我國環己酮產業的發展趨勢
(1)國內供需平衡的格局將被打破,市場競爭日趨激烈。今後幾年,環己酮生產裝置建設將進入一個**,生產能力成倍增長,市場需求雖能穩步增加,但市場很難跟上生產能力的發展。屆時,環己酮市場供求平衡的格局將被打破,其市場將出現供大於求的局面,商品環己酮將由盈利產品變為薄利甚至虧損產品,市場競爭將越來越激烈。這也提示那些想進入這一領域的企業不得不謹慎決策,尤其是從提高企業核心競爭力優勢考慮擴建、新建裝置的技術選擇。國內的環己酮消費結構存在著較大問題,國外醯胺用環己酮占其總用量的90%以上,而我國醯胺用環己酮卻只有70%,這是與其它國家環己酮用途上的最大差別。雖然環己酮的應用范圍很廣,而且我國作為世界上最大的鞋類、皮革類製造基地,環己酮在這方面還是有很大的市場,但缺少穩定的大宗下游產品,因此在經濟動盪和己內醯胺市場波動時,對環己酮的市場會產生巨大影響。
(2)生產集中度進一步提高,規模效益顯現優勢。新一輪的擴建、擴產項目如能按計劃實施後,遼陽石化、巴陵石化、巴陵分公司、南京帝斯曼公司和石家莊煉化公司5家企業的環己酮生產能力將接近或超過10萬噸/年,形成大規模的生產能力。其市場份額也進一步提高,市場進一步集中,擴產後的規模效益將顯現出優勢。這對一些小規模生產的企業構成了很大壓力。
(3)進口環己酮將會增加,沖擊國內市場。國際上荷蘭的DSM集團、日本的旭化成公司等大公司,以及德國和中國台灣省,環己酮生產規模都很大,並且仍在不斷擴大生產能力,其中有部分生產能力是針對我國的市場擴建的。這些大公司有著明顯的規模效益和低成本優勢,如果進口環己酮仍將保持較高的增幅,勢必對國內環己酮市場構成較大沖擊,有可能重蹈己內醯胺傾銷的覆轍。國內企業不得不早作打算,及早制定應對措施,保持競爭的主動地位。
7 結語
總的來說,近幾年我國環己酮需求量不斷增加,市場發展迅速,給各個生產廠家和經營單位帶來了無限商機。但隨著不少擴建、新建裝置的建成投產,環己酮市場供大於求的局面已經形成,環己酮產品已經成為一個只有微薄利潤的大宗石油化工產品,受原油市場波動等不確定的因素很多,給環己酮市場帶來了較大的風險。對於環己酮老裝置應努力達到一定的經濟規模並提高技術含量,以應對加入WTO後參與國際化的競爭;對於新建的環己酮裝置的起點要高,必須要有明顯的比較優勢和競爭優勢。

❽ 由環己醇合成環己酮實驗

1、在加重鉻酸鈉溶液過程中,為什麼要待反應物的橙紅色消失後,方能加下一批重鉻酸鈉?在整個氧化反應過程中,為什麼要控制溫度在一定的范圍?

答:因為重鉻酸鈉/硫酸作為氧化劑氧化環己醇的氧化反應是放熱反應,產生的熱量使反應溫度升高,從而加劇氧化反應的進行,更加激烈,故在進行氧化反應時,為避免氧化劑的蓄積與劇烈反應,應待反應物的橙紅色消失後亦即氧化劑反應消耗完,再加下一批重鉻酸鈉,始終嚴格控制好加入氧化劑的速度,勿使氧化反應進行得過於猛烈,否則產物環己酮將進一步遭受氧化而發生碳鏈斷裂。

在整個氧化反應過程中,應該控制反應溫度在一定的范圍,因為反應溫度過低,則氧化反應速度慢,反應時間太長;而且可能積累更多的未反應的鉻酸,當鉻酸達到一定濃度時,氧化反應會進行得非常劇烈,有失控的危險。反應溫度過高,則氧化反應速度過快,反應激烈,可能產生生成物環己酮的斷裂,而生成己二酸。

2、氧化反應結束後,為什麼要往反應物中加入甲醇或草酸?

答:氧化反應結束後,往反應物中加入甲醇或草酸是為了除去過量的氧化劑。若不除去氧化劑,由於在後面蒸餾操作時的溫度會更高,發生氧化反應造成產品的碳鏈斷裂而損失。

3、如果從反應混合液中蒸餾出過多的餾出液,會有什麼結果?如何彌補?

答:蒸餾出過多的餾出液,容易造成蒸干,使殘留的固體物質噴射、砰蹦,甚至可能產生燒瓶炸裂。再者,由於餾出液體積過大,後處理操作(如萃取)麻煩,且需要加入較多的精鹽才能達到使溶液過飽和。禰補的方法是可將收集的餾出液重新進行蒸餾一次。

4、從反應混合物中分離出環已酮,除了現在採用的水蒸氣蒸餾法外,還可採用何種方法?

答:加入一定量的水,使無機鹽全部溶於水後,用有機溶劑(CHCl3等)萃取,然後水洗、乾燥、蒸餾即可。

5、在蒸餾環已酮,收集151-156℃的餾分時,應選用水冷卻型冷凝管還是空氣冷凝管?

答:應選用空氣冷凝管。

❾ 實驗室制備環己酮的反應原理為:其反應的裝置示意圖如圖1(夾持裝置、加熱裝置略去):環己醇、環己酮、

(1)①儀器B的名稱是分液漏斗,故答案為:分液漏斗;
②蒸餾操作時,一段時間後發現未通冷凝水,不能立即接通冷凝水,防止驟冷將冷凝管炸裂,應該等到裝置冷卻後再通冷凝水,故答案為:停止加熱,冷卻後通自來水;
③環己酮和水能形成具有固定組成的混合物,具有固定的沸點,蒸餾時能被一起蒸出,所以蒸餾難以分離環己酮和水的混合物.環己酮和水能夠產生共沸,採取蒸餾是不可取的,建議採用精餾,故答案為:環已酮和水形成具有固定組成的恆沸物一起蒸出;
(2)漂粉精和冰醋酸反應生成的次氯酸具有較強的氧化性,使用漂粉精和冰醋酸來代替,這樣避免使用有毒的Na2Cr2O7,故答案為:避免使用有毒的Na2Cr2O7;(3)①聯系製取肥皂的鹽析原理,即增加水層的密度,有利於分層,環己酮的提純時應首先加入NaCl固體,使水溶液的密度增大,將水與有機物更容易分離開來,然後向有機層中加入無水MgSO4,出去有機物中少量的水,然後過濾,除去硫酸鎂晶體,再進行蒸餾即可,故答案為:cdba;
②加入NaCl固體,使水溶液的密度增大,將水與有機物更容易分離開來,故答案為:增加水層的密度,有利於分層,減小產物的損失;
(4)由萃取劑對金屬離子的萃取率與pH的關系可知,調節溶液PH在3.0~3.5之間,可使Mn2+完全沉澱,並防止Co2+轉化為Co(OH)2沉澱,故答案為:b.

❿ 有無環己酮制備的可行易行方案

一、 實驗目的
1、學習次氯酸氧化法制環己酮的原理和方法。
2、進一步了解醇和酮之間的聯系和區別。
二、 實驗原理
醇類在氧化劑存在下通過氧化反應可被氧化為醛或酮。本實驗用的環己醇屬仲醇,因此氧化後生成環己酮。環己酮主要用於合成尼龍-6或尼龍-66,還廣泛用作溶劑,它尤其因對許多高聚物(如樹脂、橡膠、塗料)的溶解性能優異而得到廣泛的應用。在皮革工業中還用作脫脂劑和洗滌劑。
本實驗用次氯酸鈉做氧化劑,將環己醇氧化成環己酮。
三、 主要試劑
環己醇、冰醋酸、次氯酸鈉溶液(約1.8mol/L)、飽和亞硫酸氫鈉溶液、氯化鋁、碘化鉀澱粉試紙、無水碳酸鈉、氯化鈉、無水硫酸鎂、沸石
四、 試劑用量規格
葯品名稱 葯品用量
環己醇 5g(5.2mL)
冰醋酸 25mL
次氯酸鈉溶液 38mL
氯化鋁 3g

五、 儀器裝置
250mL三頸燒瓶、攪拌器、滴液漏斗、溫度計、冷凝管、接受器、分液漏斗、燒杯、量筒、電熱爐、石棉網、玻璃棒

圖1 環己酮的反應裝置

圖2 環己酮的蒸餾提純
六、 實驗步驟及現象
1、向裝有攪拌器、滴液漏斗和溫度計的250ml三頸燒瓶中依次加入5.2ml(5g,0.05mol)環己醇和25ml冰醋酸。開動攪拌器,在冰水浴冷卻下,將38ml次氯酸鈉溶液(約1.8mol/L)通過液滴漏斗逐漸加入反應瓶中,並使瓶內溫度維持在30~35℃,加完後攪拌5min,用碘化鉀澱粉試紙檢驗應呈藍色,否則應再補加5ml次氯酸鈉溶液,以確保有過量次氯酸鈉存在,使氧化反應完全。在室溫下繼續攪拌30min,加入飽和亞硫酸氫鈉溶液至發應液對碘化鉀澱粉試紙不顯藍色為止。
2、向反應混合物中加入30ml水、3g氯化鋁和幾粒沸石,在石棉網上加熱蒸餾至餾出液無油珠滴出為止。
3、在攪拌下向餾出液分批加入無水碳酸鈉至反應液呈中性為止,然後加入精製食鹽使之變成飽和溶液,將混合液倒入分液漏斗中,分出有機層,用無水硫酸鎂乾燥,蒸餾收集150~155℃餾分,計算產率。
七、 實驗結果
最終得到的環己酮為:1.6ml
產率為:1.6ml/5.2ml=30.77%
八、 實驗討論
1、數據分析
產率相對較低,操作過程不夠精細。
2、結果討論
(1)、加熱蒸餾得很充分,但是分液靜置的時候時間不夠長,導致環己酮的損失。
(2)、最後蒸餾的時候時間太短,不夠充分,環己酮沒有完全分離出來。
3、實際操作對實驗結果的影響
(1)、反應溫度要控制在30~35℃,此時收效較高,若溫度低於30℃則不反應,溫度過高則易揮發。
(2)、加入氯化鋁可預防蒸餾時發泡。
(3)、加入氯化鈉可降低環己酮的溶解度並有利於環己酮的分層。

與環己酮合成實驗裝置圖相關的資料

熱點內容
誠帆閥門廠招聘電話 瀏覽:472
攪拌機選用什麼軸承 瀏覽:739
起亞智跑如何在儀表盤顯示速度 瀏覽:742
健身器材業務怎麼找 瀏覽:30
電能計量裝置典型設計 瀏覽:539
超聲波作用在水會產生什麼 瀏覽:50
本田繽智汽車儀表盤上號什麼意思 瀏覽:333
福州五金零售市場 瀏覽:429
為什麼雷雲檢測不到設備 瀏覽:756
cadence機械孔怎麼畫 瀏覽:278
暖氣進戶平口閥門 瀏覽:587
長城機床怎麼拷貝程序 瀏覽:131
r22製冷劑添加什麼會結冰 瀏覽:719
拉管用什麼設備 瀏覽:969
五金件報價公式 瀏覽:702
什麼運動器材五塊錢十個 瀏覽:415
滾動軸承c代表什麼 瀏覽:993
懸崖裝置實驗 瀏覽:703
機械什麼遠古 瀏覽:218
實驗室製取二氧化碳所用的發生裝置 瀏覽:938
© Arrange www.fbslhl.com 2009-2021
溫馨提示:資料來源於互聯網,僅供參考