A. 高分子助劑的認識
我國塑料助劑生產現狀與發展趨勢塑料助劑是塑料工業重要的輔助原料,一般按其使用功能分為增塑劑、阻 燃劑、抗氧劑、光穩定劑、熱穩定劑、發泡劑、加工及抗沖擊改性劑、偶聯劑 等。我國塑料助劑工業經過40餘年的發展,形成了完善的生產、銷售和研究開 發體系。尤其是近年來我國塑料工業的快速發展,刺激和推動了塑料助劑的生 產與發展,促進了其生產技術、產量、質量的提高及產品結構的調整。 目前我國塑料助劑總生產能力為110萬噸/年,1999年產量約為67萬噸, 預計我國2000年至2005年年均增長率將保持在10%左右,遠遠高於世界塑料 助劑4%的年均增長率。 增塑劑增塑劑是塑料加工中產能最大和消費量最大的一類塑料助劑,1999 年,我國增塑劑產能已達90萬噸/年左右。主要產品有鄰苯二甲酸酯類(其中 以DOP、DBP為主)、對苯二甲酸酯、二元酸酯類、烷基磺酸酯、環氧酯、氯化 石蠟、磷酸酯類等。1999年產量為37.5萬噸。其中鄰苯二甲酸酯類26.3萬 噸,約占總消費量的70%;氯化石蠟約4.1萬噸,佔11%;烷基磺酸酯類0.30 萬噸,約佔0.8%;二元酸酯..28萬噸左右,佔0.7%;磷酸酯類0.1萬噸,占 0.3%;對苯二甲酸酯及環氧酯各不足千噸,各佔0.1%。 我國增塑劑與發達國家相比存在很大差距。一是規模不經濟,布局分散, 缺乏市場競爭力。二是產品結構不盡合理,尤其是磷酸酯類、環氧酯類、二元 酸酯類、聚酯類增塑劑在國外已大量使用,而我國則剛剛起步。三是各類產品 內在品質差,原材料消耗高,環境污染嚴重。 我國增塑劑行業在今後要加快產品結構調整速度,在原材料和靠近市場的 地區建設或擴建經濟規模的生產裝置(鄰苯二甲酸酯裝置至少應在5萬噸/年 以上),增強市場競爭力。為了提高塑料製品的特殊性能,磷酸酯類、環氧酯 類、脂肪酸酯類、聚酯類、偏三酸酯類增塑劑的市場份額會快速增加,應加快 發展,建議建設萬噸級規模的專用型增塑劑生產裝置。 阻燃劑目前阻燃劑已成為塑料加工助劑中僅次於增塑劑的第二大品種,目 前主要使用的阻燃劑類別有氯系、溴系、磷及鹵化磷系、無機系等。1999年國 內阻燃劑產量約5.98萬噸,其中氯系產量約5萬噸,占總產量的83%;溴系阻 燃劑產量約0.25萬噸,佔4.2%;磷及鹵化磷系阻燃劑產量約0.24萬噸,約占 4%;無機類產量為0.5萬噸,佔8.3%。 目前我國阻燃劑仍以有機鹵素類為主,其中氯系所佔比例過大,而氯系中 氯蠟70產量太少,與國外相比有很大差距。 我國阻燃劑結構極為不合理,我們應參考國外阻燃劑產品結構,重點發展 含氯量高的氯系、溴系、磷及鹵化磷系和無機系阻燃劑。 氯系阻燃劑著重發展氯蠟70,氯蠟70的生產應淘汰污染嚴重的四氯化碳溶 劑法生產工藝,採用不破壞環境的水相法工藝,目前國內要重點突破水相法技 術中的工程化問題。溴系阻燃劑在相當長時間內將是我國阻燃劑的主導品種, 今後要向高分子量化發展,解決遷移性,提高相容性和熱穩定性。穩定化、多 功能及低毒是磷系阻燃劑的發展方向,我國磷資源豐富,要努力開發大分子量 的化合物和齊聚物。我國應利用資源優勢發展無機阻燃劑,重點解決固體顆粒 超微細化及表面處理問題,並不斷尋找銻的代用品,降低銻類阻燃劑的發煙 量,研究紅磷的包覆技術等。 抗氧劑抗氧劑能延緩或阻止合成材料氧化或自動氧化過程,從而延長材料 的使用壽命。目前主要品種有受阻酚類、亞磷酸酯類、硫醚類及少量的金屬離 子鈍化劑、某些胺類和二硫代氨基甲酸酯等。 截至1999年,國內塑料用抗氧劑生產能力達1.7萬噸,產量約為1.4萬 噸。消費結構為,受阻酚約0.84萬噸,占總消費量的60%;亞磷酸酯類約 0.36萬噸,佔28%;硫醚類0.14萬噸,佔10%,其他(包括金屬離子鈍化 劑、某些胺類和二硫代氨基甲酸酯)佔6%左右。受阻酚是塑料抗氧劑的主 體,2,6-二叔丁基苯酚(BHT)作為基本品種,仍然占據主導地位,其消費 量約占酚類抗氧劑的45%,但目前用量正逐年減少。以1010、1076為代表的 高分子量受阻酚品種消費比例不斷提高,近年來國內1010、1076的產能成倍增 長,1999年達到1萬噸/年規模。另外國內許多受阻酚抗氧劑品種已形成生產 能力,如抗氧劑CA、BBM、2246、300、330、3114、246、TCA、702等,另有 1035、245、1098、1024、1790等高效專用新品種已經通過小試或中試。 TNP、168是亞磷酸酯輔助抗氧劑的主導品種,目前亞磷酸酯類抗氧劑重 點是提高其加工穩定性,同時改善其耐水解穩定性。近年國內開發出三種季戊 四醇雙亞磷酸酯結構新品種,這些新型亞磷酸酯抗氧劑的研究與開發,顯示了 我國輔助抗氧劑品種多元化的時代即將來臨。 硫醚類輔助抗氧劑品種比較單一,只有DLTDP、DSTDP兩個品種在生產。 個人推薦 http://www.aiju.com的網站很不錯,建議你也去那看看,對你的問題有幫助。
B. 抗氧劑300的特性及用途
作為抗氧劑、適用於聚烯烴、聚酯、聚苯乙烯、ABS樹脂和聚氯乙烯等,並還適用於白色、艷色或透明製品。一般用量為0.5%~1%。抗氧劑300是一種典型的硫代雙酚類抗氧劑。因其結構的特殊性,使其具有游離基終止劑和氫過氧化物分解劑的雙重功能,與碳黑共用時顯示出優良的協同效應,是一般常用的抗氧劑無法比擬的。
本產品是橡膠、聚烯烴、塑料等製品的高效主抗氧劑,特別是作為聚乙烯電纜電線材料的抗氧劑作用效果尤為突出。
本抗氧劑作為聚乙烯食品包裝材料的抗氧劑時,其限量:LDPE 0.05%;HDPE 0.25%。
在聚乙烯中採用抗氧劑300具有下述優點:更好的保持其原材料的物理性能(如抗張強度、伸長率、熔融指數等);良好地保存了其電性能,高度的熱穩定性;增強了製品的耐候性;抗老化作用是一般抗老化劑效果的四倍;比其它常用抗氧劑揮發性小;與碳黑共用時有特殊的協同效應。
貯運及包裝
抗氧劑300性質穩定, 無特殊的貯存要求, 存放時避免高溫及潮濕。用紙板桶內襯塑袋包裝, 凈重25kg/桶。也可根據客戶要求設計。
C. 抗氧劑1076是什麼
抗氧劑1076性質穩定,
無特殊的貯存要求,
存放時避免高溫及潮濕。用紙板桶內襯塑袋包裝,
凈重25kg
/
桶,
也可根據客戶要求設計。
抗氧劑SONOX
1076、與抗氧劑SONOX
168、DLTP並用,協同效用顯著,可有效抑制聚合物的熱降解和氧化降解,本品廣泛用於聚乙烯、聚丙烯、聚甲醛、ABS樹脂、聚苯乙烯、聚氯乙烯醇、工程塑料、合成橡膠及石油產品中,一般用量為0.1%~0.5%.
包裝與貯存:採用內襯塑料袋包裝,20kg/紙塑復合袋,也可根據客戶要求設計。按一般化學品貯存在乾燥涼爽的環境中。建議儲存時間為12個月。
D. 廢機油提煉基礎油,如何脫色,使顏色特別清亮,顏色要求嚴格,要達標
1、進裝置前的廢油必須做檢測分析,分析具體項目有酸值、水分、粘度、閃點、機械雜質、蒸發損失、濾紙斑點實驗、膠質、殘炭、流程實驗(330——540°C)等,以上項目做得越多對後邊生產越有幫助。
2、生產裝置是敞口的還是密封的,嚴格意義講密封裝置作出的產品要好許。
3、生產後的基礎油還要有再精製環節,如單溶劑精製、雙溶劑精製、白土精製、脫色砂精製訂單等等。
4、如果處理裝置比較簡單,就要考慮添加抗氧劑來阻止氧化變色,不過,添加劑的數量根據檢測數據來計算確定。
廢機油再生提煉方法:
廢機油再生提煉是以廢機油為主要原料,使用廢機油再生提煉設備經過常壓催化裂解分離出混合油,再經過分餾工序,將多餘的產品分離出來,再進一步的提煉機油清潔機油和輕機油和添加劑的液體的燃料。
廢機油再生提煉機油的顏色和外觀和真正的機油沒有差異,無氣味,無毒,性能優良。該廢機油再生提煉方法可應用於廢機油、輪胎油、塑料油等廢油精煉。將需要深加工的廢機油通過油泵將預熱廢機油,抽入再沸器,在常壓的狀態下催化加熱,餾出油蒸汽,油氣通過塔進入冷凝器。
E. 我國研製的一種聚乙烯材料···
概述
簡稱PE,是乙烯經聚合製得的一種熱塑性樹脂。在工業上,也包括乙烯與少量 α-烯烴的共聚物。聚乙烯無臭,無毒,手感似蠟,具有優良的耐低溫性能(最低使用溫度可達-70~-100℃),化學穩定性好,能耐大多數酸鹼的侵蝕(不耐具有氧化性質的酸),常溫下不溶於一般溶劑,吸水性小,電絕緣性能優良;但聚乙烯對於環境應力(化學與機械作用)是很敏感的,耐熱老化性差。聚乙烯的性質因品種而異,主要取決於分子結構和密度。採用不同的生產方法可得不同密度(0.91~0.96g/cm3)的產物。聚乙烯可用一般熱塑性塑料的成型方法(見塑料加工)加工。用途十分廣泛,主要用來製造薄膜、容器、管道、單絲、電線電纜、日用品等,並可作為電視、雷達等的高頻絕緣材料。隨著石油化工的發展,聚乙烯生產得到迅速發展,產量約占塑料總產量的1/4。1983年世界聚乙烯總生產能力為24.65Mt,在建裝置能力為3.16Mt。
結構式
CH2=CH2+CH2=CH2+······→—CH2—CH2—CH2—CH2······
簡寫:nCH2=CH2→
聚合壓力大小:高壓、中壓、低壓;
聚合實施方法: 淤漿法、溶液法 、氣相法 ;
產品密度大小:高密度、中密度、低密度、線性低密度;
產品分子量:低分子量、普通分子量、超高分子量。
聚乙烯特性
聚乙烯無臭,無毒,手感似蠟,具有優良的耐低溫性能(最低使用溫度可達-70~-100℃),化學穩定性好,能耐大多數酸鹼的侵蝕(不耐具有氧化性質的酸),常溫下不溶於一般溶劑,吸水性小,電絕緣性能優良;但聚乙烯對於環境應力(化學與機械作用)是很敏感的,耐熱老化性差。
聚乙烯的性質因品種而異,主要取決於分子結構和密度。
聚乙烯的種類
(1) LDPE:低密度聚乙烯、高壓聚乙烯
(2) LLDPE:線形低密度聚乙烯
(3) MDPE:中密度聚乙烯、雙峰樹脂
(4) HDPE:高密度聚乙烯、低壓聚乙烯
(5) UHMWPE:超高分子量聚乙烯
(6)改性聚乙烯:CPE、交聯聚乙烯(PEX)
(7)乙烯共聚物:乙烯-丙烯共聚物(塑料)、EVA、乙烯-丁烯共聚物、乙烯-其它烯烴(如辛烯POE、環烯烴)的共聚物、乙烯-不飽和酯共聚物(EAA、 EMAA 、EEA、EMA、EMMA、EMAH)
分子量達到3,000,000-6,000,000的線性聚乙烯稱為超高分子量聚乙烯(UHMWPE)。超高分子量聚乙烯的強度非常高,可以用來做防彈衣。
主要方法:
液相法(又分為溶液法和淤漿法)和氣相法(物料在反應器中的相態類型)。我國主要採用齊格勒催化劑的淤漿法。
條件與過程描述:純度99%以上的乙烯在催化劑四氯化鈦和一氯二乙基鋁存在下,在壓力0.1-0.5MPa和溫度65-75℃的汽油中聚合得到HDPE的淤漿。經醇解破壞殘余的催化劑、中和、水洗,並回收汽油和未聚合的乙烯,經乾燥、造粒得到產品。
化學名稱:聚乙烯
英文名稱:Polyethylene(簡稱PE)
比重:0.94-0.96克/立方厘米 成型收縮率:1.5-3.6% 成型溫度:140-220℃
特點:耐腐蝕性,電絕緣性(尤其高頻絕緣性)優良,可以氯化,化學交聯、輻照交聯改性,可用玻璃纖維增強.低壓聚乙烯的熔點,剛性,硬度和強度較高,吸水性小,有良好的電性能和耐輻射性;高壓聚乙烯的柔軟性,伸長率,沖擊強度和滲透性較好;超高分子量聚乙烯沖擊強度高,耐疲勞,耐磨. 低壓聚乙烯適於製作耐腐蝕零件和絕緣零件;高壓聚乙烯適於製作薄膜等;超高分子量聚乙烯適於製作減震,耐磨及傳動零件.
成型特性:
1.結晶料,吸濕小,不須充分乾燥,流動性極好流動性對壓力敏感,成型時宜用高壓注射,料溫均勻,填充速度快,保壓充分.不宜用直接澆口,以防收縮不均,內應力增大.注意選擇澆口位置,防止產生縮孔和變形.
2.收縮范圍和收縮值大,方向性明顯,易變形翹曲.冷卻速度宜慢,模具設冷料穴,並有冷卻系統.
3.加熱時間不宜過長,否則會發生分解.
4.軟質塑件有較淺的側凹槽時,可強行脫模.
5.可能發生融體破裂,不宜與有機溶劑接觸,以防開裂
聚乙烯類產品
1.1產品類別
聚乙烯(PE)是通用合成樹脂中產量最大的品種,主要包括低密度聚乙烯(LDPE)、線型低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)及一些具有特殊性能的產品。
1.2聚乙烯物理性能
聚乙烯為白色蠟狀半透明材料,柔而韌,比水輕,無毒,具有優越的介電性能。易燃燒且離火後繼續燃燒。透水率低,對有機蒸汽透過率則較大。聚乙烯的透明度隨結晶度增加而下降在一定結晶度下,透明度隨分子量增大而提高。高密度聚乙烯熔點范圍為132-135oC,低密度聚乙烯熔點較低(112oC)且范圍寬。
常溫下不溶於任何已知溶劑中,70oC以上可少量溶解於甲苯、乙酸戊酯、三率乙烯
等溶劑中
1.3聚乙烯化學性能
聚乙烯有優異的化學穩定性,室溫下耐鹽酸、氫氟酸、磷酸、甲酸、胺類、氫氧化鈉、氫氧化鉀等各種化學物質,硝酸和硫酸對聚乙烯有較強的破壞作用。聚乙烯容易光氧化、熱氧化、臭氧分解,在紫外線作用下容易發生降解,碳黑對聚乙烯有優異的光屏蔽作用。受輻射後可發生交聯、斷鏈、形成不飽和基團等反映。
1.4各類聚乙烯產品用途
高壓聚乙烯:一半以上用於薄膜製品,其次是管材、注射成型製品、電線包裹層等
中低、壓聚乙烯:以注射成型製品及中空製品為主。
超高壓聚乙烯:由於超高分子聚乙烯優異的綜合性能,可作為工程塑料使用。
熔點 140攝氏度
熔化焓292.88J/g
[編輯本段]聚乙烯樹脂分類及性能
聚乙烯的種類:
(1) LDPE:低密度聚乙烯(又稱高壓聚乙烯 )
(2) LLDPE:線形低密度聚乙烯
(3) MDPE:中密度聚乙烯
(4) HDPE:高密度聚乙烯(又稱低壓聚乙烯 )
(5) UHMWPE:超高分子量聚乙烯
(6) 改性聚乙烯:氯化聚乙烯(CPE)、交聯聚乙烯(PEX)
(7) 乙烯共聚物:乙烯-丙烯共聚物(塑料)、EVA、乙烯-丁烯共聚物、乙烯-其它烯烴(如辛烯POE、環烯烴)的共聚物、乙烯-不飽和酯共聚物(EAA、 EMAA 、EEA、EMA、EMMA、EMAH)。分子量達到300萬-600萬的聚乙烯稱為超高分子量聚乙烯(UHMWPE)。超高分子量聚乙烯的強度非常高,可以用來做防彈衣。
LDPE樹脂
性質:無味、無臭、無毒、表面無光澤、乳白色蠟狀顆粒,密度約0.920g/cm3,熔點130℃~145℃。不溶於水,微溶於烴類、甲苯等。能耐大多數酸鹼的侵蝕,吸水性小,在低溫時仍能保持柔軟性,電絕緣性高。
生產工藝:主要有高壓管式法和釜式法兩種。從目前發展狀況看,為降低反應溫度和壓力,管式法工藝普遍採用低溫高活性引劑引發聚合體系,以高純度乙烯為主要原料,以丙烯/丙烷等為密度調整劑,使用高活性引發劑在約200℃~330℃、150-300MPa條件下進行聚合反應。反應器中引發聚合的熔融聚合物,必須要經過高壓、中壓和低壓冷卻、分離,高壓循環氣體經過冷卻、分離後送入超高壓(300MPa)壓縮機入口,中壓循環氣體經過冷卻、分離後送入高壓(30MPa)壓縮機入口,而低壓循環氣體經過冷卻、分離後送入低壓(0.5MPa)壓縮機循環利用,而熔融聚乙烯經過高壓、低壓分離後送入造粒機,進行水中切粒,在造粒時,企業可以根據不同應用領域,加入適宜的添加劑,顆粒經包裝出廠。
用途:可以採用注塑、擠塑、吹塑等加工方法。主要用作農膜、工業用包裝膜、葯品與食品包裝薄膜、機械零件、日用品、建築材料、電線、電纜絕緣、塗層和合成紙等。
LLDPE樹脂
性質:由於LLDPE和LDPE的分子結構明顯不同,性能也有所不同。與LDPE相比,LLDPE具有優異的耐環境應力開裂性能和電絕緣性,較高的耐熱性能,抗沖和耐穿刺性能等。
生產工藝:LLDPE樹脂主要利用全密度聚乙烯裝置生產,代表性的生產工藝為Innovene工藝和UCC的Unipol工藝。
用途:通過注塑、擠出、吹塑等成型方法,生產薄膜、日用品、管材、電線電纜等。
HDPE樹脂
性質:本色、圓柱狀或扁圓狀顆粒,顆粒光潔,粒子的尺寸在任意方向上應為2mm~5mm,無機械雜質,具熱塑性。粉料為本白色粉末,合格品允許有微黃色。常溫下不溶於一般溶劑,但在脂肪烴、芳香烴和鹵代烴中長時間接觸時能溶脹,在70℃以上時稍溶於甲苯、醋酸中。在空氣中加熱和受日光影響發生氧化作用。能耐大多數酸鹼的侵蝕。吸水性小,在低溫時仍能保持柔軟性,電絕緣性高。
生產工藝:採用氣相法和淤漿法二種生產工藝。其中,淤漿法環管生產工藝以菲利浦斯公司、Basell公司和北歐的北星環管工藝技術為代表。釜式淤漿法則以日本三井公司CX工藝為代表。
用途:採用注塑、吹塑、擠塑、滾塑等成型方法,生產薄膜製品、日用品及工業用的各種大小中空容器、管材、包裝用的壓延帶和結扎帶,繩纜、魚網和編織用纖維、電線電纜等。
【-CH2-CH2-】n 簡稱PE,是乙烯經聚合製得的一種熱塑性樹脂。在工業上,也包括乙烯與少量 α-烯烴的共聚物。聚乙烯無臭,無毒,手感似蠟,具有優良的耐低溫性能(最低使用溫度可達-70~-100℃),化學穩定性好,能耐大多數酸鹼的侵蝕(不耐具有氧化性質的酸),常溫下不溶於一般溶劑,吸水性小,電絕緣性能優良;但聚乙烯對於環境應力(化學與機械作用)是很敏感的,耐熱老化性差。聚乙烯的性質因品種而異,主要取決於分子結構和密度。採用不同的生產方法可得不同密度(0.91~0.96g/cm3)的產物。聚乙烯可用一般熱塑性塑料的成型方法(見塑料加工)加工。用途十分廣泛,主要用來製造薄膜、容器、管道、單絲、電線電纜、日用品等,並可作為電視、雷達等的高頻絕緣材料。隨著石油化工的發展,聚乙烯生產得到迅速發展,產量約占塑料總產量的1/4。1983年世界聚乙烯總生產能力為24.65Mt,在建裝置能力為3.16Mt。
沿革 1933年,英國卜內門化學工業公司發現乙烯在高壓下可聚合生成聚乙烯。此法於1939年工業化,通稱為高壓法。1953年聯邦德國 K.齊格勒發現以 TiCl4-Al(C2H5)3為催化劑,乙烯在較低壓力下也可聚合。此法由聯邦德國赫斯特公司於1955年投入工業化生產,通稱為低壓法聚乙烯。50年代初期,美國菲利浦石油公司發現以氧化鉻-硅鋁膠為催化劑,乙烯在中壓下可聚合生成高密度聚乙烯,並於1957年實現工業化生產。60年代,加拿大杜邦公司開始以乙烯和 α-烯烴用溶液法製成低密度聚乙烯。1977年,美國聯合碳化物公司和陶氏化學公司先後採用低壓法製成低密度聚乙烯,稱作線型低密度聚乙烯,其中以聯合碳化物公司的氣相法最為重要。線型低密度聚乙烯性能與低密度聚乙烯相似,而又兼有高密度聚乙烯的若干特性,加之生產中能量消耗低,因此發展極為迅速,成為最令人注目的新合成樹脂之一。
低壓法的核心技術在於催化劑。德國齊格勒發明的TiCl4-Al(C2H5)3體系為聚烯烴的第一代催化劑,催化效率較低,每克鈦約得數千克聚乙烯。1963年比利時索爾維公司首創以鎂化合物為載體的第二代催化劑,催化效率達每克鈦得數萬至數十萬克聚乙烯。採用第二代催化劑還可省去脫除催化劑殘渣的後處理工序。以後又發展了氣相法高效催化劑。1975年,義大利蒙特愛迪生集團公司研製成可省去造粒而直接生產球狀聚乙烯的催化劑,被稱作第三代催化劑,是高密度聚乙烯生產的又一變革。
分類 有多種分類方法,主要按密度(圖1)分類:①高密度聚乙烯,是不透明的白色粉末,造粒後為乳白色顆粒,分子為線型結構,很少支化現象,是較典型的結晶高聚物。機械性能均優於低密度聚乙烯,熔點比低密度聚乙烯高,約126~136℃,其脆化溫度比低密度聚乙烯低,約-100~-140℃。②低密度聚乙烯,是無色、半透明顆粒,分子中有長支鏈,分子間排列不緊密。③線型低密度聚乙烯,分子中一般只有短支鏈存在,機械性能介於高密度和低密度聚乙烯兩者之間,熔點比普通低密度聚乙烯高15℃,耐低溫性能也比低密度聚乙烯好,耐環境應力開裂性比普通低密度聚乙烯高數十倍。此外,按生產方法可分為低壓法聚乙烯、中壓法聚乙烯和高壓法聚乙烯(表1),聚乙烯的生產方法不同,其密度及熔體指數(表示流動性)也不同(圖2)。按分子量可分為低分子量聚乙烯、普通分子量聚乙烯和超高分子量聚乙烯(表2)。
生產方法 分為高壓法、低壓法、中壓法三種。高壓法用來生產低密度聚乙烯,這種方法開發得早,用此法生產的聚乙烯至今約占聚乙烯總產量的2/3,但隨著生產技術和催化劑的發展,其增長速度已大大落後於低壓法。低壓法就其實施方法來說,有淤漿法、溶液法和氣相法。淤漿法主要用於生產高密度聚乙烯,而溶液法和氣相法不僅可以生產高密度聚乙烯,還可通過加共聚單體,生產中、低密度聚乙烯,也稱為線型低密度聚乙烯。近年來,各種低壓法工藝發展很快。中壓法僅菲利浦公司至今仍在採用,生產的主要是高密度聚乙烯。
高壓法 用氧或過氧化物等作引發劑,使乙烯聚合為低密度聚乙烯的方法。乙烯經二級壓縮後進入反應器(圖3),在壓力100~300MPa、溫度200~300℃及引發劑作用下聚合為聚乙烯,反應物經減壓分離,使未反應的乙烯回收後循環使用,熔融狀的聚乙烯在加入塑料助劑後擠出造粒。(見彩圖)
所用聚合反應器有管式反應器(管長可達 2000m)和釜式反應器兩種。管式法流程的單程轉化率20%~34%,單線年生產能力100kt。釜式法流程的單程轉化率20%~25%,單線年生產能力180kt。
低壓法 分淤漿法、溶液法和氣相法三種,除溶液法外,聚合壓力都在2MPa以下。一般步驟有催化劑的配製、乙烯聚合、聚合物的分離和造粒等。
①淤漿法 生成的聚乙烯不溶於溶劑而呈淤漿狀。淤漿法聚合條件溫和,易於操作,常用烷基鋁作活化劑,氫氣作分子量調節劑,多採用釜式反應器。由聚合釜出來的聚合物淤漿經閃蒸釜、氣液分離器到粉料乾燥機,然後去造粒(圖4)。生產過程中還包括溶劑回收、溶劑精製等步驟。採用不同的聚合釜串聯或並聯的組合方式,可以得到不同分子量分布的產品。
②溶液法 聚合在溶劑中進行,但乙烯和聚乙烯均溶於溶劑中,反應體系為均相溶液。反應溫度(≥140℃)、壓力(4~5MPa)較高。特點是聚合時間短,生產強度大,可兼產高、中、低三種密度的聚乙烯,能較好地控制產品的性質;但溶液法所得聚合物分子量較低,分子量分布窄,固體物含量較低。
③氣相法 乙烯在氣態下聚合, 一般採用流化床反應器。催化劑有鉻系和鈦系兩種,由貯罐定量加入到床層內,用高速乙烯循環以維持床層流態化,並排除聚合反應熱。生成的聚乙烯從反應器底部出料(圖5)。反應器的壓力約2MPa,溫度85~100℃ 。氣相法是生產線型低密度聚乙烯最主要的方法,氣相法省去了溶劑回收和聚合物乾燥等工序,且比溶液法節省投資15%和操作成本10%。為傳統高壓法投資的30%,操作費的1/6。因而得到了迅速發展。但氣相法在產品質量及品種上有待進一步改進。
中壓法 用負載於硅膠上的鉻系催化劑,在環管反應器中,使乙烯在中壓下聚合,生產高密度聚乙烯。
加工和應用 可用吹塑、擠出、注射成型等方法加工,廣泛應用於製造薄膜、中空製品、纖維和日用雜品等。在實際生產中,為了提高聚乙烯對紫外線和氧化作用的穩定性,改善加工及使用性能,需加入少量塑料助劑。常用的紫外線吸收劑為鄰羥基二苯甲酮或其烷氧基衍生物等,炭黑是優良的紫外線屏蔽劑。此外,還加入抗氧劑、潤滑劑、著色劑等,使聚乙烯的應用范圍更加擴大。
[編輯本段]聚乙烯樹脂生產方法及工藝
聚乙烯生產方法:聚乙烯按聚合壓力可以分為高壓法、中壓法、低壓法;按介質來分可以分為淤漿法、溶液法、氣相法。
主要生產工藝:目前世界上擁有聚乙烯技術的公司很多,擁有LDPE技術的有7家,LLDPE和全密度技術的企業有10家,HDPE技術的企業有12家。從技術發展情況來看,高壓法生產的LDPE是PE樹脂生產中技術最成熟的方法,釜式法和管式法工藝技術均已成熟,目前這兩種生產工藝技術同時並存。國外各公司普遍採用低溫高活性催化劑引發聚合體系,可降低反應溫度和壓力。
高壓法生產LDPE將向大型化、管式化方向發展。而低壓法生產HDPE和LLDPE,主要採用鈦系和絡系催化劑,歐洲和日本大多採用鈦系催化劑,而美國大多採用絡系催化劑。
目前世界上主要應用的聚乙烯生產技術共用11種,我國的PE生產工藝有8種。
(1)高壓管式和釜式反應工藝
(2)三井化學低壓淤液法CX工藝
(3)BP氣相法Innovene生產工藝
(4)雪佛龍-菲利蒲斯公司雙環管反應器LPE工藝
(5)北歐化工北星(Bastar)雙峰工藝
(6)低壓氣相法Unipol工藝
(7)巴賽爾聚烯烴公司Hostalen工藝
(8)Sclartech溶液法生產工藝
催化劑技術:催化劑是PE工工藝關鍵部分,也是其技術開發的焦點。特別是1991年茂金屬催化劑在美國實現了工業化,使得PE生產技術進入了新的發展階段。
目前世界各大PE生產企業大都已涉足茂金屬PE(mPE)生產領域,如陶氏化學、伊士曼、旭化成、阿托菲納、雪佛龍-菲利浦斯等公司。
日本旭化成化學購買陶氏化學的茂金屬催化劑專利Insite,採用淤漿法生產工藝生產茂金屬高密度聚乙烯(mHDPE),牌號為Creolex。由於性能優越,mPE1995年進入商業化發展以來,全球mPE樹脂的消費量每年翻一番。預計到2010年,全球mPE產能將達到1700萬噸,其中:mLLDPE為700萬噸、mHDPE為600萬噸。
目前PE催化劑已經發展到第三代,日本三井化學和陶氏化學合作開發出新一代茂金屬(Post-metallocene)催化劑。與傳統茂金屬和Z-N型催化劑不同,該催化劑可使極性單體如甲基丙烯酸甲酯、醋酸乙烯酯等與烯烴共聚,從而可用於開發具有粘結性、耐油性及氣體阻隔性能的全新聚烯烴樹脂。
我國非常重視PE生產技術,PE生產技術創新一直被列入國家技術創新計劃項目。針對國內PE生產以氣相法工藝為主,產品牌號切換困難、過渡料多的問題,近年來國內PE生產企業紛紛開展了以現有聚乙烯生產技術改造為依託,氣相法聚乙烯冷凝、超冷凝工藝和淤漿法聚乙烯外循環工藝的開發工作,並取得實效。
目前我國Uuipol工藝的大部分生產裝置已經採用國產冷凝技術進行了改擴建,產量已經超出裝置原設計能力120%~200%。
薄膜 低密度聚乙烯總產量的一半以上經吹塑製成薄膜,這種薄膜有良好的透明性和一定的抗拉強度,廣泛用作各種食品、衣物、醫葯、化肥、工業品的包裝材料以及農用薄膜(見彩圖)。也可用擠出法加工成復合薄膜用於包裝重物。1975年以來,高密度聚乙烯薄膜也得到發展,它的強度高、耐低溫、防潮,並有良好的印刷性和可加工性。線型低密度聚乙烯的最大用途也是製成薄膜,其強度、韌性均優於低密度聚乙烯,耐刺穿性和剛性也較好,透明性雖較差,仍稍優於高密度聚乙烯。此外,還可以在紙、鋁箔或其他塑料薄膜上擠出塗布聚乙烯塗層,製成高分子復合材料。
中空製品 高密度聚乙烯強度較高,適宜作中空製品。可用吹塑法製成瓶、桶、罐、槽等容器,或用澆鑄法製成槽車罐和貯罐等大型容器。
管板材 擠出法可生產聚乙烯管材,高密度聚乙烯管強度較高,適於地下鋪設。擠出的板材可進行二次加工。也可用發泡擠出和發泡注射法將高密度聚乙烯製成低泡沫塑料,作台板和建築材料(見建築用高分子材料)。
纖維 中國稱為乙綸,一般採用低壓聚乙烯作原料,紡製成合成纖維。乙綸主要用於生產漁網和繩索,或紡成短纖維後用作絮片,也可用於工業耐酸鹼織物。目前已研製出超高強度聚乙烯纖維(強度可達3~4GPa),可用作防彈背心,汽車和海上作業用的復合材料。
雜品 用注射成型法生產的雜品包括日用雜品、人造花卉、周轉箱(見彩圖)、小型容器、自行車和拖拉機的零件等。製造結構件時要用高密度聚乙烯。
聚乙烯改性 聚乙烯的改性品種主要有氯化聚乙烯、氯磺化聚乙烯、交聯聚乙烯和共混改性品種。
氯化聚乙烯 以氯部分取代聚乙烯中的氫原子而得到的無規氯化物。氯化是在光或過氧化物的引發下進行的,工業上主要採用水相懸浮法來生產。由於原料聚乙烯的分子量及其分布、支化度及氯化後的氯化度、氯原子分布和殘存結晶度的不同,可得到從橡膠狀到硬質塑料狀的氯化聚乙烯。主要用途是作聚氯乙烯的改性劑,以改善聚氯乙烯抗沖擊性能。氯化聚乙烯本身還可作為電絕緣材料和地面材料。
氯磺化聚乙烯 當聚乙烯與含有二氧化硫的氯作用時,分子中的部分氫原子被氯和少量的磺醯氯(-SO2Cl)基團取代, 就得到氯磺化聚乙烯。主要的工業製法為懸浮法。氯磺化聚乙烯耐臭氧、耐化學腐蝕、耐油、耐熱、耐光、耐磨和抗拉強度較好,是一種綜合性能良好的彈性體,可用以製作接觸食品的設備部件。
交聯聚乙烯 採用輻射法(X射線、電子射線或紫外線照射等)或化學法(過氧化物或有機硅交聯)使線型聚乙烯成為網狀或體型的交聯聚乙烯。其中有機硅交聯法工藝簡單,操作費用低,且成型與交聯可分步進行,宜採用吹塑和注射成型。交聯聚乙烯的耐熱性、耐環境應力開裂性及機械性能均比聚乙烯有較大提高,適於作大型管材、電纜電線以及滾塑製品等。
聚乙烯的共混改性 將線型低密度聚乙烯和低密度聚乙烯摻混後,就可用於加工薄膜及其他製品,產品性能比低密度聚乙烯好。聚乙烯和乙丙橡膠共混可製得用途廣泛的熱塑性彈性體。
F. 如何提高酚類抗氧劑的氧化能力,穩定性
你的這個問題有點籠統。氧化能力本身與穩定性是相矛盾的。狹義地講,酚類抗氧劑為了達到抗氧化效果,是以犧牲自已(自身氧化)為代價的。一般以為,抗氧劑的純度越高,雜質越少,抗氧化效果更好。同時,它自身的穩定性(保質期)也會更長一些。比如:T501抗氧劑,如果它的雜質較多,油性超標,過不了多久(不超半年)它就會由最初的白色變為淡黃色甚至深黃色。雖然不影響使用效果,但用戶一般是害怕使用的。要求高一點的地方(如食品級)就更不敢使用了。畢竟怕帶來不利的後果。所以,變黃後就認為過了保質期,要重新加工成白色。
本人是專業生產抗氧劑T501,264,BHT食品級的工程師。現供職於上海凡力化工有限公司。歡迎與同行共同研究。
G. 抗氧劑都有哪些常用的抗氧化劑
一、主抗氧劑
受阻酚和受阻胺是兩大主抗氧劑。受阻酚抗氧劑多數是不變色的,適用於白色或淺色製品。而受阻胺不僅本身多是帶色的而且在氧和光的作用下更會變成深色。將塑料中常用的主抗氧別分述於下。
(1)2,6二叔丁基對甲酚(又稱BHT或抗氧劑264),白色結晶,遇光變黃,無毒,溶於苯、酮、醇、汽油、四氯化碳而不溶於水。
(2)β(3,5二叔丁基—4—羥基苯基)丙酸十八醇酯(又稱抗氧劑1076),白色粉末,熔點119—123℃,無臭,微毒,耐熱水抽出性強,溶於苯、丙酮、氯仿,不溶於水,與聚合物和其它助劑有良好的相溶性,運輸時穩定。
(3)1,1,3三(2—甲基—4羥基—5叔丁基苯基)丁烷(又稱抗氧劑CA),溶於乙醚、醋酸乙酪,不得於水。
(4)1,3,5三甲基2,4,6三(3,5二叔丁基-4羥基苄基)苯(又稱抗氧劑330),白色結晶粉末,熔點200℃以上,溶於苯、二氯乙烷,微溶於醇,不溶於水。不溶於水。
(5)2,2'-甲撐雙(4—乙基—6叔丁基苯酚)(簡稱MEB),白色粉末,易溶於苯、丙酮,不溶於水。
二、輔抗氧劑
亞磷酸酯類、硫代二丙酸酯類和硫醇類是典型的輔抗氧劑,常用的有:
(1)三(壬基代苯基)亞磷酸酯(簡稱TNP),琥珀色粘稠液體,可溶於丙酮、乙醇、苯、四氯化碳,不溶於水,無臭、無味、無毒。
(2)三(2,4-二叔丁基苯基)亞磷酸酯(簡稱TBP)。
(3)二亞磷酸雙十八酯季戊四醇酯(簡稱DPD)。
(4)四(2,4-二叔丁基苯基)4,4'-聯苯撐二磷酸酯。
(5)硫代二丙酸二月桂酸酯(簡稱DLTDP),白色絮片狀結晶固體,熔點38-40℃,毒性低,四氯化碳、石油醚,不溶於水。
我們在逛超市的時候會看到很多的食物都是真空包裝的,這類食品可存放時間較久,不會因為暴露於空氣中快速被氧化而變質。獨立包裝的真空袋中我們都可以看到一小袋抗氧劑,就是這一小包的東西,使食物不易變質,讓消費者食用更加放心。常見的抗氧劑有很多種,本文從主抗氧劑和輔抗氧劑兩類給大家做了介紹,希望大家有更多的了解。
H. 抗氧劑1010和抗氧劑330的區別
抗氧劑330屬於高分子量多元受阻酚類抗氧劑,具有耐熱性好、不污染、不著色、揮發性低等特點,是高密度聚乙烯、聚丙烯和橡膠的優良抗氧劑,也用於聚氯乙烯、聚醯胺、ABS樹脂和聚酯等塑料製品,用量一般在0.1~0.5份。化學式C54H78O3,白色至淡黃色粉末。
而抗氧劑1010 的化學式是C73H108O12,是白色粉末 ,應用於聚乙烯, 聚丙烯, 聚甲醛, ABS樹脂, PS樹脂, PVC, 工程塑料, 橡膠及石油產品等。於產品之聚合, 製成或最終使用階段均適用於添加。
I. PVC配方設計方法
pvc樹脂屬於一類強極性聚合物,其分子間作用力大,從而導致pvc軟化溫度和熔融溫度較高,純pvc樹脂一般需要在160~2100c時才可塑化加工。另外,pvc分子內含有的取代氯基,容易導致pvc脫hcl反應,從而引起pvc降解,所以pvc對熱極不穩定,溫度升高,會大大促進pvc脫hcl反應,純pvc當溫度達到1200c時,即開始脫hcl反應,從而導致pvc熱降解發生。
鑒於pvc上述兩個特點,純pvc在未達到軟化溫度之前已開始發生熱降解,從而導致純pvc無法用塑化熔融法加工,因此,必須對純pvc進行改性,在pvc中添加各種改變性能的助劑,使之可以用塑化方法加工。在選擇助劑的品種和用量時,必須全面考慮各方面的因素,如物理—化學性能、流動性能、成型性能,最終確立理想的配方。
一個pvc配方的設計和確定,一般經過如下步驟
1、
根據製品的性能,確定pvc樹脂的牌號;
2、
根據製品的軟硬程度,確定增塑劑的添加量;
3、
根據性能(比如透明性、毒性等)和經濟性,確定穩定劑的類型和添加量;
4、
根據製品性能、設備情況以及穩定性的類別和增塑劑的添加量,確定潤滑體系的組成和添加量;
5、
根據pvc配方主要構成和設備情況,確定加工助劑的添加量;
6、
根據成本和性能,確定填充劑的用量(同時調整潤滑劑的比例);
7、
根據製品性能,確定是否添加其它助劑品種。
配方設計好後,經過物料混合,進行加工成型試驗,根據加工和製品情況,調整配方比例。最終確定配方。
J. 葯物制劑的影響因素
(四)光線光和熱一樣,可以提供產生化學反應所必須的活化能。要使分子活化,必須有適當頻率和足夠能量原輻射線被吸收。輻射能量單位稱光子,光子的能量相當於一個量子。光子的能量與吸收到的輻射能的頻率成正比波長成反比,所以光線的波長愈短,則每克分子葯物吸收到的能量就愈大。葯物制劑的光化分解通常是由於吸收了太陽光中的紫光和紫外光引起。某些葯物的氧化一還原,環重排或環改變,聯合、水解等反應,在特殊波長的沈線作用下都可能發生或加速,例如亞硝酸戊酯的水解。嗎啡,可待因、奎寧氧化、揮發油的聚合。光化反應與濕度無關,但當一個分子吸收了一個量子的輻射能以後,就和其它分子碰撞,系統中的濕度因而升高。這樣原先是一個光化反應接續著的是熱反應表44-2。
葯物對光線是否敏感,主要與葯物的化學結構有關,酚類葯物(例如苯酚、腎上腺素、嗎嘻等)和分子中有雙鍵的葯物(例如維生素A、D、維生素B12、中酸、利血平等)對光線都很敏感。含鹵的葯物如碘化、碘仿、氯仿、三氯乙烯等,在光線的影響下,也易分為質。光反應比分解應要復雜得多,國為光的強度、波長、容器的種類及其形狀,大小和厚薄、樣呂和光線的距離等條件,都可以顯著影響光化反慶的速度。光化反應往往伴隨反應。一旦熱反應進行時,即使光照停止,反應仍可繼續下去。光化反應可能是零級、一級或二級反應。由於光化反應的復雜性,葯物稱定性在這方面的研究一般只是定性的。維生素B在P3.5-6.5的溶液中,在光的下可生成羥基B12及氰化物,這是可逆反慶。羥基B12的活性低於B12並易於進一步分解為無生理活性的物質:
B12的中性溶液,在散射陽光照射下(強度約為100流明/平方米或3000流明/平方米)分解反太不顯著。直接曝曬於8000流明/平方米的陽光下,B12每半小時損失效價約10%。光線的波長為600-700nm時,維生素B12不產生分解反應。為了減少光線對葯物穩定性的影響,應採用棕色玻璃瓶包裝,瓶壁應有一定厚度。壁薄的棕色瓶效果較差。對光敏感的注,在到時候生產和貯藏過程中都應避光。
(五)離子強度離子強度對葯物分解 。 (一)水解反應引起的葯物穩定性水解反應可分為離子型水解和分子型水解兩大類,離了型水解是強酸一弱鹼型鹽或強鹼一弱酸鹽等具有離子鍵的葯物與水的瞬時反應速度一般比較緩慢,在H+或OH-催化下,反慶加速並趨於完全。分子型水引起分子結構的斷裂,可使葯物失效或減效。例如(用通式表示)
1、酯類葯物的分解;很多含有酯的葯物,在溶液中容易被水解生成有機羧酸和醇的混俁物。這種水解主要是碳原子和氧原子之間即醯一氧鍵之間的共價鍵的。雖然個別酯類(主要是低分子量的伯醇酯類葯物)在單純的水中也能產生明顯的水解,但大多數酯??解酶)的催化下才能加速其反慶,使反太進行完全。酯的酸或鹼催化水解的動力學方程式通式:
d【酯】/dt=-k【酯】【H+】
d【酯】/dt=-k【酯】O【H-】
故為二級反應。但如【H-】或【OH+】>>【酯】,或用緩沖鹽保持【H-】或【OH+】於幾乎不變,則:d【酯】/dt=-k【酯】【酯】故為偽一級反應。酯的水解常為一級或偽一級動力學反慶但有時是二級反應。琥珀醯氯化膽鹼較氯化乙醯膽鹼穩定,注射液(PH3-5)可以98-1000,30分鍾滅菌粉劑安瓿為宜。琥珀醯氯化膽鹼溶液在PH3.7左右時最為穩定,在P0.9-8.5不解反應是一級反應,反應速度常數可用嗵式K=1.36×10」exp(-17230/RT)計算。本品水解酸一鹼催化,例如醋酸鹽緩沖液(600,離子強度=0.2,PH=4.69,3.98)分解為二級反應,反應速度數為5×10(升/克分子小時)。故該注射液不應含有緩沖劑;。羧酸酯(R-C-OR)的水解程度與R的結構關系很大,R基愈大或碳上的烷基或其他基團占據的間愈大,則阻礙H或OH對酯寒攻的作用愈大,故該酯尖葯物愈不易被水解所以溴本辛、普魯本辛就比較穩定,但要製成可以以久使用的水溶液還是困難的,製成片劑時水分也應注意,普魯本辛片劑的水份如果超過3%,貯藏一年以後咕噸酸的含量將超過葯典規定(>2%)。
2、醯胺類葯物的水解本類葯物比相應的酯類葯物可穩定,例如鹽普魯卡因胺比鹽酸普魯卡因要穩定。但有些醯胺葯物,由於結構上的特殊原因。也比較容易被水解。現舉常見的幾種葯物為例子以說明:
① 青黴素類葯物:青黴素類葯物分屯結構中的B內醯胺環是四節環,內部存在張力,在H、OH影響下易於裂環而失效。例如青黴素G鉀,水溶液室溫貯藏7天,效從下降80%左右,因此只能製成滅粉針安瓿。根據實驗青黴素G鉀在PH6.5時最穩定。用枸椽酸鹽緩沖液(PH6.5)製成的溶液至多也只能用三天。PH2,24℃時的半衰期僅18.5分鍾,故不可口服。
② 巴比妥類鈉:巴比妥類是六節不的醯胺類葯物,不易水.在溶解度小,通常用鈉鹽作注射液可被空氣中的CO2作巴比妥類分子結構中的亞醯基酸的性比碳酸還弱,故其鈉墁溶液可空氣中的CO2作用生成巴比肝的沉澱,故滅菌粉針宜用無CO2的注射用水溶解。鈉鹽水溶液(灌注於安瓿中,無CO2)在加溫(滅菌時的濕度)或室溫貯藏一個朋,約有22%分解。用60%的丙的二醇為溶劑電的注射泫則甚為穩定,至少可用一年。
③ 氯黴素:氯黴素的化學性質比較,乾燥粉末閉密保存二年,其抗菌效力幾乎不變。溶液(水中溶解度:1:400)煮沸五小時,效價幾首無顯著變化。在顯著鹼性(PH>8)時或酸性時水解較。氯霉在PH=6時最穩定.鹽,枸櫞酸及其緩沖液可促使氯黴素水解(一般酸一鹼催化)。本品滴眼液通常用硼酸一硼酸鈉緩沖液(PH約7),室溫使用期為三個朋,貯藏於2-8中為17個月。氯黴素在PH17的上緩沖液的分解服從一級反應。國內葯廠生產氯黴素滴眼液採用增加設料量的方法,但使用仍不到一年。硼砂可增加氯黴素的溶解度(可能是硼與氯黴素分子中兩個羥基形成了絡合鹽),過去常認為硼砂可增加氯黴素的穩定性,其實不然。
3、延緩葯物水解速度的方法:
① 調節PH:以上許多實例說明葯物的水解速度與溶液的PH直接有關。在較低的PH值范圍內,以H-催化為主,在較高PH范圍時以OH+論為主,在中間的PH范圍,水解反慶能與PH無關或由H-或OH共同催化。為了肯定P具體葯物水解的可以測定幾個P葯物的水解情況,用反應速度常數K的對數對PH作圖,從貢線的最低點(轉折點)可求出該葯物最穩定時的PH值。實驗可在料高的濕度(恆溫)下進行,以但在較短的時間內取得結果。這樣得到轉折點以溫時得到的有些不同但通常不大,可以用酸或鹼緩沖溶液被所用的緩沖鹽所催化(一般酸一鹼催化),則級鹽應保值最低的濃度。
② 選用適當的溶劑:用介電常數較低的溶劑如乙醇、甘油,丙二醇、聚乙烯二醇、N,N一甲基乙醯等部分或全瓿代替水作為溶劑,可使葯物的水解速度降低。但是對於個別葯物卻是例外,如環乙酸(C-yclamicacid)在水溶液中水解慢,在乙醇液中卻顯著變快。氯黴素在50%二醇溶液的水解速度也稍有增加。因此對具體葯物應通過實驗才能得出符合的結論。
③ 製成維溶性鹽或酯:一般而言,溶液中溶解的那部分葯物才水解反應。將容易水解的葯物製成難溶性的酯類衍生物,其穩定性將顯著增加。水溶性愈低往往愈穩定。例如青素G鉀鹽、在水中溶解的而破壞已如前述,只是普魯卡因青黴素G(水中溶解度為1:250)就7較穩定,其混懸液中鐾光並低於20處貯藏,可以保持效價至少18個月。三乙醯竹桃黴素(Friacetyloleandomycinum)。紅黴素硬脂酸酯等維溶性葯物,不僅化學穩定性優於母體葯物,而且無味、耐胃酸;口服後比母體葯物更好。
④ 形成絡合物:加入一種化合物,使它與葯物形成水中可溶並且對葯物有保護作用的絡合物,這絡合物所以對葯物有保護作用可能有空間障礙和極性效慶二種原因。
⑤ 加入表面活性劑:在脂或醯類葯物【溶液中加入適當表面活性劑,有時可以增加某些葯物的穩定性,例如苯佐卡因含5%月桂酥醇硫酸鈉(陰離子型表面活性劑)的溶液,可使苯佐卡因的半衰期半增中18倍,這可能是月桂醇酸鈉與苯佐卡因形成膠團,苯佐卡因藏在膠團內部,減少了OH-對苯佐卡因分子中酯鍵的攻擊。
⑥ 改變葯物的分子結構在脂類葯物(R-COOR)和醯類葯物(R-COOR)的a一碳原了上引入其它基團或側鏈或增加R或R』碳邏的長度以增加空間效應可極性效應,可以有效地降低這些葯物水解速度。
⑦ 製成固體制劑:將葯物製成固體制劑穩定性可以大大提高。
⑧ 控制濕度:濕度升高,水解反應速度隨之增加。 (二)由於氧化所引起的葯物不穩定氧化反應是葯物分解失效的重要原因之一。維生素C、嗎啡、腎上腺一素、鹽酸硫胺等,都是熟知的例子。
1、容易氧化的葯物葯物氧化分解的結果,使葯物失效、顏色變深、顏色變深、形成沉澱或產生有毒物質(如新胂凡納明暴露於空氣中,易氧化變質,毒性顯著增加而不能供葯用)。有些注射劑其中葯物雖僅極少一部分氧化,但顏色變深,以致可能成為廢品。葯物的氧化過程比水解不要復雜,往往不易用明反應式完整的表達。本節列舉的某些葯物的氧化反慶,可能是水解過程中主要的反應。
① 酚類葯物:分子結構中具有酚羥基的葯物如腎上腺素、多巴胺、嗎啡、水嗎啡、水楊酸鈉等,在氯金屬離子、光線、濕度等的下,均易氧化變質。酚類葯物被氧化,大多因為酚羥基變成醌式結構順而呈黃棕等色。維生素C的分子結構不存在酚羥基,但有醇結構,很易氧化生成一系列有色的無效物質。維生素C的氧化分解已有過廣泛、深入的研究,資料累積很大,但它的自氧化反太機理還是很不清楚。在無空氣的情況下,維生素C降解後生成糠醛和二氧化碳。糠醛很易氧化,聚合生成有色物質,此可能是本品晶體表面存在黃色的一個原因。空氯中的氧可氧化維生素C為去氫維生素C,中還原劑存在下,後者仍可轉變為維生素C。去氫維生素C很不穩定,迅速生成2,3一二酮基古羅酸(鈉)等分解物,溶液由於黃色以變為橙紅色、維生素C溶液中如果沒有金屬離子,只在在PH9以上時才不較明顯的氧化反應產生,但如有銅離子在,即使PH=6.5,氧化反應極為迅速。銅對維生素C是極強的氧化催化劑,只要2×10-4M/L的濃度,就能使維生素C一價陰離子的氧化反應速度增大10000倍。鐵、鋁等離子也可使維生素C分解。維生素C溶液最穩定的PH值為5.4。需加焦亞硫酸鈉用抗氧劑。溶液通過二氧化碳比通氮好。氯化鈉、丙二醇、甘油、蔗糖、螯合劑對維生素C都有穩定作用。
② 芳胺類葯物:如磺胺類鈉鹽、鹽酸普魯卡因胺、對氨基水楊酸鈉等芳午葯物,也比較容易氧化。與酚類葯物一樣,多數芳胺類葯物的氧化反應過程都異常雜,很多還不夠明了。
③ 其他類型葯物:吡唑酮類葯物例如氨基比林、安乃近的水溶液,也比較容易氧化,生成黃色。一般認為是吡唑酮環上的不飽和鍵被氧化。噻類葯物如鹽酸異丙嗪。鹽酸氯丙嗪等,在光、金屬離子、氧等作用下,極易氧化變色,注射注0常用焦亞硫鈉,維生素C、EDTA-Na2等為穩定劑,以減緩氧化。含有不飽和賓葯物,能常也很易氧化例如維生素A、維生素D、油脂,在光線、氧、水份、金屬防子以及微生物等影響下,都能產生氧化拓應而分解。揮發油中含有的成分萜烯、蒎烯、氧化後有醛、酮形成,所以有特殊味。萜烯和蒎烯等氧化後尚可聚合生成樹脂狀物。鹽酸硫胺可被空氣中的氧氧化生成無效的充色素,但不用亞硫酸為抗氧劑。因後者可使鹽胺安全斷裂、失效。
2.影響物質氧化速度的因素:
① 有機葯物不飽和程度:雙鍵較欽的葯物通常均容易氧化。
② 游離脂肪酸:有機羧酸或醇類葯物比它們相應的酯容易產生自氧化反應。
③ 與金屬離子:金屬特別是二價以上的金屬離子Cu++、Fe++、Pb++、Ni++等),可以促進反的,是葯物分解的催化劑。
④ 易氧化的葯物的物理狀態:通常固體脂肪要比液體脂肪不易發生自氧化反應。這可能是氧在固化脂肪中不易擴散的緣故。
⑤ 氧的含量??應。有時僅需痕量的氧就可以引起這種反應。一旦反應進行,氧的含量便不重要了。
⑥ 濕度:一般而言,濕度增加,氧化反應的速度加速。但濕度增加時氧在水中的溶解度減低。
3.延緩葯物氧化分解的方法:
① 除去氧氣;
② 加入抗氧劑;
③ 調節PH值。 1、異構化異構化分為光異構化和幾何構化二種,前者又分為消旋化和差向異構化。① 光學異構化:甲、外消旋化:具有光學活性的葯物在溶液中受H+、OH-或其他催化劑及溫度等的影響下轉變成它的對映體的過程,這個反應過程一直進行到生成等量的二種對映體為止,因此最後得到1/2量的左旋體和1/2量的右旋體混合物,結果這個葯物溶液的旋光度等於零。級大多數葯物的左旋體的生理活性大於右旋體(泛酸鈣和乙胺乙醇例外0,但右旋體往往也有一定的生理活性,故外消旋葯物的生理活性一般超過純粹左旋體的一半多一些。外消旋反應的與否道德決定於不對稱碳原子上的聯著的基因,不對稱碳原子聯接有度香或具有苄醇的結構,則外消旋反應較易進行。因此左旋明上腺素和左旋莨蓉鹼都容易外消旋化。外消旋反應與OH-、H+等的催化劑、溫度、光線等有關。外消旋反慶的學研究,在方法上與水解反慶相似。一般外消旋反應是按一級反就進行的。乙.差向異構化;某些具有多個不對我碳原子的葯,其中一個不對兒碳原子上的基因發生立體異構化,稱為差向異構化。差向異構化反應達到平衡時,二個差向異構體的是一不盯等,故其光學活性不等於零,這點與外消旋化不同。
② 幾何異構:含有雙健的有機葯物,順式幾何異柢體與反式向何異構體的生量活性往往是不相同的。維生素A分子中有五個共軛的雙鍵,理論上有16個幾何異構體,各異構體的生理活性互有不同,其中以全反式的異構體為最高。在PH較低的水中,可生成Retro維生素A及支水維生素A,前者的生理活性僅為反式維生素A的12%後者則無生理活性。維生素A棕櫚酸脂與其他維生素製成的復合維生素混懸劑(助懸劑為吐溫-80,PH=5.3),經過一年左右的貯藏以後,除了因氧化而分解外,還有10-―順式和10,15二順式二種異構體生成,這兩種異構體的生理活性很弱。
2、由於聚合作用而產生的葯物變質,二個以上相同的葯物分聚合而使葯物變質的實例不多,比較熟知的是甲醛溶液中加入可10%-15%甲醇可以減緩其聚合。葯物本身由於聚合作用而出現沉澱,變色等現象比較常見。例如葡萄糖注射液熱壓滅後不少量5-羥甲基呋喃甲醛形成,後者聚合生成有顏色的聚合物,因而使注射液微濕黃色。
3、由於脫反應而引起的分解,由於葯物分子結構中的羧基脫裂而引起葯物分解的情況,有時可能遇到。對氨基不楊酸鈉注射液因為對氮基水楊酸分解,脫去羧基生成間氨基苯酚而易使顏色變深。對氨基水楊酸鈉的脫羧反應與溶液的PH很有在系,偏鹼性時比穩定,PH6.3開始明顯產生脫羧,PH2.7時達最高峰。本品20%溶液三個月,約有2.5因脫羧而分解。1150、30分鍾則有15%分解,故本品以製成來菌粉末安瓿為宜。
4、吸收二氧化碳引起的葯物分解有些鹼性葯物,可因吸收空氣中的CO2作用失去相應的碳酸鹽而改變葯物原來的性質。如丙環乙(PropyLHexedrinum)是一種有揮發性的液體按類葯物,製成吸入劑吸入鼻腔以收縮局部血管,丙環乙胺能吸收空氣中的CO2生成碳酸鹽而減弱其的揮發性,從而影響其療效。巴比妥類鈉鹽溶液遇CO2可能生成巴比妥類沉澱。
5、葯物之間互相作用將兩種或兩種以上葯物配合使用,如果不了解葯物的理化、葯理等方面的性質,不明白葯物在臨床上的使用要求而盲目的混合使用,往往不但不能達到醫療上的預期目的,而且有時還可能產生不良後果甚至危及患者生命。
葯物制劑生產
液體制劑
① 內服或外用液體制劑將固體或液體葯物在一定條件下溶解或分散在水、醇、脂肪油或甘油中,有時加入添加劑以增加葯物的溶解度、分散度,增加產品的穩定性或改進其不良氣味。對於這類液體制劑的一般要求是:溶液應澄明;乳劑或混懸劑應保證其分散相小而均勻;有效成分的濃度應准確、穩定;制劑應適口,無刺激性;包裝容器應清潔或滅菌。
② 注射劑也稱針劑,是專供注入人體內的一種劑型,包括滅菌或無菌溶液、混懸劑、乳濁液或於臨用前配成溶液或混懸液的無菌粉末。生產方法通常是將原料葯溶於注射用水(或注射用油,或其他適當的溶劑)配成所需的濃度,用濾棒或微孔濾膜過濾,經灌封機灌注入安瓿(或輸液瓶),封口後,通過高溫滅菌、檢漏、容量檢查,再用燈檢機檢查澄明度,最後進行無菌檢查,印字(或貼檢簽)和包裝。容易氧化的葯物於灌封時,需通入惰性氣體(氮、二氧化碳)以置換安瓿空間的空氣。有些注射劑在配製時,需加入添加劑如增溶劑、抗氧劑、穩定劑、緩沖劑或抑菌劑等。對於溶液不穩定的葯物,可將滅菌後的粉狀葯物與輔料用分裝機裝於安瓿或其他容器中(稱為粉針),臨用前以注射用水或其他的溶劑溶解。有些葯物如酶制劑採用冷凍乾燥法,將灌注入安瓿中的葯物溶液除去溶劑,製成凍乾粉針。水針劑的生產已將各工序聯動化,並用無菌層流空氣保護,以防止污染。無菌粉針劑生產也已實現各工序全部聯動化。
③ 滴眼劑為直接用於眼部的外用無菌液體制劑,以水溶液為主。
固體制劑 主要是片劑、膠囊劑,還有栓劑、蠟劑和半固體的軟膏劑等。
① 片劑將原料葯經研磨和篩分的粉末與輔料(賦形劑、崩解劑等),在混合機上混合均勻,加入適量潤濕劑與粘合劑,在造粒機上製成顆粒,乾燥後加潤滑劑,在壓片機上沖壓成型。
② 包衣片片劑用包衣機可製成糖衣片、腸溶片和薄膜包衣片等。糖衣片要經過五個工序:依次包裹隔離層、粉衣層、糖衣層和有色糖衣層,最後打光。腸溶片系以不溶於酸而溶於pH5~7介質的高聚物作為包衣材料。薄膜包衣片是用符合要求的高聚物溶於有機溶劑(也可製成水乳液),在熱風中用噴霧法對壓製成的片心進行包衣。片劑的生產設備和包裝設備都已向節能、多效、高速、聯動化和自動化發展。例如已有沸騰式或機械式一步制粒機,把加料、混合、制粒與乾燥等工序一次完成,每小時產量可達100kg以上。旋轉式壓片機已有27、33、45、55、61和75沖等規格,每小時產量為30~60萬片。母子沖的出現使壓片機生產潛力擴大,高達330沖、每小時產量達300萬片,有的壓片機可壓制異型片、多層片、包心片,並有自動控製片重,剔除不合格葯片,遇故障時自動停機等裝置。片劑包衣設備有高效包衣機,裝有快乾裝置,可程序控制操作,每批可包制150~500kg的包衣片。另有利用現有包衣鍋設備,安裝一個無氣噴霧系統,能包製糖衣和薄膜衣,可節省包衣材料30%~50%,包衣時間縮短1/3~1/2。由於小包裝需求的急劇增長,片劑包裝多採用泡罩式包裝機,從塑料薄膜和鋁箔的復合成型開始,經裝入葯片、熱合、切塊(粒數自定)、自動檢查、裝盒到出廠包裝全部聯動化。
③ 膠囊劑有硬膠囊劑與軟膠囊劑兩種。硬膠囊劑是將原料葯粉與輔料混合均勻填充於硬空心膠囊中而製成。空心膠囊中呈圓筒形,由囊帽與囊身兩節緊密套合而成,有多種大小規格,可根據葯物劑量大小選用。軟膠囊劑是將油類或對明膠無溶解作用的液體葯物或混懸液封閉於圓形或橢圓形軟膠囊中製成內服軟型制劑。空心膠囊有聯動化生產設備──空心膠囊製造機,每小時產10萬~12萬粒。灌裝葯粉或微粒的硬膠囊充填機,每小時產量達11萬粒,並能隨時調節裝葯量和剔除不合格產品。軟膠囊製造機從配製膠液、制備膠皮、定量加葯料、壓丸成型、剝離、乾燥到輸出全部自動操作,可壓制圓球形、橢圓形、安瓿形、栓劑等各種形式和規格,每小時產量約5萬顆。
氣霧劑 將葯物與拋射劑共同裝於帶有閥門的耐壓容器中,使用時可定量地或不定量地以霧狀形式噴出的制劑。氣霧劑有溶液型、混懸型和乳劑型等,即由二相(氣-液相)或三相(氣-液-固相或氣-液-液相)組成。通常採用冷裝或壓裝工藝制備,經試漏和試噴合格後進行包裝。(見彩圖)
葯物制劑作為一門學科,越來越為人們所重視,因為人們生病的時候都離不開它.
業務培養目標:本專業培養具備葯學、葯劑學和葯物制劑工程等方面的基本理論知識和基本實驗技能,能在葯物制劑和與制劑技術相關聯的領域從事研究、開發、工藝設計、生產技術改進和質量控制等方面工作的高級科學技術人才。
業務培養要求:本專業學生主要學習葯學、生物葯劑學、工業葯劑學、葯物制劑工程等方面的基礎理論和基本知識,受到葯物制劑研究和生產技術的基本訓練,具有葯物制劑研究、開發、生產技術改造及質量控制的基本能力。
畢業生應獲得以下幾方面的知識和能力:
1.掌握物理化學、葯物化學、葯用高分子材料學、工業葯劑學、制劑設備與車間工藝設計等方面的基本理論、基本知識;
2.掌握制劑的研究、劑型設計與改進以及葯物制劑生產的工藝設計等技術;
3.具有葯物制劑的研究與開發、劑型的設計與改進和葯物制劑生產工藝設計的初步能力;
4.熟悉葯事管理的法規、政策;
5.了解現代葯物制劑的發展動態;
6.掌握文獻檢索、資料查詢的基本方法,具有初步的科學研究和實際工作能力。
主幹學科:葯學、化學工程學
主要課程:物理化學、化工原理、葯物化學、葯物分析學、葯理學、物理葯學、葯用高分子材料學、生物葯劑學、工業葯劑學、制劑設備與車間工藝設計
主要實踐性教學環節:包括生產實習、畢業論文設計、綜合性實驗設計等,一般安排22周左右。
修業年限:四年
授予學位:理學或工學學士
相近專業:葯學
開設院校:遼寧中醫葯大學 青島科技大學貴陽中醫學院河北醫科大學延邊大學武漢化工學院廣州中醫葯大學廣東葯學院 廣東是食品葯品職業技術學院沈陽葯科大學中國葯科大學華東理工大學浙江大學遵義醫學院黑龍江中醫葯大學河北科技大學內蒙古民族大學 內蒙古醫學院葯學院 通遼職業學院南京中醫葯大學浙江工業大學安徽中醫學院江西中醫學院 福建醫科大學鄭州大學河南中醫學院河南大學湖南中醫葯大學成都中醫葯大學 大理學院陝西科技大學甘肅中醫學院江蘇大學濟寧醫學院蘭州醫學院 山東輕工業學院 齊魯工業大學等