『壹』 紅外成像原理是什麼
「如果用紅外攝影對人體成像,做出體表『熱圖』……」會產生這樣的認識:
(1)紅外攝影成物體的熱圖就是它的紅外像;
(2)可見光不能使紅外線膠片感光,只有紅外線能使它感光;
(3)紅外線膠片所記錄的是目標物體發出的紅外線;
(4)普通相機也能使用紅外線膠片進行紅外攝影。
事實上,這些理解都是錯誤的。引起錯誤認識的根源是沒有說明紅外攝影所成的紅外像與熱像儀所成的熱圖之間的區別,並且對紅外線膠片的介紹也不夠准確。下面就這兩個問題做一闡述,不妥之處,敬請指正。
一、紅外線的發現和分類
1800年,英國物理學家赫歇爾研究單色光的溫度時發現:位於紅光外,用來對比的溫度計的溫度要比色光中溫度計的溫度高,於是稱發現一種看不見的「熱線」,稱為紅外線。
紅外線位於電磁波譜中的可見光譜段的紅端以外,介於可見光與微波之間,波長為0.76~1000μm,不能引起人眼的視覺。在實際應用中,常將其分為三個波段:近紅外線,波長范圍為0.76~1.5μm;中紅外線,波長范圍為1.5~5.6μm;遠紅外線,波長范圍為5.6~1000μm。它們產生的機理不太一致。我們知道溫度高於絕對零度的物體的分子都在不停地做無規則熱運動,並產生熱輻射,故自然界中的物體都能輻射出不同頻率的紅外線,如相機、紅外線膠片自身等。在常溫下,物體輻射出的紅外線位於中、遠紅外線的光譜區,易引起物體分子的共振,有顯著的熱效應。因此,又稱中、遠紅外線為熱紅外。當物體溫度升高到使原子的外層電子發生躍遷時,將會輻射出近紅外線,如太陽、紅外燈等高溫物體的輻射中就含有大量的近紅外線。藉助不同波段的紅外線的不同物理性質,可製成不同功能的遙感器。
二、不同波段的紅外線成像原理和特點
紅外遙感是指藉助對紅外線敏感的探測器,不直接接觸物體,來記錄物體對紅外線的輻射、反射、散射等信息,通過分析,揭示出物體的特徵及其變化的科學技術。紅外遙感技術中能獲得圖像信息的儀器有:使用紅外線膠片的照相機,具有紅外攝影功能的數碼相機,熱像儀等。雖然它們都利用紅外線工作,但成像原理和所成的圖像的物理意義有很大的區別。紅外攝影通常指利用紅外線膠片和數碼相機進行的攝影;前者屬於光學攝影類,後者屬於光電攝影類。
1.光學攝影類
紅外膠片是一種能夠感應紅外線的膠片,有黑白紅外膠片和彩色紅外膠片兩類。其成像原理與普通膠片相似:曝光時,鹵化銀發生化學變化,記錄景物反射到膠片上電磁波的信息,通過顯影、定影等技術獲得景物圖像。普通膠片記錄的是波長為0.4~0.76μm范圍內的可見光;由於紅外膠片中加入了紅外增感染料,使得它能記錄波長在0.4~1.35μm間的可見光和近紅外線。為了獲得景物純粹的紅外像,需要在鏡頭前加裝一個紅外濾鏡,濾掉可見光,只通過近紅外線。那麼,這部分近紅外線是不是景物發出的呢?顯然,日常攝影中的人體、樹木等景物達不到能輻射近紅外線的溫度,它們的熱輻射也不能使膠片形成足夠清晰的像,所以應該是景物反射太陽輻射中的近紅外線。故近紅外線也稱為攝影紅外。
紅外膠片成的像與普通膠片成的像有較大的差異。人體、草地對紅外線反射較強,它們的黑白紅外像就較白;河流、天空對紅外線反射較弱,成的黑白紅外像就較黑。由於彩色紅外膠片的感光光譜、成色劑和普通彩色膠片的不同,彩色紅外相片上的顏色也就不是景物真實顏色的反映,所以又稱它為假彩色紅外膠片。例如,健康綠色植物反射近紅外線,它的紅外像為紅色,清澈的河水的紅外像是深藍色。雖然在肉眼看來病態的植物和健康的植物都為綠色,文件塗改前後的墨跡也沒什麼區別,但它們對紅外線的反射強弱不同,成的紅外像就有明顯的差異。因此,它常用於刑偵、國土資源調查、環保等領域。
紅外線較強的穿透能力和紅外膠片易受熱輻射影響的這些特點決定了在用紅外膠片攝影時,對操作有較高的要求。紅外膠片對波長為0.76~0.9μm的近紅外線有最佳的感光性能,隨著能感應的波長增大,感光葯劑受溫度的影響越來越顯著,感光葯劑化學穩定性也隨之下降。例如,感光波長上限為1.1μm的紅外膠片能保存三個月,當感光波長上限達到1.35μm時,只能保存8天。所以無論是保存還是攜帶都需要冷藏,裝卸膠片都需要在暗室或者專用防紅外線的暗袋中進行。由於紅外膠片的曝光時間較長,出廠時沒有標感光度,需要根據經驗手動調整感光度,且自動相機的紅外計數器發出的紅外線能使其曝光;所以最好使用手動金屬機身的相機。紅外攝影調焦時須注意,有的相機物鏡上有紅外線聚焦指數,其標記為「R」;若沒有此標記,則要先對可見光調焦後,再將鏡頭前移可見光焦距的1/250左右。
2.光電攝影類
自然界中的一些物質在受到輻射後,會引起它的電化學性質變化。例如溫度升高後,電阻變小,產生電壓。利用它們的這種物理性質可製成光電探測器,遙感儀器的光學系統收集到的輻射能量通過探測器實現光電轉換。根據電磁波和探測器的作用機理不同,分為光子探測器和熱電探測器。
光子探測器是利用光敏感材料的光電效應,把一定波長的電磁波信號轉化為電信號輸出。如一些具有紅外攝影功能的數碼相機的光電耦合器(CCD)能響應的波譜為0.4~1.1μm,同樣在進行紅外攝影時要加裝紅外濾鏡,CCD所感應到的是景物反射太陽輻射中的或者是相機自帶的紅外燈發出的近紅外線。
熱電探測器是利用目標輻射的熱效應對熱敏電阻的電學性質的影響而工作。例如熱紅外成像裝置,它是被動地接受目標的熱輻射,通過其中光學成像系統聚焦到探測元件上進行光電轉換,放大信號,數字化後,經多媒體圖像技術處理,在屏幕上以偽色顯示出目標的溫度場—熱紅外圖像(熱圖、熱像)。熱圖像色調的明暗決定於物體表面溫度及輻射率。它反映了目標的紅外輻射能量分布情況,但是不能代表目標的真實形狀。比如飛機升空後,在它原來停放的位置還能獲得飛機停放時的熱圖像。探測元件工作的波段常為3~5μm和8~14μm,為獲得足夠的靈敏度,需要對探測器冷卻。第二代熱電探測器增加了測溫功能的熱紅外成像裝置,又稱為熱像儀,它在醫療、消防、航空遙感、軍事等領域有廣泛用途。
綜上所述,紅外攝影所成的紅外像利用了景物反射的近紅外線,體現了景物的幾何形狀;熱像儀對人體成的熱圖,是利用人體自身熱輻射獲得的表示人體表面溫度分布的圖像。是兩個不同的概念。紅外膠片中的感光物質是鹵化銀,可見光也能使它感光。(
『貳』 高光譜成像光譜掃描的概念
光譜解析度在10l數量級范圍內的光譜圖像稱為高光譜圖像(hyperspectral
image)。遙感技術經過20世紀後半葉的發展,無論在理論上、技術上和應用上均發生了重大的變化。其中,高光譜圖像技術的出現和快速發展無疑是這種變化中十分突出的一個方面。通過搭載在不同空間平台上的高光譜感測器,即成像光譜儀,在電磁波譜的紫外、可見光、近紅外和中紅外區域,以數十至數百個連續且細分的光譜波段對目標區域同時成像。在獲得地表圖像信息的同時,也獲得其光譜信息,第一次真正做到了光譜與圖像的結合。與多光譜遙感影像相比,高光譜影像不僅在信息豐富程度方面有了極大的提高,在處理技術上,對該類光譜數據進行更為合理、有效的分析處理提供了可能。因而,高光譜圖像技術所具有的影響及發展潛力,是以往技術的各個發展階段所不可比擬的,不僅引起了遙感界的關注,同時也引起了其它領域(如醫學、農學等)的極大興趣。
『叄』 成像光譜儀的性能參數和原理
成像光譜儀主要性能參數是:(1)雜訊等效反射率差(NEΔp ),體現為信噪比(SNR);(2)瞬時視場角(IFOV),體現為地面解析度;(3)光譜解析度,直觀地表現為波段多少和波段譜寬。
高光譜解析度遙感信息分析處理,集中於光譜維上進行圖像信息的展開和定量分析,其圖像處理模式的關鍵技術有:⑴超多維光譜圖像信息的顯示,如圖像立方體的生成;⑵光譜重建,即成像光譜數據的定標、定量化和大氣糾正模型與演算法,依此實現成像光譜信息的圖像-光譜轉換;⑶光譜編碼,尤其指光譜吸收位置、深度、對稱性等光譜特徵參數的演算法;⑷基於光譜資料庫的地物光譜匹配識別演算法;⑸混合光譜分解模型;⑹基於光譜模型的地表生物物理化學過程與參數的識別和反演演算法。
高端的成像光譜儀採用了透射型體相全息衍射光柵,其在可見光到近紅外波段具有低雜散光、低吸收率特點;由於核心部分密封在玻璃或其它透明材質中,因此壽命長、容易清潔、抗刮檫,非常適合各種苛刻的野外的應用環境。
成像光譜儀工作方式主要為推掃式,為了實現掃描過程,一般利用外接掃描平台帶動光譜儀運行;由於掃描平台比較笨重,且增加了耗電量,給野外工作帶來諸多不便,所以現在最新型的成像光譜儀取消了掃描平台,改為內置式掃描設計,減輕了整機重量和能耗,而且可以直接進行垂直向下測量,更利於野外使用。
『肆』 圖像感測器識別圖像的原理是什麼。。。。
這足夠你寫論文了。
Charge Coupled Device (CCD) 電荷耦合器件。CCD是一種半導體裝置,能夠把光學影像轉化為數字信號。 CCD上植入的微小光敏物質稱作像素(Pixel)。一塊CCD上包含的像素數越多,其提供的畫面解析度也就越高。CCD的作用就像膠片一樣,但它是把圖像像素轉換成數字信號。CCD在攝像機、數碼相機和掃描儀中應用廣泛,只不過攝像機中使用的是點陣CCD,即包括x、y兩個方向用於攝取平面圖像,而掃描儀中使用的是線性CCD,它只有x一個方向,y方向掃描由掃描儀的機械裝置來完成。
CCD它使用一種高感光度的半導體材料製成,能把光線轉變成電荷,通過模數轉換器晶元轉換成數字信號,數字信號經過壓縮以後由相機內部的閃速存儲器或內置硬碟卡保存,因而可以輕而易舉地把數據傳輸給計算機,並藉助於計算機的處理手段,根據需要和想像來修改圖像。CCD由許多感光單位組成,通常以百萬像素為單位。當CCD表面受到光線照射時,每個感光單位會將電荷反映在組件上,所有的感光單位所產生的信號加在一起,就構成了一幅完整的畫面。
CCD,是英文Charge Coupled Device 即電荷耦合器件的縮寫,它是一種特殊半導體器件,上面有很多一樣的感光元件,每個感光元件叫一個像素。CCD在攝像機里是一個極其重要的部件,它起到將光線轉換成電信號的作用,類似於人的眼睛,因此其性能的好壞將直接影響到攝像機的性能。
衡量CCD好壞的指標很多,有像素數量,CCD尺寸,靈敏度,信噪比等,其中像素數以及CCD尺寸是重要的指標。像素數是指CCD上感光元件的數量。攝像機拍攝的畫面可以理解為由很多個小的點組成,每個點就是一個像素。顯然,像素數越多,畫面就會越清晰,如果CCD沒有足夠的像素的話,拍攝出來的畫面的清晰度就會大受影響,因此,理論上CCD的像素數量應該越多越好。但CCD像素數的增加會使製造成本以及成品率下降,而且在現行電視標准下,像素數增加到某一數量後,再增加對拍攝畫面清晰度的提高效果變得不明顯,因此,一般一百萬左右的像素數對一般的使用已經足夠了。
單CCD攝像機是指攝像機里只有一片CCD並用其進行亮度信號以及彩色信號的光電轉換,其中色度信號是用CCD上的一些特定的彩色遮罩裝置並結合後面的電路完成的。由於一片CCD同時完成亮度信號和色度信號的轉換,因此難免兩全,使得拍攝出來的圖像在彩色還原上達不到專業水平很的要求。為了解決這個問題,便出現了3CCD攝像機。3CCD,顧名思義,就是一台攝像機使用了3片CCD。我們知道,光線如果通過一種特殊的棱鏡後,會被分為紅,綠,藍三種顏色,而這三種顏色就是我們電視使用的三基色,通過這三基色,就可以產生包括亮度信號在內的所有電視信號。如果分別用一片CCD接受每一種顏色並轉換為電信號,然後經過電路處理後產生圖像信號,這樣,就構成了一個3CCD系統。
和單CCD相比,由於3CCD分別用3個CCD轉換紅,綠,藍信號,拍攝出來的圖像從彩色還原上要比單CCD來的自然,亮度以及清晰度也比單CCD好。但由於使用了三片CCD,3CCD攝像機的價格要比單CCD貴很多。
四色CCD是索尼公司在2003年推出的一種CCD新技術。四色即紅 綠 藍 品紅(RGBE)相對與傳統的三色(紅 綠 藍),四色CCD的色彩還原錯誤率進一步降低。因而使色彩還原更逼真。收款採用四色CCD的數碼相機是SNOY DSC—F828
數碼相機規格表中的CCD一欄經常寫著「1/2.7英寸CCD」等。這里的「1/2.7英寸」就是CCD的尺寸,實際上就是CCD對角線的長度。
現有的數碼相機一般採用1/2.7英寸、1/2.5英寸和1/1.8英寸等尺寸的CCD。CCD是受光元件(像素)的集合體,接收透過鏡頭的光並將其轉換為電信號。在像素數一樣的情況下,CCD尺寸越大單位像素就越大。這樣,單位像素可以收集更多的光線,因此,理論上可以說有利於提高畫質。
但是,數碼相機畫質的好壞不僅是由CCD決定的。鏡頭以及通過CCD輸出的電信號形成圖像的電路的性能等也能夠影響到相機的畫質。所謂的「大尺寸CCD=高畫質」是不正確的。例如,雖然1/2.7英寸比1/1.8英寸尺寸小,但配備1/2.7英寸CCD的數碼相機並沒有受到畫質不好的批評。
現在,袖珍數碼相機日趨小巧輕便,出於設計上的考慮,其中大多採用1/2.7英寸的小型CCD。
順便說一句,1/2.7英寸的「型」有時也寫作「inch」,不過,在這里不是普通的「1英寸=25.4mm」。由於結合了CCD亮相前攝像機上使用的攝像管和顯示方式,因此,習慣上採用比較特殊的尺寸。1/2.7英寸為6.6mm,1/1.8英寸約為9mm。
[編輯本段]CCD攝像機的選擇和分類
CCD結構及工作原理來源於中國儀器超市(www.cimart.com.cn)的資料:
CCD結構包含感光二極體、並行信號寄存器、並行信號寄存器、信號放大器、數摸轉換器等項目,將分別敘述如下;
1. 感光二極體(Photodiode)
2. 並行信號寄存器(Shift Register):用於暫時儲存感光後產生的電荷。
3. 並行信號寄存器(Transfer Register):用於暫時儲存並行積存器的模擬信號並將電荷轉移放大。
4. 信號放大器:用於放大微弱電信號。
5. 數摸轉換器:將放大的電信號轉換成數字信號。
CCD的工作原理由微型鏡頭、分色濾色片、感光層等三層,將分別敘述如下;
1. 微型鏡頭
微型鏡頭為CCD的第一層,我們知道,數碼相機成像的關鍵是在於其感光層,為了擴展CCD的採光率,必須擴展單一像素的受光面積。但是提高採光率的辦法也容易使畫質下降。這一層「微型鏡頭」就等於在感光層前面加上一副眼鏡。因此感光面積不再因為感測器的開口面積而決定,而改由微型鏡片的表面積來決定。
2. 分色濾色片
分色濾色片為CCD的第二層,目前有兩種分色方式,一是RGB原色分色法,另一個則是CMYK補色分色法這兩種方法各有優缺點。首先,我們先了解一下兩種分色法的概念,RGB即三原色分色法,幾乎所有人類眼鏡可以識別的顏色,都可以通過紅、綠和藍來組成,而RGB三個字母分別就是Red, Green和Blue,這說明RGB分色法是通過這三個通道的顏色調節而成。再說CMYK,這是由四個通道的顏色配合而成,他們分別是青(C)、洋紅(M)、黃(Y)、黑(K)。在印刷業中,CMYK更為適用,但其調節出來的顏色不及RGB的多。
原色CCD的優勢在於畫質銳利,色彩真實,但缺點則是雜訊問題。因此,大家可以注意,一般採用原色CCD的數碼相機,在ISO感光度上多半不會超過400。相對的,補色CCD多了一個Y黃色濾色器,在色彩的分辨上比較仔細,但卻犧牲了部分影像的解析度,而在ISO值上,補色CCD可以容忍較高的感光度,一般都可設定在800以上
3. 感光層
感光層為CCD的第三層,這層主要是負責將穿過濾色層的光源轉換成電子信號,並將信號傳送到影像處理晶元,將影像還原。
CCD晶元就像人的視網膜,是攝像頭的核心。目前我國尚無能力製造,市場上大部分攝像頭採用的是日本SONY、SHARP、松下、LG等公司生產的晶元,現在韓國也有能力生產,但質量就要稍遜一籌。 因為晶元生產時產生不同等級,各廠家獲得途徑不同等原因,造成CCD採集效果也大不相同。在購買時,可以採取如下方法檢測:接通電源,連接視頻電纜到監視器,關閉鏡頭光圈,看圖像全黑時是否有亮點,屏幕上雪花大不大,這些是檢測CCD晶元最簡單直接的方法,而且不需要其它專用儀器。然後可以打開光圈,看一個靜物,如果是彩色攝像頭,最好攝取一個色彩鮮艷的物體,查看監視器上的圖像是否偏色,扭曲,色彩或灰度是否平滑。好的CCD可以很好的還原景物的色彩,使物體看起來清晰自然;而殘次品的圖像就會有偏色現象,即使面對一張白紙,圖像也會顯示藍色或紅色。個別CCD由於生產車間的灰塵,CCD靶面上會有雜質,在一般情況下,雜質不會影響圖像,但在弱光或顯微攝像時,細小的灰塵也會造成不良的後果,如果用於此類工作,一定要仔細挑選。
1、依成像色彩劃分
彩色攝像機:適用於景物細部辨別,如辨別衣著或景物的顏色。
黑白攝像機:適用於光線不充足地區及夜間無法安裝照明設備的地區,在僅監視景物的位置或移動時,可選用黑白攝像機。
2、依解析度靈敏度等劃分
影像像素在38萬以下的為一般型,其中尤以25萬像素(512*492)、解析度為400線的產品最普遍。
影像像素在38萬以上的高解析度型。
3、按CCD靶面大小劃分
CCD晶元已經開發出多種尺寸:
目前採用的晶元大多數為1/3」和1/4」。在購買攝像頭時,特別是對攝像角度有比較嚴格要求的時候,CCD靶面的大小,CCD與鏡頭的配合情況將直接影響視場角的大小和圖像的清晰度。
1英寸——靶面尺寸為寬12.7mm*高9.6mm,對角線16mm。
2/3英寸——靶面尺寸為寬8.8mm*高6.6mm,對角線11mm。
1/2英寸——靶面尺寸為寬6.4mm*高4.8mm,對角線8mm。
1/3英寸——靶面尺寸為寬4.8mm*高3.6mm,對角線6mm。
1/4英寸——靶面尺寸為寬3.2mm*高2.4mm,對角線4mm。
4、按掃描制式劃分
PAL制、NTSC制。 中國採用隔行掃描(PAL)制式(黑白為CCIR),標准為625行,50場,只有醫療或其它專業領域才用到一些非標准制式。另外,日本為NTSC制式,525行,60場(黑白為EIA)。
5、依供電電源劃分
110VAC(NTSC制式多屬此類);
220VAC
24VAC
12VDC
9VDC(微型攝像機多屬此類)。
6、按同步方式劃分
內同步:用攝像機內同步信號發生電路產生的同步信號來完成操作。
外同步:使用一個外同步信號發生器,將同步信號送入攝像機的外同步輸入端。
功率同步(線性鎖定,line lock):用攝像機AC電源完成垂直推動同步。
外VD同步:將攝像機信號電纜上的VD同步脈沖輸入完成外VD同步。
多台攝像機外同步:對多台攝像機固定外同步,使每一台攝像機可以在同樣的條件下作業,因各攝像機同步,這樣即使其中一台攝像機轉換到其他景物,同步攝像機的畫面亦不會失真。
7、按照度劃分,CCD又分為:
普通型 正常工作所需照度1~3LUX
月光型 正常工作所需照度0.1LUX左右
星光型 正常工作所需照度0.01LUX以下
紅外型 採用紅外燈照明,在沒有光線的情況下也可以成像
[編輯本段]CCD彩色攝像機的主要技術指標
CCD尺寸,亦即攝像機靶面。原多為1/2英寸,現在1/3英寸的已普及化,1/4英寸和1/5英寸也已商品化。
CCD像素,是CCD的主要性能指標,它決定了顯示圖像的清晰程度,解析度越高,圖像細節的表現越好。CCD是由面陣感光元素組成,每一個元素稱為像素,像素越多,圖像越清晰。現在市場上大多以25萬和38萬像素為劃界,38萬像素以上者為高清晰度攝像機。
水平解析度。彩色攝像機的典型解析度是在320到500電視線之間,主要有330線、380線、420線、460線、500線等不同檔次。解析度是用電視線(簡稱線TV LINES)來表示的,彩色攝像頭的解析度在330~500線之間。解析度與CCD和鏡頭有關,還與攝像頭電路通道的頻帶寬度直接相關,通常規律是1MHz的頻帶寬度相當於清晰度為80線。 頻帶越寬,圖像越清晰,線數值相對越大。
最小照度,也稱為靈敏度。是CCD對環境光線的敏感程度,或者說是CCD正常成像時所需要的最暗光線。照度的單位是勒克斯(LUX),數值越小,表示需要的光線越少,攝像頭也越靈敏。月光級和星光級等高增感度攝像機可工作在很暗條件,2~3lux屬一般照度,現在也有低於1lux的普通攝像機問世。
掃描制式。有PAL制和NTSC制之分。
攝像機電源。交流有220V、110V、24V,直流為12V 或9V。
信噪比。典型值為46db,若為50db,則圖像有少量雜訊,但圖像質量良好;若為60db,則圖像質量優良,不出現雜訊。
視頻輸出。多為1Vp-p、75Ω,均採用BNC接頭。
鏡頭安裝方式。有C和CS方式,二者間不同之處在於感光距離不同。
[編輯本段]CCD彩色攝像機的可調整功能
同步方式的選擇
A、對單台攝像機而言,主要的同步方式有下列三種:
內同步——利用攝像機內部的晶體振盪電路產生同步信號來完成操作。
外同步——利用一個外同步信號發生器產生的同步信號送到攝像機的外同步輸入端來實現同步。
電源同步——也稱之為線性鎖定或行鎖定,是利用攝像機的交流電源來完成垂直推動同步,即攝像機和電源零線同步。
B、對於多攝像機系統,希望所有的視頻輸入信號是垂直同步的,這樣在變換攝像機輸出時,不會造成畫面失真,但是由於多攝像機系統中的各台攝像機供電可能取自三相電源中的不同相位,甚至整個系統與交流電源不同步,此時可採取的措施有:
均採用同一個外同步信號發生器產生的同步信號送入各台攝像機的外同步輸入端來調節同步。
調節各台攝像機的「相位調節」電位器,因攝像機在出廠時,其垂直同步是與交流電的上升沿正過零點同相的,故使用相位延遲電路可使每台攝像機有不同的相移,從而獲得合適的垂直同步,相位調整范圍0~360度。
自動增益控制
所有攝像機都有一個將來自CCD的信號放大到可以使用水準的視頻放大器,其放大量即增益,等效於有較高的靈敏度,可使其在微光下靈敏,然而在亮光照的環境中放大器將過載,使視頻信號畸變。為此,需利用攝像機的自動增益控制(AGC)電路去探測視頻信號的電平,適時地開關AGC,從而使攝像機能夠在較大的光照范圍內工作,此即動態范圍,即在低照度時自動增加攝像機的靈敏度,從而提高圖像信號的強度來獲得清晰的圖像。
背景光補償
通常,攝像機的AGC工作點是通過對整個視場的內容作平均來確定的,但如果視場中包含一個很亮的背景區域和一個很暗的前景目標,則此時確定的AGC工作點有可能對於前景目標是不夠合適的,背景光補償有可能改善前景目標顯示狀況。
當背景光補償為開啟時,攝像機僅對整個視場的一個子區域求平均來確定其AGC工作點,此時如果前景目標位於該子區域內時,則前景目標的可視性有望改善。
電子快門
在CCD攝像機內,是用光學電控影像表面的電荷積累時間來操縱快門。電子快門控制攝像機CCD的累積時間,當電子快門關閉時,對NTSC攝像機,其CCD累積時間為1/60秒;對於PAL攝像機,則為1/50秒。當攝像機的電子快門打開時,對於NTSC攝像機,其電子快門以261步覆蓋從1/60秒到1/10000秒的范圍;對於PAL型攝像機,其電子快門則以311步覆蓋從1/50秒到1/10000秒的范圍。當電子快門速度增加時,在每個視頻場允許的時間內,聚焦在CCD上的光減少,結果將降低攝像機的靈敏度,然而,較高的快門速度對於觀察運動圖像會產生一個「停頓動作」效應,這將大大地增加攝像機的動態解析度。
白平衡
白平衡只用於彩色攝像機,其用途是實現攝像機圖像能精確反映景物狀況,有手動白平衡和自動白平衡兩種方式。
A、自動白平衡
連續方式——此時白平衡設置將隨著景物色彩溫度的改變而連續地調整,范圍為2800~6000K。這種方式對於景物的色彩溫度在拍攝期間不斷改變的場合是最適宜的,使色彩表現自然,但對於景物中很少甚至沒有白色時,連續的白平衡不能產生最佳的彩色效果。
按鈕方式——先將攝像機對准諸如白牆、白紙等白色目標,然後將自動方式開關從手動撥到設置位置,保留在該位置幾秒鍾或者至圖像呈現白色為止,在白平衡被執行後,將自動方式開關撥回手動位置以鎖定該白平衡的設置,此時白平衡設置將保持在攝像機的存儲器中,直至再次執行被改變為止,其范圍為2300~10000K,在此期間,即使攝像機斷電也不會丟失該設置。以按鈕方式設置白平衡最為精確和可靠,適用於大部分應用場合。
B、手動白平衡
開手動白平衡將關閉自動白平衡,此時改變圖像的紅色或藍色狀況有多達107個等級供調節,如增加或減少紅色各一個等級、增加或減少藍色各一個等級。除次之外,有的攝像機還有將白平衡固定在3200K(白熾燈水平)和5500K(日光水平)等檔次命令。
色彩調整
對於大多數應用而言,是不需要對攝像機作色彩調整的,如需調整則需細心調整以免影響其他色彩,可調色彩方式有:
紅色—黃色色彩增加,此時將紅色向洋紅色移動一步。
紅色—黃色色彩減少,此時將紅色向黃色移動一步。
藍色—黃色色彩增加,此時將藍色向青藍色移動一步。
藍色—黃色色彩減少,此時將藍色向洋紅色移動一步。
[編輯本段]CCD攝像機主要技術參數解釋
1. 什麼是CCD攝像機?
CCD是Charge Coupled Device(電荷耦合器件)的縮寫,它是一種半導體成像器件,因而具有靈敏度高、抗強光、畸變小、體積小、壽命長、抗震動等優點。
2. CCD攝像機的工作方式
被攝物體的圖像經過鏡頭聚焦至CCD晶元上,CCD根據光的強弱積累相應比例的電荷,各個像素積累的電荷在視頻時序的控制下,逐點外移,經濾波、放大處理後,形成視頻信號輸出。視頻信號連接到監視器或電視機的視頻輸入端便可以看到與原始圖像相同的視頻圖像。
3. 解析度的選擇
評估攝像機解析度的指標是水平解析度,其單位為線對,即成像後可以分辨的黑白線對的數目。常用的黑白攝像機的解析度一般為380-600,彩色為380-480,其數值越大成像越清晰。一般的監視場合,用400線左右的黑白攝像機就可以滿足要求。而對於醫療、圖像處理等特殊場合,用600線的攝像機能得到更清晰的圖像。
4. 成像靈敏度
通常用最低環境照度要求來表明攝像機靈敏度,黑白攝像機的靈敏度大約是0.02-0.5Lux(勒克斯),彩色攝像機多在1Lux以上。0.1Lux的攝像機用於普通的監視場合;在夜間使用或環境光線較弱時,推薦使用0.02Lux的攝像機。與近紅外燈配合使用時,也必須使用低照度的攝像機。另外攝像的靈敏度還與鏡頭有關,0.97Lux/F0.75相當於2.5Lux/F1.2相當於3.4Lux/F1.參考環境照度: 夏日陽光下 100000Lux 陰天室外 10000Lux 電視台演播室 1000Lux 距60W台燈60cm桌面 300Lux 室內日光燈 100Lux 黃昏室內 10Lux 20cm處燭光 10-15Lux 夜間路燈 0.1Lux
5. 電子快門
電子快門的時間在1/50-1/100000秒之間,攝像機的電子快門一般設置為自動電子快門方式,可根據環境的亮暗自動調節快門時間,得到清晰的圖像。有些攝像機允許用戶自行手動調節快門時間,以適應某些特殊應用場合。
6. 外同步與外觸發
外同步是指不同的視頻設備之間用同一同步信號來保證視頻信號的同步,它可保證不同的設備輸出的視頻信號具有相同的幀、行的起止時間。為了實現外同步,需要給攝像機輸入一個復合同步信號(C-sync)或復合視頻信號。外同步並不能保證用戶從指定時刻得到完整的連續的一幀圖像,要實現這種功能,必須使用一些特殊的具有外觸發功能的攝像機。
7. 光譜響應特性
CCD器件由硅材料製成,對近紅外比較敏感,光譜響應可延伸至1.0um左右。其響應峰值為綠光(550nm),分布曲線如右圖所示。夜間隱蔽監視時,可以用近紅外燈照明,人眼看不清環境情況,在監視器上卻可以清晰成像。由於CCD感測器表面有一層吸收紫外的透明電極,所以CCD對紫外不敏感。彩色攝像機的成像單元上有紅、綠、蘭三色濾光條,所以彩色攝像機對紅外、紫外均不敏感。
8. CCD晶元的尺寸
CCD的成像尺寸常用的有1/2"、1/3"等,成像尺寸越小的攝像機的體積可以做得更小些。在相同的光學鏡頭下,成像尺寸越大,視場角越大。 晶元規格 成像面大小(寬X高) 對角線 1/2 6.4x4.8mm 8mm 1/3 4.8x3.6mm 6mm
觀眾提問:
對於細節沒有寫清楚。首先,對於光線的處理沒有寫清楚,包括微型鏡頭是一個什麼樣的鏡頭(凸透鏡?),光線匯聚到象素?其次,對於分色濾色片的描述更模糊,如果是RGB,是有三個濾色片還是一個濾色片分時控制過慮的顏色來處理不同顏色的亮度?如果是三個濾色片,肯定會分為三層,每層要加上一個象素,這種方案基本可以否決。因此,應該是分時控制濾色,這樣的一個後果是比3CC的處理速度要慢很多(因為要控制濾色片的濾色),還要考慮一個區別就是通過控制濾色片的濾色效果是否有靜態濾色片(暫時稱為鏡頭濾色片,不能通過控制動態濾色)濾色效果好,這可能就是3CCD單CCD在成像上的區別。最後,對於3CCD的象素計算和單CCD如何對比也沒有說明。3CCD的原理是通過三棱鏡分光(RGB),然後投射的不同的CCD上面(個人認為3CCD和單CCD使用的CCD應該不是一樣的,3CCD使用的可能沒有濾色片,當然,也可以使用和單CCD一樣有濾色片的,這樣成本可能增加),這樣的一個後果是由一個CCD的象素決定了整個拍攝畫面的象素,而並不是廠家吹噓的畫面象素是單個CCD×3。這樣一來,松下的3CCD實際上是以犧牲畫面象素來換取色彩還原。象素當然可以通過數學插值的方式來補充,所以,對外看到的畫面象素和其他的單CCD的畫面象素一樣,如果放大,可能3CCD的畫面就比單CCD(同樣象素)的模糊,不知道有人測試過沒有。
『伍』 光纖成像原理
光纖是20世紀偉大的工程技術成就之一,它使得現代高速通訊網路成為可能,光纖技術已經在感測和成像技術方面做出了重要貢獻。本書是光纖成像和感測方面的基礎性書籍,突出介紹了光纖成像和感測裝置的基本原理。1.講述光纖的基本原理,從波動方程、折射率和吸收率、平片波導一直到光纖基本知識;2.光纖干涉裝置,包括干涉和光纖感測的基礎、光纖干涉儀結構、光纖組件的基本工作原理等;3.光纖成像,包括基本光纖成像器、光纖共焦顯微鏡介紹及基本應用等;4.用於機械和生物感測的光纖光柵,具體分為光纖光柵的理論分析、光延遲控制應用、機械及生物感測應用等;5.薩尼亞克環感測器,包括薩尼亞克環干涉原理、干涉光纖陀螺儀、光纖聲學感測器、頻移薩尼亞克干涉等;6.光學相干斷層掃描成像原理,分為光學相乾和干涉、時域和頻域光學相干斷層掃描成像、解析度、光色散不匹配和補償等。
『陸』 熱成像儀的成像的原理
1.什麼是紅外線?
在自然界中,凡是溫度大於絕對零度(-273℃)的物體都能輻射紅外線,它和可見光、紫外線、X射線、伽瑪線、宇宙線和無線電波一起,構成了一個完整連續的電磁波譜。其波長在0.78μm至1000μm之間,是比紅光波長長的非可見光。
高德智感C系列拍攝的紅外熱圖
『柒』 光柵位移檢測裝置由哪些部件組成它的工作原理是什麼
光柵尺位移抄感測器(簡襲稱光柵尺),是利用光柵的光學原理工作的測量反饋裝置。光柵尺位移感測器經常應用於機床與現在加工中心以及測量儀器等方面,可用作直線位移或者角位移的檢測。其測量輸出的信號為數字脈沖,具有檢測范圍大,檢測精度高,響應速度快的特點。例如,在數控機床中常用於對刀具和工件的坐標進行檢測,來觀察和跟蹤走刀誤差,以起到一個補償刀具的運動誤差的作用
『捌』 光譜儀原理
根據色散元件的原理,光譜儀可分為棱鏡光譜儀、衍射光柵光譜儀和干涉光譜儀。光學多通道分析儀(oma)是近幾十年來發展起來的一種新型的具有光子探測器(ccd)和計算機控制的光譜分析儀。它集信息採集、處理和存儲功能於一體。
oma不再使用感光乳膠,避免和消除了暗室處理和後期一系列繁瑣的處理,測量工作從根本上改變了傳統的光譜技術,大大改善了工作條件,提高了工作效率。
利用oma進行光譜分析,測量准確、快速、方便、靈敏、響應時間快、光譜解析度高。測量結果可從顯示屏上讀出或由列印機和繪圖儀立即輸出。它已廣泛應用於幾乎所有的光譜測量、分析和研究工作,特別是在微弱和瞬態信號的檢測中。
(8)高光譜成像檢測裝置原理擴展閱讀
一台典型的光譜儀主要由一個光學平台和一個檢測系統組成。包括以下幾個主要部分:
1、入射狹縫: 在入射光的照射下形成光譜儀成像系統的物點。
2、準直元件: 使狹縫發出的光線變為平行光。該準直元件可以是一獨立的透鏡、反射鏡、或直接集成在色散元件上,如凹面光柵光譜儀中的凹面光柵。
3、色散元件: 通常採用光柵,使光信號在空間上按波長分散成為多條光束。
『玖』 視覺檢驗的原理
視覺檢測
視覺檢測就是用機器代替人眼來做測量和判斷。視覺檢測是指通過機器視覺產品(即圖像攝取裝置,分 CMOS 和CCD 兩種)將被攝取目標轉換成圖像信號,傳送給專用的圖像處理系統,根據像素分布和亮度、顏色等信息,轉變成數字化信號;圖像系統對這些信號進行各種運算來抽取目標的特徵,進而根據判別的結果來控制現場的設備動作。是用於生產、裝配或包裝的有價值的機制。它在檢測缺陷和防止缺陷產品被配送到消費者的功能方面具有不可估量的價值。基本內容
視覺檢測是計算機學科的一個重要分支,它綜合了光學、機械、電子、計算機軟硬體等方面的技術,涉及到計算機、圖像處理、模式識別、人工智慧、信號處理、光機電一體化等多個領域。自起步發展至今,已經有20多年的歷史,其功能以及應用范圍隨著工業自動化的發展逐漸完善和推廣,其中特別是目前的數字圖像感測器、CMOS和CCD攝像機、DSP、FPGA、ARM等嵌入式技術、圖像處理和模式識別等技術的快速發展,大大地推動了機器視覺的發展。簡而言之,機器視覺解決方案就是利用機器代替人眼來作各種測量和判斷。
解決過程
1、工件定位檢測器探測到物體已經運動至接近攝像系統的視野中心,向圖像採集部分發送觸發脈 沖,可分為連續觸發和外部觸發。
2、圖像採集部分按照事先設定的程序和延時,分別向攝像機和照明系統發出啟動脈沖。
3、攝像機停止目前的掃描,重新開始新的一幀掃描,或者攝像機在啟動脈沖來到之前處於等待狀態,啟動脈沖到來後啟動一幀掃描。
4、攝像機開始新的一幀掃描之前打開曝光機構,曝光時間可以事先設定。
5、另一個啟動脈沖打開燈光照明,燈光的開啟時間應該與攝像機的曝光時間匹配。
6、攝像機曝光後,正式開始一幀圖像的掃描和輸出。
7、圖像採集部分接收模擬視頻信號通過A/D將其數字化,或者是直接接收攝像機數字化後的數字視頻數據。
8、圖像採集部分將數字圖像存放在處理器或計算機的內存中。
9、處理器對圖像進行處理、分析、識別,獲得測量結果或邏輯控制值。
10、處理結果控制流水線的動作、進行定位、糾正運動的誤差等。
從上述的工作流程可以看出,機器視覺解決方案是一種比較復雜的系統。因為大多數系統監控對象都是運動物體,系統與運動物體的匹配和協調動作尤為重要,所以給系統各部分的動作時間和處理速度帶來了嚴格的要求。在某些應用領域,例如機器人、飛行物體導制等,對整個系統或者系統的一部分的重量、體積和功耗都會有嚴格的要求。
優勢
1、非接觸測量,對於觀測者與被觀測者都不會產生任何損傷,從而提高系統的可靠性。
2、具有較寬的光譜響應范圍,例如使用人眼看不見的紅外測量,擴展了人眼的視覺范圍。
3、長時間穩定工作,人類難以長時間對同一對象進行觀察,而機器視覺則可以長時間地作測量、分析和識別任務。
4、利用了機器視覺解決方案,可以節省大量勞動力資源,為公司帶來可觀利益
『拾』 熒光光譜儀原理
熒光分析法的基本原理
處於基態的被測物質的分子在吸收適當能量,如光、化學、物理能後,其共價電子從成鍵分子軌道或非鍵分子軌道躍遷到反鍵分子軌道上去,形成分子激發態。分子激發態不穩定,將很快衰變到基態。在分子激發態返回到基態的同時常伴隨著光子的輻射。這種現象就是發光現象。熒光則屬於分子的光致發光現象。
二、熒光分光光度計的特點
用熒光分析法分析的儀器,稱熒光分光光度計。
熒光分析法具有靈敏度高(比紫外、可見分光光度法高2~3個數量級),能提供激發光譜、發射光譜、發射強度、特徵峰值等信息,在生物、環保、醫學、葯物、石油勘探等諸多領域都有廣泛的應用。本儀器不僅能直接、間接地分析眾多的有機化合物;另外,還可利用有機試劑間的反應,進行近70種無機元素的熒光分析。熒光的光譜特徵是熒光光譜總是滯後於激發光譜即斯托克斯位移.
三、熒光強度與物質濃度的關系
1.對於某種熒光物質的稀溶液,在一定強度的激發光照射下,熒光物質的發射強度與入射光的強度以及檢測器的放大倍數成正比,
由光源發出的光經濾光片後成為單色光,樣品在此單色光的照射下,產生熒光,熒光由大孔徑非球面鏡的聚光及光柵的分光後,照射於光電倍增管上,光電倍增管把光信號轉換為電信號,經放大處理,最後由計算機輸出顯示或進行圖譜列印