1、 故障診斷的發展現狀
目前, 國內檢測診斷技術的研究主要集中在以下幾個方面:
( 1) 感測技術研究: 感測技術是反映設備狀態參數的儀表技術。國內先後開發了各種類型的感測器, 如屯渦流感測器、速度感測器、加速度感測器和溫度感測器等; 最近開發的感測技術有光導纖維、激光、聲發射等。
(2)關於信號分析與處理技術的研究: 從傳統的譜分析、時序分析和時域分析, 開始引入了一些先進的信號分析手段, 如快速傅立葉變換, Wigner譜分析和小波變換等。這類新方法的引入彌補了傳統分析法的不足。
(3)關於人工智慧和專家系統的研究: 這方面的研究已成為診斷技術的發展主流, 目前已有日程機械故障診斷專家系統,但這一技術在工程方面的研究尚未達到人們所期望的水平。
(4)關於神經網路的研究: 比如旋轉機械神經網路分類系統等的研究已經取得了應用, 取得了滿意的效果。
(5)關於診斷系統的開發與研究: 從單機巡檢與診斷到上下位機式主從機結構, 直至以網路為基礎的布式系統的結構越來越復雜, 實時性越來越高。
(6)專門化與攜帶型診斷儀器和設備的研製與開發。目前, 我國的冶金、電力、化工等行業的故障診斷技術己經很成熟, 得到了廣泛的應用。
2 現代故障診斷方法
工程機械運行的狀態千差萬別,出現的故障也是多種多樣,採用的診斷方法也各不相同。在眾多的診斷方法中,比較常用的診斷方法有振動監測診斷方法、無損檢測技術、溫度診斷方法和鐵譜分析方法等。近十幾年來,模糊診斷、故障樹分析、專家系統、人工神經網路等新的診斷技術不斷出現,故障診斷技術逐步向智能化方向發展。
(1) 故障樹診斷方法
故障樹診斷方法是從研究系統中最不希望發生的故障狀態( 結果) 出發,按照一定的邏輯關系從總體到部件一層層的逐級細化,推理分析故障形成的原因,最終確定故障發生的最初基
本原因、影響程度和發生概率。它是一種圖形演繹法,把系統故障與導致該故障的各種因素形象地繪成故障圖表,能較直觀地反映故障、元部件、系統及因素、原因之間的相互關系,也能定量計算故障程度、概率、原因等。該方法直觀、快速診斷、知識庫很容易動態修改,但其缺點是受主觀因素影響較大,診斷結果嚴重依賴於故障樹信息的正確性和完整性,不能診斷不可預知的故障。
(2)故障診斷專家系統
專家系統是一種基於知識的人工診斷系統,是利用大量人類專家的知識和推理方法求解復雜的實際問題的人工智慧程序。故障診斷專家系統是研究最多、應用最廣的一類智能診斷技術,主要用於沒有精確數學模型或很難建立數學模型的復雜系統。專家系統存在的主要問題是知識獲取困難、運行速度慢。在採用先進感測技術與信號處理技術的基礎上研製開發的故障診斷專家系統,將現代科學的優勢同領域專家豐富經驗與思維方式的優勢結合起來,已成為故障診斷技術發展的主要方向。
(3) 基於模糊數學的故障診斷方法
工程機械的狀態信號傳播途徑復雜,故障與特徵參數間的映射關系模糊,再加上邊界條件的不確定性、運行工況的多變性,使故障徵兆和故障原因之間難以建立准確的對應關系,用傳統的二值邏輯顯然不合理,因此選用隸屬度函數,用相應的隸屬度來描述這些症狀存在的傾向性。基於模糊數學的故障診斷方法就是通過某些症狀的隸屬度和模糊關系矩陣來求出各種故障原因的隸屬度,以表徵各種故障的傾向性,從而可以減少許多不確定因素給診斷工作帶來的困難。但是對於復雜的診斷系統,要建立正確的模糊規則和隸屬度函數非常困難,而且需要消耗大量的時間。
(4 )基於神經網路的故障診斷方法
神經網路是一種信息處理系統,是為模仿人腦工作方式而設計的,它帶有大量按一定方式連接的和並行分布的處理器。由工程機械各個系統的信息提取故障特徵,通過學習訓練樣本來確定故障判決規則,從而進行故障診斷。用於故障診斷的神經網路能夠在出現新故障時通過自學習不斷調整權值,可以提高故障的正確檢測率,降低漏報率和誤報率。神經網路具有對故障的聯想記憶、模式匹配和相似歸納能力,以實現故障和徵兆之間復雜的非線性映射關系。對於多故障、多過程的復雜工程機械以及突發性故障或其他異常現象,其故障形成的原因與徵兆的因果關系錯綜復雜,藉助神經網路系統來解決是行之有效的。
(5) 支持向量機的故障診斷方法
典型故障數據樣本的嚴重不足是制約故障智能診斷技術發展的主要原因之一。支持向量機( SVM)是一種基於統計學習理論的新型機器學習方法,其目標是得到現有信息下的最優解而不僅僅是樣本數趨於無窮大時的最優解。這一點特別適合於故障診斷這種小樣本情況的實際問題解決
2. 數控技機床機械故障的診斷方法有哪些
數控機床電氣故障診斷有故障檢測、故障判斷及隔離和故障定位三個階段。第一階段的故障檢測就是對數控機床進行測試,判斷是否存在故障;第二階段是判定故障性質,並分離出故障的部件或模塊;第三階段是將故障定位到可以更換的模塊或印製線路板,以縮短修理時間。為了及時發現系統出現的故障,快速確定故障所在部位並能及時排除,要求故障診斷應盡可能少且簡便,故障診斷所需的時間應盡可能短。為此,可以採用以下的診斷方法:
一、直接觀查法
注意發生故障時的各種現象,如故障時有無火花、亮光產生,有無異常響聲、何處異常發熱及有無焦煳味等。仔細觀察可能發生故障的每塊印製線路板的表面有無燒毀和損傷痕跡,以進一步縮小檢查范圍,這是一種最基本最常用的方法。
二、系統的自診斷功能
依靠系統快速處理數據的能力,對出錯部位進行多路、快速的信號採集和處理,然後由診斷程序進行邏輯分析判斷,以確定系統是否存在故障及時對故障進行定位。現代數控系統自診斷功能可以分為以下兩類:
(1)開機自診斷開機自診斷是指從每次通電開始至進入正常的運行准備狀態為止,系統內部的診斷程序自動執行對設備運行前的功能測試,確認系統的主要硬體是否可以正常工作。
(2)故障信息提示當機床運行中發生故障時,在顯示器上會顯示編號和內容。根據提示,查閱有關維修手冊,確認引起故障的原因及排除方法。
三、數據和狀態檢查
數控系統的自診斷不但能在顯示器上顯示故障報警提供機床參數和狀態信息,常見的數據和狀態檢查有參數檢查和介面檢查兩種。
(1)參數檢查數控機床的機床數據是經過一系列試驗和調整而獲得的重要參數,是機床正常運行的保證。這些數據包括增益、加速度、輪廓監控允差、反向間隙補償值和絲杠螺距補償值等。當受到外部干擾時,會使數據丟失或發生混亂,機床不能正常工作。
(2)介面檢查系統與機床之間的輸入輸出介面信號,數控系統的輸入/輸出介面診斷能將所有開關量信號的狀態顯示在顯示器上,利用狀態顯示可以檢查系統是否已將信號輸出到機床側,機床側的開關量等信號是否已輸入到系統,從而可將故障定位在機床側或是在數控系統側。
四、報警指示燈顯示故障
現代數控機床的系統內部,除了上述的自診斷功能和狀態顯示等軟體報警外,還有許多硬體報警指示燈,它們分布在電源、伺服驅動和輸入/輸出等裝置上,根據這些報警燈的指示可判斷故障的原因。
五、備板置換法
利用備用的電路板來替換有故障疑點的模板,是一種快速而簡便的判斷故障原因的方法,常用於數控系統的功能模塊。需要注意的是備板置換前,應檢查有關電路以免由於短路而造成好板損壞。同時,還應檢查試驗板上的選擇開關和跨接線是否與原模板一致,有些模板還要注意模板上電位器的調整。
六、測量比較法
通常情況下模塊或單元上設有檢測端子,利用萬用表、示波器等儀器儀表,通過這些端子檢測到的電平或波形,將正常值與故障時的值相比較,可以分析出故障的原因及故障的所在位置。
以上就是數控機床故障常見的診斷方法,根據實際情況對故障進行綜合分析,快速診斷出故障的部位,從而排除故障。
3. 機器設備異常運轉監測系統都有哪些
機器設備異常運轉監測系統基於智能視頻分析,自動對視頻圖像信息進行分析識別,無需人工干預;對監控區域內的機器運行狀態異常進行監測,當發現機器異常運轉時以最快、最佳的方式進行預警,有效的協助管理人員處理,並最大限度地降低誤報和漏報現象;同時還可以查看現場錄像,方便事後管理查詢。
4. 機械故障診斷需要的儀器有哪些
這個有很多啊,簡單的跟你說幾種:
通過機械振動來進行判斷的:測振儀、現場動平衡儀、機械故障聽診器等
通過機械內部潤滑油狀態來判斷的:鐵譜儀、鐵量儀、快速油質分析儀等
通過機械運行時溫度來判斷的:紅外測溫儀、熱像儀等
通過觀察的:工業內窺鏡等
以上產品的選用最好根據實際情況來定,深圳亞泰光電可以提供這方面的服務,希望可以幫到你
5. 設備故障診斷系統 設備故障診斷方法有哪些
1.替換法,如果懷疑某個設備有問題,就用別的好的來換一下就可以排除了!2.用測試卡:市場上有一種硬體測試卡,你可以把它裝在PCI插槽里,根據上面的數據可以知道那個設備有故障!
6. 通過機械設備故障診斷可以判斷設備是否滿足工作要求
可以通過設備故障診斷的代碼,判斷設備故障原因,以此確認是否滿足工作的要求。
希望採納
7. 什麼是機械故障診斷
最直接的方法,是觀察,當機械不能動作時,分析它不動作的原因,此為機械故障診斷,這是大致的解釋,謝謝
8. 機器故障
由一般工廠會計步驟確定的維護成本在多數工廠中通常構成總運營成本的大部分。在美國,傳統的維護成本(即人力和材料)在過去10年內急劇上升。在1981 年,美國的工廠花費在維護其關鍵裝置系統上的成本超過了6000 億美元。在1991 年,這種成本已經升至8000 多億美元,而在2000年更是破記錄地達到12000 億美元。這些數據表明,這些成本的三分之一到二分之一由於採用無效的維護管理方法而被浪費掉。美國工業界再也無法容忍這種另人難以置信的無效率,它們希望參與世界市場上的競爭。有關其他國家的這方面的數據還比較少,但我們相信,情況基本上是相同的。
這種無效使用維護支出的主要原因是,缺乏對何時需要以及需要何種維護以維護、修理或更換工廠或設施內的關鍵機器、設備和系統進行量化的實際數據。通常,維護機構不對設備性能、執行的維護任務、故障歷史或其他數據進行跟蹤,而這些數據可以(並且應該)用於對將會防止過早發生故障、延長關鍵工廠資產的使用壽命並降低其生命循環成本的任務進行計劃和安排。相反,在許多情況下,維護計劃安排仍然由設備故障情況以及維護人員的直覺來決定,維護人員可以任意決定日常維護的類型和頻率。例如,多數採用熱成像檢查方法的設施每隔半年或6 個月進行一次檢查。這是一種沒有任何實際數據根據的純任意的決定。
紅外監視和振動監視等基於微處理器的儀器可被用來對關鍵工廠設備、機器和系統的工作狀況進行監視。從這些儀器獲得的信息提供了有效管理維護操作的方法。至少,它們可以降低或消除不必要的維修、防止災難性的機器故障並降低無效的維護操作對製造及生產工廠利潤的不利影響。當其功能被充分利用時,這些儀器就提供了將總體工廠性能、機器有用壽命以及設施及其資產的壽命循環成本實現最佳化的方法。基於計算機的維護管理系統可提供歷史數據以及使用從預知性維護技術(如紅外監視和振動監視)得到的數據的方法。
工業和加工工廠通常使用兩種類型維護管理,即「運轉至出現故障」和「預防性維護」。
運轉至出現故障管理
運轉至出現故障管理的思想簡單明了。設備出現故障時對它進行維修。這種「不出故障就不維修」的機器裝置維護方法是自第一個製造工廠建立以來構成維護運行的一個主要部分,聽起來倒也合理。採用運轉至出現故障管理的工廠在機器或系統出現故障之前不會在維護上花費任何資金。運轉至出現故障是一種反應性的管理技術,它會在採取任何維護行動之前等待機器或設備出現故障。確切地說,這是一種「無維護」管理方法。它也是最為昂貴的維護管理方法。
但是應該說,極少有工廠採用真正的運轉至出現故障的管理方法。在幾乎所有情況下,工廠將執行基本的預防性維護任務,即潤滑、機器調整和其他調整,甚至在一個運轉至出現故障的管理環境中也是如此。但是在這種管理方式下,在設備出現故障之前,機器和其他工廠設備不會被改制或者進行大的維修。
與這種維護管理相關的主要費用是:
高備件庫存成本;
高超時勞動力成本;
機器停機時間長,以及生產能力低。
因為沒有對維護要求進行預期,採用運轉至出現故障管理的工廠必須能夠對工廠內所有可能發生的故障做出反應。這種反應性管理方法迫使管理部門要維持大量的備件庫存,它們包括備用機器,或者至少包括用於工廠中所有關鍵設備的所有主要部件。一種替代方法是,工廠可以依賴於設備廠商迅速提供所有所需備件。即使可採用後面一種方法,快速交付的額外費用也會大大增加維修備件的成本並以及糾正機器故障所需的停機時間。為了將由意外機器故障造成的對生產的影響降到最低程度,維護人員還必須能夠立即對所有機器故障做出反應。
這種這種反應性維護管理的最終結果是較高的維護成本和較低的加工機器利用率。對維護成本的分析表明,在反應性或運轉至出現故障管理模式下進行維修的成本是有計劃或預防性維護模式下進行的相同維護的成本的 3 倍。對維修進行計劃安排可使工廠將維修時間和有關的勞動力成本降到最低。它還提供了一種可減少快速交付和生產下降等負面影響的方法。
預防性維護對於預防性維護具有多種定義,但所有的管理計劃都是按照時間來安排的。換言之,維護任務是按照機器運行的時間或小時數進行的,它們基於特定類型工廠設備的統計數據或歷史數據。一台新機器在最初幾個小時或幾周運轉時間內出現故障的可能性非常高,這些故障通常是由製造或安裝問題引起。過了這段初始時期之後,在較長時間內出現故障的可能性相對較低。在此正常運轉期之後,出現故障的可能性會隨著機器運轉時間或小時數的增加而急劇增加。在預防性維護管理中,機器檢查、潤滑、維修或改制都基於平均無故障時間統計數據進行計劃安排。 預防性維護的實際執行變化很大。一些計劃步驟非常有限,僅包含潤滑和較小的調整。更多的綜合預防性維護計劃將對工廠中所有機器的維修、潤滑、調整和機器改制等工作進行計劃安排。所有這些預防性維護計劃的共同標志是它們都具有計劃安排指南。所有預防性維護管理計劃都假設,機器狀況將在通常適用於該類特定機器的統計時間范圍內惡化。例如,單級、卧式外殼分離式離心泵通常運轉18 個月後就要更換其磨損部件。使用預防性維護技術,在該泵運轉17 個月後就要使其停止運轉並進行改制。
這種方法的問題是,運轉模式以及與系統或裝置相關的變數會直接影響機器的正常工作壽命。對於用於輸送水用於輸送磨損性泥漿的泵來說,平均無故障時間 (MTBF) 是不同的。使用 MTBF 統計數據來安排維護的一般結果是要進行不必要的維修或發生災難性的故障。在上例中,該泵在 17 個月之後可能就不需要進行改制。因此,用於進行維修的勞動力和材料就被浪費掉了。採用預防性維護的第二種選擇甚至更為昂貴。如果泵在17 個月之前就出現故障,我們就會被迫採用運轉至出現故障技術進行維修。對維護成本的分析顯示,在反應性(故障後)模式下進行維修的成本通常是在計劃安排基礎上進行的相同維修的成本的3 倍。
預知性維護預知性維護是一種運轉狀況驅動的預防性維護程序。預知性維護不依賴於工業或工廠內平均壽命統計數據(即平均無故障時間)來計劃安排維護活動,而是對運轉狀況、效率、熱量分布和其他指標進行直接監視,以確定實際的平均無故障時間或將危害到工廠或設施內所有關鍵系統裝置運轉的效率損失。傳統的基於時間的方法至多可為正常機器系列壽命跨度提供一種指南。在預防性或運轉至出現故障計劃中對維護或改制計劃安排所做的最後決定必須要根據維護管理者的直覺和個人經驗做出。
增加綜合預知性維護計劃可以並且將會提供關鍵設備運轉狀況的實際數據,包括效率、每個機器系列的實際機械狀況以及每個過程系統的運轉效率。預知性維護不依賴於工業或工廠內平均壽命統計數據(即平均無故障時間)來計劃安排維護活動,而是對機械狀況、系統效率和其他指標進行直接監視,以確定實際的平均無故障時間或工廠內每個機器系列和系統的效率損失。這種數據為維護管理層提供了有效計劃和安排維護活動所需的實際數據。
預知性維護還具有更多的功效。它提供了提高製造和生產工廠的生產率、產品質量和總體效率的方法。預知性維護並不是在目前市場上作為預知性維護工具銷售的振動監視、紅外成像、潤滑油分析或任何其他單個非破壞性測試技術。它是一種理念或者態度,簡單地說,就是利用工廠設備和系統的實際運轉狀況來促使整個工廠裝置運轉最佳化。綜合預知性維護管理計劃使用大多數經濟有效的工具(即熱成像、振動監視、摩擦測量和其他非破壞性測試方法)的組合,以獲得關鍵工廠系統的實際運轉狀況,並根據這種實際數據按需計劃安排所有維護活動。
將預知性維護包含於一個綜合性維護管理計劃中,就可以實現工廠機器的最佳利用,並大大降低維護成本。這樣做還會提高產品質量、生產效率和利潤。
預知性維護計劃可以將工廠內未經計劃的所有電氣和機械設備停機降到最低程度,並確保維修過的設備處於另人接受的狀況。該計劃還可在問題變得嚴重之前對它們加以識別。如果問題早期得到檢測並進行維修,多數問題的嚴重性可降到最低程度。正常機械失效會以一個與其嚴重性成正比的速度惡化。如果問題得到早期檢測,則在多數情況下可以避免進行大的維修。 獲得的好處
有效運用預防性維護(包括預知性維護技術),將消除33% 至50% 維護支出中的大部分,這些支出被很多製造和生產廠商浪費掉了。根據美國的歷史數據,由有效的預防性/預知性維護程序帶來的初始節約涉及以下幾個方面:1.
消除由設備或系統故障引起的未經計劃的停機時間。通常,在前兩年內成本可降低40% 至60%,在五年內可達到並維持90%的成本降低。2.
增加人員利用率。從統計上看,一個維護人員每個班次的的實際工作時間佔24.5%或大約2 小時。通過識別在工廠資源中糾正缺陷所需的精確維修任務以及糾正問題所需的部件、工具和支持,預防性/預知性維護可顯著增加有效實際工作時間。多數工廠已經能夠達到並維持75% 至85% 的有效利用率。3.
提高生產能力。有效的預防性/預知性維護程序的主要好處是可提供工廠的產出或生產能力。短期(即1 到3 年)可持續生產能力的增加已經達到15% 和40%。已經取得長期75% 至80% 的提高。4.
降低維護支出。在一些情況下,實際維護支出會在實施有效的預防性/預知性維護計的第一年內會增加。這種支出的增加通常會達到10% 至15%,它是由使用預知性技術所發現的固有可靠性問題引起的。在消除這些問題之後,通常會取得35% 至60% 的人力和材料成本降低。5.
延長使用壽命。通常,工廠資源的使用壽命可延長33% 至60%。使用壽命的延長得益於在發生對設備的損壞之前就檢測出初發問題或與最佳工作狀況的偏離。進行較小的調整或維修而不讓小的缺陷變為嚴重問題幾乎可以無限延長設備的有效使用壽命。 總結
無效的管理方法以及對工廠資源缺乏即時、實際的了解會帶來認為造成的高維護成本,在這方面,世界范圍內幾乎每個製造和生產設施都存在巨大的機遇。有效使用預防性/預知性維護技術提供了充分利用這種機遇的方法。
滿意請採納。
9. 電機機械故障診斷
電動機的檢測不是那麼復雜的,不用測什麼電感。你只用三樣東西就行:500伏搖表,萬能表(最好用機械表)和鉗型電流表。
檢測方法如下:先用搖表測量繞組對外殼絕緣,大於0.5M就是好的。再用萬能表測繞組電阻,三相電阻均衡相等便是好的。你所說的電機電阻應在幾個歐。不放心的話還可再進一步細測,先將接線端子上的短接板拆除,這樣電機就有六個端子,每二個端子一個繞組,用萬能表測每一繞組的電阻,應是均衡相等;再用搖表測量繞組之間的絕緣及繞組與外殼間的絕緣,都大於0.5M便是好的。
測量中如發現繞組電阻不等,這說明繞組有匝間短路。一般出現這情況,只有重繞電機。如發現繞組已不通或短路,這說明繞組已燒毀,只有重繞電機。
測量中如發現繞組之間的絕緣小於0.5M,說明繞組之間絕緣與出了問題,即不同的繞組之間已連通;如繞組對外殼絕緣小於0.5M,說明繞組已與外殼連通。絕緣問題輕的可以通過烘烤、乾燥後解決,如不能解決就只有重繞電機了。
鉗型電流表用於測量電機電流,電機正常運行電流不不應超過額定電流。電機空轉時,電流不足額定電流的二分之一。當測量到運行電流大於額定電流時,就可能是繞組出了問題、電壓出了問題或是機械負荷過大,機械負荷過大又可能是電機軸承的問題或是所連接的設備機械出了問題。運行中電源缺相也可導致電流過大,燒毀電機。