A. 高中物理實驗常見方法有哪些
探究物理實驗的科學方法有許多種, 常用的有觀察法、控制變數法、轉換法、等效替代法。高中這幾個都有,但考試考的最多的應該是控制變數法和等效替代法。
下面筆者將這些常用方法總結如下。 一、觀察法 觀察是學習物理最基本的方法,是科學歸納的必要條件, 學生對學習活動的外部表現進行有目的、有計劃的觀察、記錄, 能夠為物理概念的形成、物理知識的理解、物理規律的探究提供信息和依據。常用觀察方法有: 1.觀察重點, 排除無關因素的干擾。如做氣體膨脹對外做功的實驗時,學生只聽到「嘭」的一聲, 看到瓶塞跳得很高, 對真正需要看的現象---塑料瓶口出現的酒精煙霧卻視而不見, 這就需要教師及時交待, 提醒學生, 然後再進行分析。 2.前後對比觀察, 抓住因果關系。如學習密度一節時, 我首先讓學生區分銅塊、鐵塊、鋁塊、石塊、酒精、水等物體, 通過觀察它們的顏色、狀態、軟硬來辨認。然後出示用紙包住的相同體積的銅塊、鐵塊、鋁塊, 怎樣區分它們? 學生通過實驗發現, 它們的質量不同, 因而得出相同體積的物體質量不同, 也是物質的一種特性, 從而引入密度概念。 3.正、反對比觀察, 深化認識。在指導學生觀察時, 多採用一些正反對比的方法, 可以加深學生理解知識, 拓寬思路。如探究聲音的產生, 即無聲又有聲; 探究沸點與氣壓的關系時, 即增大氣壓, 沸點升高, 減小氣壓, 沸點降低。 二、控制變數法 控制變數法是指一個物理量與多個物理量有關, 把多因素的問題變成多個單因素的問題, 分別加以研究, 最後再綜合解決。利用控制變數法研究物理問題, 有利於扭轉「重結論、輕過程」的傾向, 有利於培養學生的科學素養, 使學生學會學習。如導體中的電流與導體兩端的電壓和導體的電阻都有關系, 研究導體中的電流跟這段導體兩端的電壓時, 控制導體的電阻不變, 改變導體兩端電壓, 看導體中電流的變化, 通過學生實驗, 得出歐姆定律I=U/R。另外,研究導體的電阻大小、滑動摩擦力的大小、液體壓強的大小、浮力大小、動能和重力勢能大小、電流的熱量的大小、壓力的作用效果、滑輪組的機械效率、電磁鐵的磁性強弱、產生感應電流方向也都用到了控制變數法。 三、轉換法 轉化法是指將抽象的、看不見、摸不著或者是微小變化的現象或規律, 使之轉化為學生熟知的看見的現象來認識它們。如電流看不見、摸不到, 但可以根據電流產生的效應來認識, 磁場也可以根據地磁場的基本性質來認識; 研究電熱與電流、電阻有關時, 將產生的電熱多少轉換成液柱上升的高度; 回答動能與什麼因素有關時, 將動能的大小轉換成了小球運動的遠近。對於不容易測得物理量, 可以根據定義式轉換成能夠直接測量的物理量。如測量燈泡的電功率, 轉化成利用電流表通過燈泡的電流I, 用電壓表測出燈泡兩端電壓U, 通過P=IU計算得出電功率P。類似的實驗還有, 將測不規則小石塊的體積轉換成測石塊排開水的體積;測曲線的長短時轉換成測細棉線的長度, 測硬幣的直徑轉換成測刻度尺的長度; 測量滑動摩擦力大小轉換成測拉力的大小;測量大氣壓強值轉換成求被大氣壓壓起的水銀柱的壓強。 對於能看到的實驗現象, 但是不容易觀察, 將它產生的效果放大再研究。如音叉的振動藉助於乒乓球被彈起的幅度將其現象放大來觀察; 壓力對玻璃瓶的形變時將玻璃瓶密閉, 裝滿紅水,插上一個小玻璃管, 將玻璃瓶形變引起液面變化放大成小玻璃管液面的變化。 四、等效替代法 等效替代法是指抓住兩個看似不同的物理過程, 尋求其共同效果。如用合力替代物體所受幾個力時, 合力與原來幾個力的作用效果相同; 研究串、並聯電路的總電阻時, 用總電阻大小代替分電阻大小; 在平面鏡成像的實驗中,由於我們無法真正的測出物與像的大小, 所以利用了一個完全相同的另一根蠟燭來等效替代像的大小, 從而驗證物與像的大小相同。
麻煩採納,謝謝!
B. 物理學經典實驗裝置
(1)赫茲證明電磁波的實驗裝置
(2)盧瑟福@粒子散射實驗裝置
(3)楊氏雙縫干涉實驗裝置
C. 新課程高中物理有哪些實驗器材
高考要求13種器材的使用:
刻度尺、彈簧秤、天平、秒錶、游標卡尺、螺旋測微器、打點計時器 、電壓表、電流表、滑動變阻器、電阻箱、多用電表
D. 高中物理實驗室應配備哪些器材請說的詳細全面一些
高中物理實驗室應配備的器材如下:
1、橋梁模型器材套件
包括梁式橋、拱形橋、斜拉橋、桁架橋、吊橋、懸索橋等。
2、光控開關實驗器材套件
包括光敏電阻、74LS14、51kΩ可變電阻、發光二極體、330Ω電阻。
3、火災報警器
4、電子鬧鍾套件
5、滾珠盒
6、演示實驗器材
包括雲母片、電解電容器、三極體、駐極體話筒、光聲控延時開關100kΩ可變電阻、1kΩ電阻等。
7、學生實驗紙材
包括打點紙帶、墨粉紙、坐標紙、復印紙等。
8、溫度報警實驗器材套件
熱敏電阻、74LS14、1kΩ可變電阻、蜂鳴器(YMD或HMB)。
9、電熨斗控溫電路套件
10、防盜報警電路器材套件
包括小永磁體、干簧管、74LS14、2.2kΩ電阻、蜂鳴器(YMD或HMB)。
11、感測器器材
各種溫度感測器(雙金屬片、熱電偶、鉑電阻、銅電阻、熱敏電阻、半導體、感溫鐵氧體)、光敏電阻、硅光電池、光電二極體、濕敏電阻、干簧管、霍爾元件、氣體壓強感測器、酒精氣體感測器等。
12、晶體和非晶體樣品 套 石英晶體,食鹽晶體,雲母片,明礬晶體,硫酸銅晶體;玻璃,松香,蜂蠟,瀝青,橡膠。
13、硫代硫酸鈉(海波)。
(4)高中物理實驗裝置簡介擴展閱讀
物理實驗室所做的實驗是初高中階段物理課程中包含的相關實驗,包括電學實驗、力學實驗、熱學實驗、光學實驗等等,常用於驗證物理學科的定理定律。
實驗室使用守則
1、為保護實驗儀器和保持環境衛生,學生必須脫鞋進入實驗室。
2、實驗室是全校師生進行實驗教學和科研活動的場所,學生進入實驗室後要保持肅靜,遵守紀律。
3、做實驗前,認真聽教師講解實驗目的、步驟、儀器的性能操作、方法和注意事項,認真檢查所需儀器設備是否完好齊全,如有缺損要及時向教師報告。
4、實驗時要遵守操作規程,按照實驗步驟認真操作。
5、實驗時要注意安全,防止意外發生。
6、愛護實驗室儀器設備。
7、實驗完畢要認真清理儀器設備,關閉水源電源。
物理實驗儀器室主要放置物理實驗儀器,分類管理。物理實驗准備室設有實驗台,台上配有各種實驗儀器。學生分組實驗室主要設有學生實驗桌,並有電源、水源和氣源。室內要求光線充足,防塵,有通風設備,並有充分的活動餘地。
E. 高中物理實驗常見方法有哪些
方法很多,例如: 控制變數法、等效替代法、微小放大法、理想實驗法等。
F. 物理學經典實驗裝置(高中)
安培(André Marie Ampè 1775~1836年),法國物理學家,1775年1月22日生於里昂一個富商家庭。
在電磁學上的貢獻:
①發現了安培定則
奧斯特發現電流磁效應的實驗,引起了安培注意,使他長期信奉庫侖關於電、磁沒有關系的信條受到極大震動,他全部精力集中研究,兩周後就提出了磁針轉動方向和電流方向的關系及從右手定則的報告,以後這個定則被命名為安培定則。
②發現電流的相互作用規律
他提出了電流方向相同的兩條平行載流導線互相吸引,電流方向相反的兩條平行載流導線互相排斥。對兩個線圈之間的吸引和排斥也作了討論。
③發明了電流計
安培還發現,電流在線圈中流動的時候表現出來的磁性和磁鐵相似,創制出第一個螺線管,在這個基礎上發明了探測和量度電流的電流計。
④提出分子電流假說
他根據磁是由運動的電荷產生的這一觀點來說明地磁的成因和物質的磁性。提出了著名的分子電流假說。安培認為構成磁體的分子內部存在一種環形電流——分子電流。由於分子電流的存在,每個磁分子成為小磁體,兩側相當於兩個磁極。通常情況下磁體分子的分子電流取向是雜亂無章的,它們產生的磁場互相抵消,對外不顯磁性。當外界磁場作用後,分子電流的取向大致相同,分子間相鄰的電流作用抵消,而表面部分未抵消,它們的效果顯示出宏觀磁性。安培的分子電流假說在當時物質結構的知識甚少的情況下無法證實,它帶有相當大的臆測成分;在今天已經了解到物質由分子組成,而分子由原子組成,原子中有繞核運動的電子,安培的分子電流假說有了實在的內容,已成為認識物質磁性的重要依據。
⑤總結了電流元之間的作用規律——安培定律
安培做了關於電流相互作用的四個精巧的實驗,並運用高度的數學技巧總結出電流元之間作用力的定律,描述兩電流元之間的相互作用同兩電流元的大小、間距以及相對取向之間的關系。後來人們把這定律稱為安培定律。
⑥安培第一個把研究動電的理論稱為「電動力學」,1827年安培將他的電磁現象的研究綜合在《電動力學現象的數學理論》一書中。這是電磁學史上一部重要的經典論著。為了紀念他在電磁學上的傑出貢獻,電流的單位「安培」以他的姓氏命名。
安培將他的研究綜合在《電動力學現象的數學理論》一書中,成為電磁學史上一部重要的經典論著。麥克斯韋稱贊安培的工作是「科學上最光輝的成就之一」,還把安培譽為「電學中的牛頓」。
G. 高中物理的實驗方法 具體到一些著名實驗
1.埃拉托色尼測量地球的周長
古埃及有一現名為阿斯旺的小鎮。在這里,夏日正午的太陽懸在頭頂:物體沒有影子,陽光直射入深水井中。埃拉托色尼是公元前3世紀亞歷山大圖書館的館長,他意識到這一信息可以幫助他估計地球的周長,在以後幾年的時間里的同一天、同一時間,他在亞歷山大測量了同一地點的物體的影子。發現太陽光線有輕微的傾斜,在垂直方向偏離了大約7度角。 剩下的就是幾何學的問題了。假設地球是球狀,那麼它的圓周應該跨越360度。如果兩座城市成7度角,就是7/360的圓周,就是當時5000個希臘運動場的距離。因此地球的周長就應該是25萬個希臘運動場。今天,通過航跡測算,我們知道埃拉托色尼的測量誤差僅在5%以內。
2. 伽利略的自由落體實驗
在16世紀末,人人都認為重量大的物體比重量小的物體下落的快,因為偉大的亞里士多德已經這么說了。伽利略,當時在比薩大學數學系任職,他大膽的向公眾的觀點挑戰。著名的比薩斜塔實驗已經成為科學中的一個故事:他從斜塔上同時扔下一輕一重的物體,讓大家看到兩個物體同時落地。伽利略挑戰亞里士多德的代價也許是他失去工作,但他展示的是自然界的本質,而不是人類的權威,科學作出了最後的裁決。
3. 伽利略的加速實驗
伽利略繼續提煉他有關物體運動的觀點。他做了一個6米多長、3米多寬的光滑直木槽。再把這個木板的斜槽固定住,讓銅球從木槽頂端沿斜面滑下,並用水鍾測量銅球每次下滑的時間,研究它們之間的關系。亞里士多德曾預言滾動球的速度是均勻不變的;銅球滾動兩倍的時間就走出兩倍的路程。伽利略卻證明銅球滾動的路程和時間的平方成 正比:兩倍的時間里,銅球滾動的4倍的距離,因為存在恆定的重力加速度。
4.牛頓的棱鏡分解太陽光
埃薩克·牛頓出生那年,伽利略與世長辭。牛頓1665年畢業於劍橋大學的三一學院,後來因躲避鼠疫在家呆了兩年,後來順利地得到了工作。當時大家都認為白光是一種純的沒有其它顏色的光(亞里士多德就是這樣認為的),而彩色光是一種不知何故發生變化的光。
為了驗證這個假設,牛頓一面三棱鏡放在陽光下,透過三棱鏡,光在牆上分解為不同的顏色,後來我們稱作為光譜。人們知道彩虹的五顏六色,但是他們認為那是因為不正常。牛頓的結論是:正是這些紅、橙、黃、綠、藍、靛、紫基礎色有不同的色譜才形成了表面上顏色單一的白色光,如果你深入地看看,會發現白光是非常美麗的。
5.卡文迪許扭稱實驗
牛頓的另一偉大貢獻是他的萬有引力定律,但是萬有引力到底有多大?18世紀末,英國科學家亨利·卡文迪許決定要找出這個引力。他將兩邊系有小金屬球的6英尺木棒用金屬線懸吊起來,這個木棒就像啞鈴一樣。再將兩個350磅重的鉛球放在相當近的地方,以產生足夠的引力讓啞鈴轉動,並扭動金屬線。然後用自製的儀器測量出微小的轉動。
測量的結果驚人的准確,他測出了萬有引力恆量的參數,在此基礎上卡文迪許計算出地球的密度和質量。他的計算結果和當今世界公認的值很接近。
6. 托馬斯·楊的光干涉實驗
牛頓也不是永遠都正確的。在多次爭吵後,牛頓讓科學界接受了這樣的觀點:光是有微粒組成的,而不是一種波。1830年,英國醫生、物理學家托馬斯·楊用實驗來驗證這點。 他在百葉窗上開了一個小洞,讓光線通過,並用一面鏡子反射透過的光線。然後他用一個厚約1/30英寸的紙片把這束光從中間分成兩束。結果看到了相交的光線和陰影。這說明兩束光線可以像波一樣相互干涉。這個實驗為一個世紀後量子學的創立起到了至關重要的作用。
7.米歇爾·傅科鍾擺實驗
去年,科學家們在南極安置一個擺鍾,並觀察它的擺動。他們是在重復1851年巴黎的一個著名實驗。1851年法國科學家傅科在公眾面前做了一個著名的實驗,用一根長220英尺的鋼絲將一個62磅重的頭上帶有鐵筆的鐵球懸掛在屋頂下,觀測記錄他前後擺動的軌跡。周圍觀眾發現每次擺動都會稍稍偏離原來軌跡並發生旋轉時,無不驚訝。實際上這是因為房屋在緩緩移動。
傅科的演示說明地球是在圍繞地軸自轉的。在巴黎的緯度上,鍾擺的軌跡是順時針方向,30小時一個周期。在南半球,鍾擺應該逆時針轉動,而赤道上將不會轉動。在南極,轉動周期是24小時。
8.羅伯特·密里根的油滴實驗
很早以前,科學家就在研究電。人們知道這種無形的物質可以從天上的閃電中獲得,也可以通過摩擦頭發得到。1897年,英國物理學家J·J·托馬斯已經確立電流是由帶負電粒子即電子組成。1909年美國科學家羅伯特·密里根開始測量電流的電荷。密里根用一個香水瓶子的噴頭向一個透明的小盒子里噴油滴。小盒子的頂部和底部分別接一個電池,讓一邊成為正電板,另一邊成為負電板。當小油滴通過空氣時,就會吸引一些靜電,油滴下落的速度可以通過改變電板間的電壓來控制。
密里根不斷改變電壓,仔細觀察每一顆油滴的運動。經過反復的研究,密里根得出結論:電荷的值是某個固定的常量,最小的單位就是單個電子的帶電量。
9.盧瑟福發現核子的實驗
1911年盧瑟福還在曼徹斯特大學做放射能的實驗時,原子在人們的印象中就好像是「葡萄乾布丁」,大量正電荷聚集的糊狀物質,中間包含著電子的微粒。但是他和他的助手發現向金箔發射帶正電的阿爾法微粒時少量被彈回,這是他們非常吃驚。盧瑟福計算出原子不是一團糊狀物質,大部分物質集中在一個中心小核上,現在叫做核子,電子在它周圍環繞。
10.托馬斯·楊的雙縫演示應用於電子干涉的實驗
牛頓和托馬斯·楊對光的性質的研究得出的結論都不完全的正確。光既不是簡單由粒子構成,也不是一種單純的波。20世紀初,麥克斯·普朗克和阿爾伯特·愛因斯坦分別指出一種叫光子的東西發出光和吸收光。但是其他實驗還證明光是一種波狀物。經過幾十年發展的量子學說最終總結了兩個矛盾的真理:光子和亞原子微粒(如電子、光子等等)是同時具有兩種性質的微粒,物理上稱它們:波粒二象性。
將托馬斯·楊的雙縫演示改造一下可以很好的說明這一點。科學家們用電子流代替光束來解釋這個試驗。根據量子力學,電粒子流被分成兩股,被分的更小的粒子流產生波效應,它們互相影響,以致產生象托馬斯·楊的雙縫實驗中出現的加強光和陰影。這說明微粒也有波的效應。到1961年,某一位科學家才在真實的世界裡做出了這一實驗。
下面給你一些物理實驗的方法
1、控制變數法
在實驗中或實際問題中,常有多個因素在變化,造成規律不易表現出來,這時可以先控制一些物理量不變,依次研究某一個因素的影響和利用。
如氣體的性質,壓強、體積和溫度通常是同時變化的,我們可以分別控制一個狀態參量不變,尋找另外兩個參量的關系,最後再進行統一。歐姆定律、牛頓第二定律等都是用這種方法研究的。
2、等效替代法
某些物理量不直觀或不易測量,可以用較直觀、較易測量而且又有等效效果的量代替,從而簡化問題。
如在驗證動量守恆實驗中,發生碰撞的兩個小球的速度不易直接測量,可用水平位移代替水平速度研究;在描繪電場中的等勢線時,用電流場來模擬電場等都用了等效思想。
3、累積法
把某些難以用常規儀器直接准確測量的物理量用累積的方法,將小量變大量,不僅可以便於測量,而且還可以提高測量的准確程度,減小誤差。
如測量均勻細金屬絲直徑時,可以採用密繞多匝的方法;測量單擺的周期時,可測30-50個全振動的時間;分析打點計時器打出的紙帶時,可隔幾個點找出計數點分析等。
4、留跡法
有些物理過程是瞬息即逝的,我們需要將其記錄下來研究,如同攝像機一樣拍攝下來分析。
如用沙擺描繪單擺的振動曲線;用打點計時器記錄物體位置;用頻閃照相機拍攝平拋的小球位置;用示波器觀察交流信號的波形等。
5、外推法
有些物理量可以局部觀察或測量,作為它的極端情況,不易直觀觀測,如果把這局部觀察測量得到的規律外推到極端,可以達到目的。
例如在測電源電動勢和內電阻的實驗中,無法直接測量I=0(斷路)時的路端電壓(電動勢)和短路(U=0)時的電流強度,通過一系列U、I對應值點畫出直線並向兩方延伸,交U軸點為電動勢,交I軸點為短路電流。
6、近似法
在復雜的物理現象和物體運動中,影響物理量的因素較多,有時為了突出主要矛盾,可以有意識的設計實驗條件、忽略次要因素的影響,用近似量當成真實量進行測量。
7、放大法
對於物理實驗中微小量或小變化的觀察,可採用放大的方法。例如游標卡尺、放大鏡、顯微鏡等儀器都是按放大原理製成的。
H. 高中物理實驗儀器使用
高考物理實驗復習大全(免費)
直接下載的是Word文檔
http://wenku..com/view/a0119784b9d528ea81c7795f.html
我也發給你了一份