1. 傳動裝置都有哪些分類
傳動裝置是指把動力源的運動和動力傳遞給執行機構的裝置,介於動力源和執行機構之間,可以改變運動速度,運動方式和力或轉矩的大小。
任何一部完整的機器都由動力部分、傳動裝置和工作機構組成,能量從動力部分經過傳動裝置傳遞到工作機構。根據工作介質的不同,傳動裝置可分為四大類:機械傳動、電力傳動、氣體傳動和液體傳動。
(1)機械傳動
機械傳動是通過齒輪、皮帶、鏈條、鋼絲繩、軸和軸承等機械零件傳遞能量的。它具有傳動准確可靠、製造簡單、設計及工藝都比較成熟、受負荷及溫度變化的影響小等優點,但與其他傳動形式比較,有結構復雜笨重、遠距離操縱困難、安裝位置自由度小等缺點。
(2)電力傳動
電力傳動在有交流電源的場合得到了廣泛的應用,但交流電動機若實現無級調速需要有變頻調速設備,而直流電動機需要直流電源,其無級調速需要有可控硅調速設備,因而應用范圍受到限制。電力傳動在大功率及低速大轉矩的場合普及使用尚有一段距離。在工程機械的應用上,由於電源限制,結構笨重,無法進行頻繁的啟動、制動、換向等原因,很少單獨採用電力傳動。
(3)氣體傳動
氣體傳動是以壓縮空氣為工作介質的,通過調節供氣量,很容易實現無級調速,而且結構簡單、操作方便、高壓空氣流動過程中壓力損失少,同時空氣從大氣中取得,無供應困難,排氣及漏氣全部回到大氣中去,無污染環境的弊病,對環境的適應性強。氣體傳動的致命弱點是由於空氣的可壓縮性致使無法獲得穩定的運動,因此,一般只用於那些對運動均勻性無關緊要的地方,如氣錘、風鎬等。此外為了減少空氣的泄漏及安全原因,氣體傳動系統的工作壓力一般不超過0.7~0.8MPa,因而氣動元件結構尺寸大,不宜用於大功率傳動。在工程機械上氣動元件多用於操縱系統,如制動器、離合器的操縱等。
(4)液體傳動
以液體為工作介質,傳遞能量和進行控制的叫液體傳動,它包括液力傳動、液黏傳動和液壓傳動。
1)液力傳動
它實際上是一組離心泵一渦輪機系統,發動機帶動離心泵旋轉,離心泵從液槽吸入液體並帶動液體旋轉,最後將液體以一定的速度排入導管。這樣,離心泵便把發動機的機械能變成了液體的動能。從泵排出的高速液體經導管噴到渦輪機的葉片上,使渦輪轉動,從而變成渦輪軸的機械能。這種只利用液體動能的傳動叫液力傳動。現代液力傳動裝置可以看成是由上述離心泵一渦輪機組演化而來。
液力傳動多在工程機械中作為機械傳動的一個環節,組成液力機械傳動而被廣泛應用著,它具有自動無級變速的特點,無論機械遇到怎樣大的阻力都不會使發動機熄火,但由於液力機械傳動的效率比較低,一般不作為一個獨立完整的傳動系統被應用。
2)液黏傳動
它是以黏性液體為工作介質,依靠主、從動摩擦片間液體的黏性來傳遞動力並調節轉速與力矩的一種傳動方式。液黏傳動分為兩大類,一類是運行中油膜厚度不變的液黏傳動,如硅油風扇離合器;另一類是運行中油膜厚度可變的液黏傳動,如液黏調速離合器、液黏制動器、液黏測功器、液黏聯軸器、液黏調速裝置等。
3)液壓傳動
它是利用密閉工作容積內液體壓力能的傳動。液壓千斤頂就是一個簡單的液壓傳動的實例。
液壓千斤頂的小油缸l、大油缸2、油箱6以及它們之間的連接通道構成一個密閉的容器,裡面充滿著液壓油。在開關5關閉的情況下,當提起手柄時,小油缸1的柱塞上移使其工作容積增大形成部分真空,油箱6里的油便在大氣壓作用下通過濾網7和單向閥3進入小油缸;壓下手柄時,小油缸的柱塞下移,擠壓其下腔的油液,這部分壓力油便頂開單向閥4進入大油缸2,推動大柱塞從而頂起重物。再提起手柄時,大油缸內的壓力油將力圖倒流入小油缸,此時單向閥4自動關閉,使油不致倒流,這就保證了重物不致自動落下;壓下手柄時,單向閥3自動關閉,使液壓油不致倒流入油箱,而只能進入大油缸頂起重物。這樣,當手柄被反復提起和壓下時,小油缸不斷交替進行著吸油和排油過程,壓力油不斷進入大油缸,將重物一點點地頂起。當需放下重物時,打開開關5,大油缸的柱塞便在重物作用下下移,將大油缸中的油液擠回油箱6。可見,液壓千斤頂工作需有兩個條件:一是處於密閉容器內的液體由於大小油缸工作容積的變化而能夠流動,二是這些液體具有壓力。能流動並具有一定壓力的液體具有壓力能。液壓千斤頂就是利用油液的壓力能將手柄上的力和位移轉變為頂起重物的力和位移。
2. 分析兩種方案中機械傳動裝置傳遞運動的平穩性和傳遞動力的效率
機械傳動方式利用機械方式傳遞動力和運動的傳動。機械傳動在機械內工程中應用非常廣泛容,有多種形式,主要可分為兩類:①靠機件間的摩擦力傳遞動力和運動的摩擦傳動,包括帶傳動、繩傳動和摩擦輪傳動等。摩擦傳動容易實現無級變速,大都能適應軸間距較大的傳動場合,過載打滑還能起到緩沖和保護傳動裝置的作用,但這種傳動一般不能用於大功率的場合,也不能保證准確的傳動比。②靠主動件與從動件嚙合或藉助中間件嚙合傳遞動力或運動的嚙合傳動,包括齒輪傳動、鏈傳動、螺旋傳動和諧波傳動等。嚙合傳動能夠用於大功率的場合,傳動比准確,但一般要求較高的製造精度和安裝精度。每種機械傳動都各有特點,分別適用於不同的條件。 具體說來,傳動方式包括如下幾種:摩擦輪傳動、鏈條傳動,齒輪傳動、皮帶傳動、渦輪渦桿傳動、棘輪傳動、曲軸連桿傳動、氣動傳動、液壓傳動(液壓刨)、萬向節傳動、鋼絲索傳動(電梯中應用最廣)聯軸器傳動、花鍵傳動。
3. 1)試總結歸納機械傳動系統設計的一般方法和步驟。 (2)說明傳動系統方案是如何確定的,有何特點
第一部分為電動機選擇及傳動系統總的傳動比分配;主要確定電動機類型和結構形式、工作機主動軸功率、電動輸出功率及傳動系統總的傳動比分配。第二部分為傳動裝置的運動和動力參數計算,主要確定各軸轉速、各軸的輸入功率、及各軸轉矩。第三部分為有關錐齒輪的計算,選擇齒輪、材料、精度、等級、確定齒輪齒數、轉矩、載荷系數、輪寬系數及齒根彎曲疲勞強度校核。第四部分為帶輪的設計包括帶輪類型的選擇、帶輪尺寸參數的確定。第五部分為聯軸器類型的選擇及聯軸器尺寸(型號)的確定 。
該變速器主要由齒輪、軸、軸承、箱體等組成。為方便減速器的製造、裝配及使用 ,還在減速器上設置一系列附件,如檢查孔、透氣孔、油標尺或油麵指示器、吊鉤及起蓋螺釘等。在原動機於變速器間採用是機械設備中應用較多的傳動裝置帶傳動,主要有主動輪、從動輪和傳動帶組成。工作時靠帶與帶輪間的摩擦或嚙合實現主、從動輪間運動和動力的傳遞,具有結構簡單、傳動平穩、價格低廉、緩沖吸振及過載打滑以保護其他零件的優點。
設計者以嚴謹務實的認真態度進行了此次設計,但由於知識水平與實際經驗有限。在設計中難免會出現一些錯誤、缺點和疏漏,誠請位評審老師能給於批評和指正。
摘 要
這次畢業設計是由封閉在剛性殼內所有內容的齒輪傳動是一獨立完整的機構。通過這一次設計可以初步掌握一般簡單機械的一套完整的設計及方法,構成減速器的通用零部件。
這次畢業設計主要介紹了減速器的類型作用及構成等,全方位的運用所學過的知識。如:機械制圖,金屬材料工藝學公差等已學過的理論知識。在實際生產中得以分析和解決。減速器的一般類型有:圓柱齒輪減速器、圓錐齒輪減速器、齒輪-蝸桿減速器,軸裝式減速器、組裝式減速器、聯體式減速器。
在這次設計中進一步培養了工程設計的獨立能力,樹立正確的設計思想,掌握常用的機械零件,機械傳動裝置和簡單機械設計的方法
和步驟,要求綜合的考慮使用經濟工藝性等方面的要求。確定合理的設計方案
4. 急求:伺服電機用何種傳動裝置將運動和動力傳給車輪
傳動也就那麼幾種形式 都是看情況具體選取的 像電動自行車就是通過鏈條傳給車輪的 還有就是汽車的發動機(電機)通過變速箱傳給傳動軸 再由傳動軸傳給後輪 主要涉及的是齒輪傳動
5. 已知運輸帶工作拉力,速度和捲筒直徑,如何計算轉速,輸入功率,輸入轉矩,傳動比,效率
參考網路得出:構件a和構件b的傳動比為i=ωa/ ωb=na/nb,式中ωa和 ωb分別為構件a和b的角速度(弧度/秒);na和nb分別為構件a和b的轉速(轉/分)。
當式中的角速度為瞬時值時,則求得的傳動比為瞬時傳動比。當式中的角速度為平均值時,則求得的傳動比為平均傳動比。
理論上對於大多數漸開線齒廓正確的齒輪傳動,瞬時傳動比是不變的;對於鏈傳動和摩擦輪傳動,瞬時傳動比是變化的。對於嚙合傳動,傳動比可用a和b輪的齒數Za和Zb表示,i=Zb/Za;對於摩擦傳動,傳動比可用a和b輪的直徑Da和Db表示,i=Db/Da。
(5)傳動裝置運動和動力參數擴展閱讀:
在使用過程中,如果出現跑偏,則要作以下檢查以確定原因,進行進行調整。輸送帶跑偏時常檢查的部位和處理方法有:
(1)檢查托輥橫向中心線與帶式輸送機縱向中心線的不重合度。如果不重合度值超過3mm,則應利用托輥組兩側的長形安裝孔對其進行調整。具體方法是輸送帶偏向哪一側,托輥組的哪一側向輸送帶前進的方向前移,或另外一側後移。
(2)檢查頭、尾機架安裝軸承座的兩個平面的偏差值。若兩平面的偏差大於1mm,則應對兩平面調整在同一平面內。
頭部滾筒的調整方法是:若輸送帶向滾筒的右側跑偏,則滾筒右側的軸承座應當向前移動或左側軸承座後移;若輸送帶向滾筒的左側跑偏,則滾筒左側的軸承座應當向前移動或右側軸承座後移。尾部滾筒的調整方法與頭部滾筒剛好相反。
(3)檢查物料在輸送帶上的位置。物料在輸送帶橫斷面上不居中,將導致輸送帶跑偏。
如果物料偏到右側,則皮帶向左側跑偏,反之亦然。在使用時應盡可能的讓物料居中。為減少或避免此類輸送帶跑偏可增加擋料板,改變物料的方向和位置。
6. 帶式輸送機傳動裝置
專業提供服務http://blog.sina.com.cn/jdbysjlw
7. 機械設計課程設計設計帶式運輸機傳動裝置其中運輸帶工作拉力F=2900N V=1. 5滾筒直徑D=400滾筒效率0....
課程設計 帶式運輸機傳動裝置設計,共31頁,6698字
目錄
第一章 設計任務版書 1
第二章 傳動裝置的總體設權計 2
2.1 電動機的選擇 2
2.2 傳動裝置的總傳動比和傳動比分配 3
2.3傳動裝置的運動和動力參數計算 3
第三章 傳動零件的設計計算 5
3.1 V帶傳動的設計計算 5
3.2蝸輪輪蝸桿傳動的設計計算 6
第四章 軸的結構尺寸計算 8
4.1蝸輪轉軸的機構尺寸計算 8
4.2蝸桿軸的結構尺寸設計 8
第五章 軸的強度校核 10
5.1 蝸輪轉軸的強度校核 10
5.2 蝸桿軸的強度校核 12
第六章 滾動軸承的選擇和校核 16
6.1 蝸輪轉軸軸承選擇和校核 16
6.2蝸桿軸軸承選擇和校核 16
第七章 平鍵的選擇計算以及聯軸器的選擇 18
7.1 蝸桿轉軸與蝸輪接觸的鍵的選擇計算 18
7.2 周轉定向連軸起的鍵的選擇計算 18
7.4 聯軸器的選擇 19
第八章 減速器箱體設計及附件的選擇和說明 20
8.1箱體主要尺寸設計 20
8.2附屬零件的設計 20
第九章 潤滑與密封 21
第十章 課程設計小結 22
參考文獻 22
8. 請教~~怎麼求出電動機,與傳動裝置的運動和動力參數求步驟..
傳動裝置的運動和動力參數。可以發你,,
9. 機械設計 螺旋輸送機傳動裝置設計
一、傳動方案擬定
螺旋輸送機用減速器方案如下圖所示
FD
V
二、電動機的選擇
電動機的選擇:選用Y系列三相非同步電動機
1.帶式輸送機所需功率
2.初估電動機額定功率P=
V帶效率=0.96,一對滾動軸承效率=0.99,閉式齒輪傳動效率=0.97(8級精度),聯軸器
3.確定電動機轉速
選擇同步轉速為1500電動機,型號為
4.各尺寸及主要性能如下:
額定功率
同步轉速
滿載轉速
額定轉矩
最大轉矩
質量
(kg)
4.0
1500
1440
2.2
2.2
43
機座號
中心高
安裝尺寸
軸伸尺寸
平鍵尺寸
外形尺寸
112M
112
A
B
D
E
G
L
HD
AC
AD
190
140
28
60
24
400
265
230
190
三、分配各級傳動比
初取V帶傳動比3
則兩斜圓柱齒輪 取
綜上取傳動比
四、 計算運動和動力參數(傳動裝置運動和動力參數的計算)
1.各軸轉速
電動機軸
I軸
II軸
III軸
捲筒軸IV
2.各軸輸入功率
I軸
II軸
III軸
捲筒軸IV
3.各軸輸入轉矩
I軸
II軸
III軸
捲筒軸IV
五、 減速器外傳動零件的設計計算
一 V帶的設計計算
1:確定計算功率
由V帶的工作情況和工作時間長短等因素 取
2:選擇帶型
根據計算功率小帶輪的轉速,由表8-6,可選 SPZ型V帶
3:確定帶輪的基準直徑
1):由表8-7,8-3,初選
2):驗算帶速度:
故V帶選擇合適
3):計算從動輪的基準直徑
由表8-7,選取
4:確定中心距
初選,帶的基準長度
由表8-2取
5:驗算主動輪的包角
,
主動輪的包角符合要求
6:確定窄V帶根數z
由查表8-5c和8-5d得:
由表8-8得:
由表8-2得:
代入式(8-22)得:
故z取z=3
7:計算帶的預緊力
查表8-4得:
由於新帶容易鬆弛,所以安裝新帶時的預緊力為上述預緊力的1.5倍
8:計算壓緊力
9驗算 實際傳動比:
9:帶輪結構設計
基準寬度
基準線上槽深
基準線下槽深
槽間距
第一槽對稱面
至端面的距離
最小帶輪緣厚
帶輪寬
外徑
輪槽角