『壹』 水性聚氨酯的產品技術分析
大多數水性PU主要是由自乳化法制備,以含親水性基團的PU為主要固化成分,塗膜乾燥時若親水成分不能有效的進入交聯網路中,乾燥形成的塗膜遇水易溶脹。另外其缺少像雙組分溶劑型PU塗膜所能得到的交聯密度和高相對分子質量,因而這些水分散體塗膜的耐水性、耐溶劑性、耐熱性和光澤性較差,嚴重地限制了其使用的范圍。因此,常採用提高塗膜的交聯密度來改善乳液塗膜的耐水性。常用的交聯方法有兩種:一種是在合成PU預聚物時,加入官能度大於2的多羥基化合物,直接生成交聯PU預聚物,將上述預聚物很好地分散在水中,並擴鏈形成大分子,最後形成乳液。
這種方法也叫前交聯法,缺點是易使預聚物黏度增大,較難分散在水中,影響乳液的穩定性。新型交聯劑和多官能團擴鏈劑的篩選與合成的研究相當活躍,已成為提高水性PU物理機械性能和耐水性能的主要途徑之一。另一種方法為外交聯法,採用帶羧的陰離子PU乳液進行交聯,交聯反應發生在PU分子的羧基上,有氮丙啶、碳化亞胺以及金屬鹽類化合物,在室溫條件下進行交聯。這類交聯劑一般在使用PU乳液時加入,因其交聯反應速率很快,短時間內產生凝膠而破乳。外交聯法可成功解決PU乳液塗膜的親水性問題,但因外加交聯劑,組成雙組分塗飾劑給施工帶來不便,此方法使用較少。 國內外對水性聚氨酯的研究都聚焦在對其改性使其功能化,通過改性增加材料的耐水性、耐溶劑性等性能指標。改性主要通過物理和化學兩種手段,通過接枝、嵌段、內、外交聯其它聚合物材料,共混或形成互穿聚合物網路等方法進行改性。常用的改性有以下幾種:
1 丙烯酸酯改性聚丙烯酸酯類產品優點在於耐候、耐水、耐溶劑、保光性比聚氨酯樹脂突出,在物理機械性能、彈性及粘接性能等方面又遜色於聚氨酯樹脂。因此兩者具有很好的互補性。將丙烯酸酯用於水性聚氨酯乳液的改性,是聚氨酯的發展趨勢之一。較為流行的有共混交聯反應法、乳液共聚法和復合乳液聚合法。
復合乳液聚合法有兩種工藝:
⑴互穿聚合網路(Interpentrating Polymer Network)。體系中至少有一組分為交聯結構,在分子水平上發生作用,如以丙烯酸酯單體作為合成聚氨酯預聚體的有機溶劑,然後再在聚氨酯乳液中進行聚合即製得丙烯酸酯改性聚氨酯的互穿網路型乳液。
⑵在水性聚氨酯乳液中加入丙烯酸酯不飽和單體進行自由基聚合, 形成所謂核-殼型丙烯酸酯改性水性聚氨酯的復合乳液。陳義芳採用丙烯酸酯單體作為聚氨酯溶劑製得IPN 結構的丙烯酸酯改性的聚氨酯乳液,研究表明其塗膜具有良好的耐水性及耐污染性。楊建文等將具有羥基側基的丙烯酸樹脂與含有殘留異氰酸酯基的聚氨酯丙烯酸酯進行接枝反應,經胺中和後,用水分散形成自乳化水性體系。研究表明當接枝樹脂中聚氨酯含量在30%~50%時,光固化塗層具有較好的硬度、耐溶劑性和耐水性。
2 有機硅改性有機硅化合物屬於半有機、半無機結構的高分子化合物具有耐熱、耐水性、耐候性及透氣性,其中兩個最顯著的特點是耐氧化性和低表面能, 有機硅聚合物還能賦予塗層傑出的柔順性和爽滑絲綢感;因表面能差異而存在微相分離的Si-O-Si 分子鏈會遷移到膜的表面提高塗膜的綜合性能。
對含有氨基的有機硅改性主要有兩種方法:
⑴在合成預聚體的過程中將含有氨基的有機硅引入聚氨酯鏈段中,由於氨基突出的反應活性以及有機硅與聚氨酯溶解度的差異, 所以聚合反應都需在溶劑下進行,這樣不僅溶劑抽提困難,還會造成環境污染,使它們的應用受到限制。
⑵在預聚體乳化的過程中擴鏈引入含有氨基的有機硅。研究表明,硅氧烷在膠膜表面富集,對聚氨酯材料有明顯的表面改性作用,且膠膜耐水性提高。卿寧等用有機硅化合物對水性聚氨酯進行改性,通過紅外和核磁等手段證明有機硅鏈段成功接在水性聚氨酯鏈段上;有機硅化合物用量增大,乳膠膜吸水率降低,表面接觸角增大,使膜的耐水性、穩定性、柔韌性、耐老化性能得到了顯著提高。
3 環氧樹脂改性環氧樹脂結構中含有羥基,該化合物具有粘結能力強,模量和強度高和熱穩定性好等特性。與水性聚氨酯可直接發生合成反應。環氧樹脂改性可以改善聚氨酯的耐水、耐溶劑、耐熱蠕變性及抗張強度,同時可以增加樹脂對基材的剝離強度。在改性反應中將支化點引入聚氨酯主鏈,使得主鏈部分形成網狀結構,該反應中既有環氧基和羥基參與反應,也存在氨基甲酸酯與環氧基的開環反應。改性聚氨酯乳液外觀隨著環氧樹脂環氧值降低,從半透明變化到不透明,改性聚氨酯乳液的薄膜硬度和拉伸強度增大,貯存穩定性和斷裂伸長率下降,乳膠膜耐水性增強。因為環氧值降低,分子量增大,羧基含量增大,導致水性聚氨酯的交聯結構和水性聚氨酯分子鏈上剛性苯環的含量增大, 乳膠膜的硬度、拉伸強度和耐水性得到提高,同時降低了乳膠膜的彈性和斷裂伸長率。環氧樹脂分子量增大後,導致質量增大,在同等情況下聚氨酯的親水性、水性聚氨酯乳液的透明度和貯存穩定性都降低。郭俊傑等合成了用於粘結復合薄膜的環氧樹脂改性水性聚氨酯膠粘劑,改性後的膠粘劑對多種復合薄膜都表現出較強的粘結性能,剝離強度進一步提高,外觀、貯存穩定性良好。且固體質量分數下降30%後仍然具有較強的粘結性能。
4 交聯改性交聯改性是將線形的聚氨酯大分子通過化學鍵的形式將其接合在一起,製得具有網狀結構的聚氨酯樹脂。經過交聯改性後的水性聚氨酯塗膜具有良好的耐水性、耐溶劑及力學性能。成熟的交聯改性技術製得的水性聚氨酯在很多性能上達到甚至超過溶劑型聚氨酯樹脂。交聯改性根據交聯方法的不同可分為內交聯法和外交聯法。內交聯法製得的聚氨酯乳液是單組分體系,外交聯法製得的聚氨酯乳液雙組分體系。在內交聯法反應體系裡面,內交聯劑乳液體系中的其它組分與內交聯劑能共存且保持穩定。交聯時不論採用哪種交聯方式,都要嚴格控制交聯劑的用量。雖然隨著交聯劑用量的增加,膜的拉伸強度、耐水性、耐溶劑性均增大,但是用量過大,會使膜的伸長率下降太多,同時會使乳液顆粒粒徑變大,成膜時融合性差,反而使膜的強度下降。
5 納米改性納米材料是指組成相或晶粒結構中至少有一維的尺寸在100 nm 以下的材料。由於納米材料與高聚物分子間的界面面積非常大,加之納米材料的上述相關性質, 二者界面存在很大的相互作用,具有很好的粘結性能,較好的消除了無機材料與有機聚合物間的熱膨脹系數不匹配的現象,使二者能夠較容易的結合在一起而成為具有優異性能的復合材料,如:強大的表面結合能;與聚合物復合後所具有的強粘結性;改善流動性,提高表面硬度和耐磨性。
6 其他改性方法利用天然高分子(如木質素、澱粉、樹皮等)以及脂肪族聚酯來改性或合成可生物降解聚氨酯,利用氯丙樹脂改性合成聚氨酯等以及三元復合體系,製得的新型聚氨酯材料具有高應力、高硬度和低應變的性能,其物理機械性能優於聚醚三元醇作羥基組分合成的聚氨酯材料。
『貳』 水性PU中會含有雙酚A嗎
晚上好,雙酚A一般都只存在於需要它參加合成反應的高聚物中比如PC和環氧樹脂,PU由於是聚酯多元醇或者聚醚多元醇和異氰酸酯之間發生聚合並不需要酚類化合物參與,水性聚氨酯是溶劑型聚氨酯在水中改性懸浮聚合並適量添加某些表面活性劑形成的乳濁液體系所以通常不含有雙酚A請參考。至少我檢測過的幾種水性聚氨酯分散液都沒有雙酚A的痕跡量標定。
『叄』 化學實驗合成裝置圖在什麼地方找
1、chemdraw 軟體上自己組裝
2、網頁上下載(網路就行)
『肆』 求助,請問大家合成聚氨酯時用的醇類小分子怎麼脫水
巨型水性聚氨酯乳液[1]以水作溶劑或者作分散介質,體系中不含或含很少量的有機溶劑,異氰酸酯和多元醇縮合生成聚氨酯的乳液。 這是一類非常重要的縮聚物,水性聚氨酯乳液具有無毒、不污染環境、節能、易操作等優點,在工業上(包括黏合劑和塗料等)有著廣泛的應用。因此,它正逐步成為當今聚氨酯領域發展的重要方向。從20世紀60年代水性聚氨酯被用做塗料開發出來到80年代,美、德、日等國的一些聚氨酯產品已從試制階段發展為實際生產和應用,一些公司如德國的Bayer公司、Hoechst公司、美國Wyandotle化學公司、日本的Dic公司走在前列。國內水性聚氨酯產品品種少、性能不佳,每年仍需大量進口,因此需開發高質量的產品以滿足國內的迫切需要。由於聚氨酯的疏水性很強,必須採用新的合成方法制備PU乳液,水性聚氨酯的合成過程主要為:①由低聚物多元醇、擴鏈劑、二異氰酸酯形成中高相對分子質量的PU預聚體;②中和後預聚體在水中乳化,形成分散液。各種方法在於擴鏈過程的不同。聚氨酯乳液的制備方法有兩大類:外乳化法和內乳化法。 1.外乳化法 該方法是使用最早的制備水性聚氨酯的方法,外乳化法就是在乳化劑、高剪切力存在下強制乳化的方法,最早為Pschlack發明,1953年杜邦公司的W.yandott採用此法合成了PU乳液。其合成工藝是先將聚醚二醇和有機異氰酸酯合成PU預聚體,再以小分子二元醇或二胺擴鏈,得到PU的有機溶液,然後於強烈攪拌下,逐漸加入適當的乳化劑的水溶液,形成一種粗粒乳液,最後送入均化器,形成粒徑適當的乳液。但因該方法存在反應時間長,乳化劑用量大以及乳液顆粒粗而導致儲存性差,膠層物理機械性能不佳等缺點,目前生產基本不用該方法。後來發展起來的一種叫做低溫封蔽法制備PU乳液的方法,可減少乳化劑的用量且製得穩定性好的乳液。該方法是將端-NCO預聚體用肟、內醯胺、NaHSO3、乙醯乙酸酯等封端劑封端後,與多元胺一起分散於含乳化劑的水溶液中,形成一種穩定的PU乳液。 2.自乳化法 制備穩定的PU乳液主要是通過自乳化法,其關鍵是在聚氨酯的分子骨架中引入親水基團。親水基團是通過親水單體擴鏈而進入PU分子骨架的,它由成鹽基團和成鹽試劑組成。根據親水基團的類型用該法製得的水性PU乳液可分為陰離子型、陽離子型、兩性型和非離子型4種,其中以陰離子型佔主導地位。自乳化型PU乳液的制備工藝有很多種,制備方法主要分為丙酮法、預聚物分散法、熱熔法、酮亞胺/酮連氮法,其共同特點是首先制備相對分子質量適中、端基為NCO或封閉NCO的PU預聚體,區別主要在擴鏈過程中。目前工業生產中最為重要的方法為丙酮法和預聚體分散法(或稱預聚體混合法)。其合成工藝如下。 2.1丙酮法 丙酮法是由德國Bayer公司Ddieterich研究成功的。Ddieterich首先將聚醚或聚酯二元醇與異氰酸酯製成預聚體,加入適量的丙酮降低粘度後,用N-甲基二乙醇胺擴鏈,再加入丙酮降低粘度,然後加入離子化試劑,攪拌離子化。將離子化的PU分散到含80%丙酮、20%水的介質中,最後蒸除丙酮,即可製得粒徑為0.03~100μm的水乳型聚氨酯。丙酮法先製得含NCO端基的高粘度預聚體,再加入丙酮以降低粘度,然後用親水單體擴鏈,在高速攪拌下加入水中,通過強力剪切作用使之分散在水中,乳化後減壓蒸餾回收溶劑即可製得PU水分散體系。 安徽大學齊正旺[2]以丙酮法制備了WSPU。WSPU是一種形狀聚氨酯,一種新型的功能材料。它具有形變數大、容易加工、轉變度可調控、可降解及生物相容性好等一系列優點。制備工藝如下:在四口瓶中依次加入聚已內酯二醇(PCL)和2,4-甲苯二異氰酸酯(TDI),攪拌通氮下於80℃下反應3h,加入少量丙酮溶劑,攪拌10min後,再加入催化劑、二羥甲基丙酸(DMPA)和交聯劑三羥甲基丙烷(TMP)反應4h,即製得PU預聚體。將聚氨酯預聚體在快速攪拌下加入三乙胺5min,隨後加入計算量水乳化,10min後減壓抽去丙酮,製得固含量為30%WSPU乳液。對WSPU處理加工進行樣品測試。最後得出合成PCL分子量在5000時,乳液性能穩定,它的形狀記憶恢復率達到95%。 四川理工學院張發興,衛曉利[3]先合成親水擴鏈劑DHPA,然後制備磺酸型WPU微乳液。其合成工藝為:將一定量的Ng210和IPDI加入裝有冷凝迴流管、電動攪拌和溫度計的四口燒瓶中,加適量催化劑二月桂酸二丁基錫,升至所需溫度反應一定時間,用二正丁胺(已標定)滴定法測定預聚體中NCO-的含量是否達到理論值(若達到理論值則停止預聚反應,未達到理論值則繼續反應直到達到理論值為止),降至合適的溫度,加入一定量的N-甲基-2-吡咯烷酮溶解的DHPA反應一定時間,加入少量丙酮稀釋,經三乙胺中和,在快速攪拌條件下加去離子水進行分散,最後減壓蒸餾除去丙酮,得到穩定的磺酸型WPU微乳液。相對於常規的羧酸型WPU微乳液,磺酸型WPU微乳淮具有更高的固含量和更低的表面張力,且具有較好的低溫、高溫及室溫穩定性。 山東大學王翠,吳佑實,吳莉莉[4]採用丙酮法制備了水性聚氨酯乳液。其合成工藝如下:在裝有電動攪拌器、迴流冷凝管、溫度計、氮氣進出口的500ml四口燒瓶中,加入110℃真空脫水的聚酯二元醇,在60℃是加入計量的MDI丙酮溶液反應10~20min,然後加入DMPA的DMF溶液,攪拌5~10min後向其中加入剩餘MDI,滴加催化劑,繼續保溫反應50~90min,待反應至—NCO含量達理論值時(正丁胺滴定法測定),加入TEA成鹽。待體系中異氰酸酯含量少於0.2%時反應結束,取出降溫至30℃以下,然後將一事實上量的水快速加入體系中並高速攪拌1h。若要再度進行擴鏈,則在加水前加入乙二胺。最後,減壓蒸餾脫去低沸點溶劑(丙酮)即得水性聚氨酯成品。 丙酮法制備水性PU的優點是反應易於控制,重復性好,乳液粒徑易控制,乳液質量高,是目前使用最多的方法之一,尤其是PU分子量大時耗費大量的有機溶劑且難以回收,工藝復雜、成本高。危險性大。 .2預聚體分散法 該方法是近年來發展起來的。它是先將親水單體引入到聚合物中,離子化,製得含離子鍵的PU預聚物,然後將其分散到水中,形成預聚物乳液,最後用二胺在水相中進行擴鏈而製得PU乳液。該方法工藝簡單,無需大量的有機溶劑,可製得有支化度的PU乳液,但僅限於特殊的端-NCO預聚物,此預聚物主要由低活性的脂肪族異氰酸酯製得的預聚體。 德國Bayer公司的一項專利里報道,將丙氧基化2-烯-1,4-丁二醇與亞硫酸氫鈉的加成物(Mw301)15.2g於80℃加入到聚乙二醇酯二醇(Mw2143)429g中,混合物均勻加入87.5gMDI,80℃反應至NCO含量為1.6%得到含磺酸鈉基團的聚氨酯預聚體,將該預聚體在濃度為2.3%的乙二胺基異磺酸鈉水溶液842g乳化得到固含量為38%粘度為8pa·s的聚氨酯乳液。 陝西科技大學吳雄虎,楊承傑,丁紹蘭[5]採用異佛爾酮二異氰酸酯(IPDI)、聚環氧丙烷二醇(PPG)、聚已二酸丁二醇酯多元醇(PTAd)、四氫呋喃聚醚多元醇(PTMG)和二羥甲基丙酸(DMPA)等為原料,採用預聚體分散法,合成了水性聚氨酯皮革光亮劑。合成工藝如下:在裝有電動攪拌器、迴流冷凝器、溫度計、氮氣裝置的四口燒瓶中,加入低聚物多元醇、IPDI和少量的催化劑,在氮氣的保護下於一定溫度下反應2h左右,至NCO含量接近理論值時,加入DMPA、TMP繼續反應2h左右,至NCO含理達理論值,得到預聚體,降溫至50℃,加入計量的TEA和適量的丙酮,充分攪拌後,倒出預聚體,在高速剪切下,加水乳化後,加入乙二胺擴鏈,得到陰離子水性聚氨酯分散液。最後減壓蒸出丙酮。 中國科學院杜輝,趙雨花,王軍威[6]等採用預聚體分散法制備了一系列聚碳酸酯二醇(PCDL)型水性聚氨酯(WPU)膠粘劑。其合成方法如下:將PCDL和含磺酸基的聚酯二醇加入到裝有機械攪拌器、溫度計和迴流冷凝管的四口燒瓶中,於100~120℃真空脫水至含水量低於0.5%;然後在50~60℃條件下加入計量的異氰酸酯和溶劑丙酮,並維持此溫度反應一段時間後,加入1,2-二羥甲基丙酸(DMPA)和1,4-丁二醇(BDO)繼續反應;待反應液中-NCO含量與設計值基本相符時,加入TEA中和羧基,之後加入蒸餾水強烈攪拌進行乳化分散,並加入乙二胺進一步擴鏈;最後,減壓脫除丙酮,即製得PCDL型WPU乳液膠粘劑。 四川大學成豐,向玲,於劍昆[7]等預聚體分散法,以二羥甲基丙酸(DMPA)、蔗糖為親水鏈劑和交聯劑制備了一種種鞋用水性聚氨酯膠黏劑(WBPU)。WBPU合成工藝如下:將已脫水的聚乙二醇(PEG-1000)、二羥甲基丙酸的N-甲基-2-吡咯烷酮溶液(DMPA/NMP,1/1W/W),加入到裝有攪拌機、迴流冷凝管、水銀溫度計、氮氣進出口的四口燒瓶中,溫度調至60℃後,再加入異佛爾酮二異氰酸酯(IPDI)及不得催化劑-M,在氮氣保護下,待體系混勻反應0.5h後,加熱升溫至80℃均勻攪拌反應2h,然後,溫度降低至60℃,再逐步加入1,4丁二醇以及蔗糖,反應1h後,加入計量的γ-氨丙基三乙氧基硅烷(KH-550),反應過程中視體系粘度大小加入適量乙酸乙酯,當NCO值達到理論值終止反應(二正丁胺滴定法判斷反應終點),得到聚氨酯預聚體。將降溫至(255℃)的聚氨酯預聚體加入到三乙醇胺(TELA)的水溶液剪切乳化,整個乳化過程在冰水浴進行,待攪拌均勻後,另入三乙胺進行中和成鹽,剪切乳化反應40min,最後減壓蒸餾脫除溶劑,得到固含理為50%左右的水性聚氨酯乳液。 綜上所述採用預聚物混合法制備的水性聚氨酯其工藝相比丙酮法簡單,是無須使用有機溶劑。使成本降低,但產品質量不如丙酮法,且只適用於脂肪族水性聚氨酯的合成。 2.3熔融分散法 這是無溶劑制備水性聚氨酯的方法。熔融分散法[8]是指把異酸酯的加聚反應和氨基的縮聚反應緊密地結合起來,先合成含親水基團的端異氰酸酯的預體,然後在高溫下(130℃)和過量的脲反應生成縮二脲,再在甲醛水溶液中反應進行羥甲基化,得到高分子量的聚氨酯。該法能耗較高。 2.4酮亞胺和酮連氮法 酮亞胺和酮連氮法[9]是指預聚體與被酮保護了的二元胺(酮亞胺體系)或肼(酮連氮體系)混合後,再用水分散,分散過程中酮亞胺、酮連氮以一事實上速率水解,釋放出遊離二元胺或肼與分散的聚合物微粒反應,得到的水性聚氨酯-脲具有良好的性能。該法制備的塗膜較好。 3.結語 此外,PU乳液的合成方法還有與水直接混合法、固體自發分散法等。以上各種方法都有各自的優缺點,相比較而言,丙酮法成熟一些,由於預聚體分散法合成工藝簡單,所以預聚體分散法的前景更好。水性PU的發展日新月異,總的發展趨勢是向高性能、低成本方向發展。國外各大公司對PU乳液產品的品種、數量、性能等都作了大力地開發。國內PU乳液的研製開發水平相對較低,主要是受到國內化工基礎薄弱的限制。我們應該在基礎原料生產和產品研製開發上向國外靠攏,大力研製開發新品種,提高國內PU乳液生產的能力和合成工藝水平
『伍』 乙醯水楊酸的制備實驗裝置圖
乙醯水楊酸的制備實驗裝置圖如下:
(5)水性pu反應合成實驗裝置圖擴展閱讀
使用禁忌
12歲以下兒童可能引起瑞夷綜合症(Reye's syndrome)高尿酸血症,長期使用可引起肝損害。妊娠期婦女避免使用。飲酒者服用治療量阿司匹林,會引起自發性前房出血,所以創傷性前房出血患者不宜用阿司匹林。
剖腹產或流產患者禁用阿司匹林;阿司匹林使6-磷酸葡萄糖脫氫酶缺陷的溶血性貧血患者的溶血惡化;新生兒、幼兒和老年人似對阿司匹林影響出血特別敏感。治療劑量能使2歲以下兒童發生代謝性酸中毒、發熱、過度換氣及大腦症狀。
腸胃出血或腦出血的危險可能會抵消少量服用阿司匹林所帶來的益處。
研究人員分析了居住在澳大利亞維多利亞的2萬名年齡為70歲到74歲之間的老年男性和婦女的健康資料庫,通過電腦運行該資料庫,然後把每天服用阿司匹林的利與弊的臨床試驗結果輸入到電腦中。
通過計算機模擬研究發現,服用少量阿司匹林可預防710名老年人患心臟病,54名老年人避免了中風,但卻有1071名老年人出現腸胃出血,129名老年人出現腦出血。不過,是否服用阿司匹林對他們的壽命則沒有影響。
已經有多項研究證實,阿司匹林有助於預防可導致梗死或中風的血栓的形成,但阿司匹林的副作用之一則是,長期服用會導致出血,出血部位因個人情況而有所不同。
美國健康指南推薦:心血管和冠心病高危人群每天要服用小劑量的阿司匹林75至150毫克。而該項研究則認為,迄今為止對老年人來說,「應該抵抗這種盲目服用阿司匹林的誘惑。
參考資料來源:網路-乙醯水楊酸
『陸』 PU合成革中一液型樹脂與二液型樹脂有何區別,分別有何作用
PU樹脂在使用過程中,需要添加助劑。尤其如水性PU在使用過程中,成膜強度比溶劑型PU要低很多,需要加交聯劑(也稱架橋劑、固化劑等)改善成膜強度。一液型樹脂指PU樹脂,由於含有自交聯的活性基,使用時無需外部添加交聯劑。二液型樹脂指PU樹脂,使用時需再額外添加交聯劑。
『柒』 實驗裝置圖呢(乙醯水楊酸的制備)
乙醯水楊酸俗稱阿司匹林,為重要的醫葯。具有退熱、鎮痛、抗風濕等作用。
二、基本原理:
乙醯水楊酸是水楊酸(鄰羥基苯甲酸)和乙醯酐,在少量濃硫酸(或乾燥的氯化氫,有機強酸等)催化下,脫水而製得的。
主反應:
副反應:
在生成乙醯水楊酸的同時,水楊酸分子間可發生縮合反應,生成少量的聚合物。
乙醯水楊酸能與碳酸氫鈉反應生成水溶性鈉鹽,而其副產物聚合物不能溶於碳酸氫鈉溶液。利用這種性質上的差別,可純化阿司匹林。
注意:
反應溫度不宜過高,否則將增加副產物的生成:
1.為了促使反應向右進行,通常採用增加酸或醇的濃度, 或連續的移去產物酯和水(通常是借形成共沸混合物來進行)的方式來達到。至於是否醇過量和酸過量,則取決於原料來源的難易及操作上是否方便等因素。在實驗過程中,常常是兩者兼用來提高產率。
2.由於水楊酸中的羥基和羧基能形成分子內氫鍵,反應必須加熱到150℃~160℃。不過,加入少量的濃硫酸或濃磷酸過氧酸等來破壞氫鍵,反應溫度也可降到60℃~80℃,而且副產物也會有所減少。
3.乙醯水楊酸易受熱分解,因此熔點不是很明顯。它的熔點為136℃ ,分解溫度為128℃ ~135℃ 。在測定熔點時,可先將載熱體加熱至120℃左右,然後放入樣品測定。
三、實驗操作:
1.在100ml錐形瓶中放置乾燥的水楊酸6.5g及乙醯酐10ml,充分搖動後,滴加10滴濃硫酸(足量)。(注意:如不充分振搖,水楊酸在濃硫酸的作用下,將生成付產物水楊酸水楊酯。)
2.水浴上加熱,水楊酸立即溶解。如不全溶解,則需補加濃硫酸和乙醯酐。保持錐形瓶內溫度在70℃左右。(注意:用水浴溫度控制反應溫度。水浴溫度控制在80℃-85℃即可。)維持反應20分鍾。
3.稍微冷卻後,在不斷攪拌下將其倒入100ml 冷水中。冷卻析出結晶(只要瓶內溫度和冷卻水溫度一致即可,不一定需要15分鍾)。抽濾粗品,每次用10ml水洗滌兩次,其作用是洗去反應生成的乙酸及反應中的硫酸。
4.粗品重結晶純化,用95%乙醇和水1:1的混合液約25ml左右,加冷凝管加熱迴流,以免乙醇揮發和著火,固體溶解即可。(重結晶時無須加活性炭,加活性炭的作用是除去有色雜質,因粗產品沒有顏色,加熱煮沸即可)
5.趁熱過濾,冷卻,抽濾,乾燥,稱重。
四、實驗產率的計算:
從反應方程式中各物材料的摩爾比,可看出乙醯酐是過量的,故理論產量應根據水楊酸來計算。0.045mol水楊酸理論上應產生0.045mol乙醯水楊酸。乙醯水楊酸的相對分子質量為180g/mol,則其理論產量為:
0.045(mol)×180(g/mol)=8.1g
『捌』 水性聚氨酯樹脂的水性聚氨酯的合成原理
目前,陰離子型水性聚氨酯最為重要,芳香族水性聚氨酯合成的化學原理可用下列反應式表示:
在中和之後加水乳化的同時,水也起到擴鏈劑的作用,擴鏈後大分子的端-NCO基團轉變為-NH2,進一步同-NCO反應,通過脲基(-NH-CO-NH-)使水性聚氨酯的分子量進一步提高。
脂肪族水性聚氨酯使用脂肪族二異氰酸酯(如IPDI、TMXDI)為單體,其活性較低,因此,其在水中的擴鏈是通過加入水中加入乙二胺、肼或二乙烯三胺(多乙烯多胺)進行;此法溶劑用量低,無須脫除溶劑,工藝更可靠,可以實現真正意義上的綠色工藝生產。
『玖』 聚氨酯的合成方法要具體的原料和實驗步驟,謝謝大俠們!
(1) 初聚體的制備: 在裝有攪拌、溫度計、冷凝管的三口瓶中,加入TDI 和
脫水的聚醚二元醇,逐漸升溫到60 "C .保持在60 "C -65C 下反應1.5小時左右,
取樣測定反應物中NCO 基團的含量,當達到規定值後,停止反應。
(2) 初聚體的擴鏈: 加入親水擴鏈劑DMPA. 升溫到80'C 左右反應到NCO
達到的規定值,繼續加入小分子擴鏈劑在70'C 進行擴鏈反應,進一步提高預聚
物的分子量.
(3) 預聚物的中和 對預聚物進行降溫,當溫度達到40'C 左右時,加入計算好的中和劑,快速攪拌,得到中間休。
((4) 乳化: 一定的去離子水緩慢加入中間體中,同時高速攪拌乳化,得到
水性聚氨酯分散體.
(5) 脫溶劑z 將乳化好的水性聚氨酶轉移到帶有真空冷凝裝置的三口燒瓶中,
在0.06MPa. 60 'C下脫溶劑(丙酮) 2-3h 。
『拾』 肉桂酸的制備裝置圖
肉桂酸的制備實驗
一、實驗原理
利用珀金(Perkin)反應制備肉桂酸。一般認為脂肪酸鉀鹽或鈉鹽為催化劑,提供CH3COO-
負離子,從而使脂肪酸酐生成負碳離子,然後負碳離子和醛或羧酸衍生物(酐和酯)分子中的羰基發生親核加成,形成中間體。
在珀金反應中,是碳酸鉀奪取乙酐分子中的α-H, 形成乙酸酐負碳離子。實驗所用的儀器必須是乾燥的。
主反應:
副反應:
在本實驗中,由於乙酸酐易水解,無水醋酸鉀易吸潮,反應器必須乾燥。提高反應溫度可以加快反應速度,但反應溫度太高,易引起脫羧和聚合等副反應,所以反應溫度控制在150~170℃左右。未反應的苯甲醛通過水蒸氣蒸餾法分離。
五、實驗裝置圖
(1)合成裝置圖
六、思考題
1、本實驗利用碳酸鉀代替perkin反應中的醋酸鉀,使反應時間縮短,那麼具有何種結構的醛能進行perkin反應?
答:醛基與苯環直接相連的芳香醛能發生Perkin反應。
2、用水蒸氣蒸餾能除去什麼?能不能不用水蒸氣蒸餾?如何判斷蒸餾終點?
答:①除去未反應的苯甲醛;
②不行,必須用水蒸氣蒸餾,因為混合物中含有大量的焦油狀物質,通常的蒸餾、過濾、萃取等方法都不適用;
③當流出液澄清透明不再含有有機物質的油滴時,即可斷定水蒸汽蒸餾結束(也可用盛有少量清水的錐形瓶或燒杯來檢查是否有油珠存在)。
3、在perkin反應中,醛和具有R2CHCOOCOCHR2結構的酸酐相互作用,能得到不飽和酸嗎?為什麼?
答:不能。因為具有(R2CHCO)2O結構的酸酐分子只有一個α-H原子。
4、苯甲醛和丙酸酐在無水丙酸鉀存在下,相互作用得到什麼產物?
答:得到α-甲基肉桂酸(即:α-甲基-β-苯基丙烯酸)。
5、制備肉桂酸時,往往出現焦油,它是怎樣產生的?又是如何除去的?
答:產生焦油的原因是:在高溫時生成的肉桂酸脫羧生成苯乙烯,苯乙烯在此溫度下聚合所致,焦油中可溶解其它物質。產生的焦油可用活性炭與反應混合物鹼溶液一起加熱煮沸,焦油被吸附在活性炭上,經過濾除去。
6、在肉桂酸制備實驗中,為什麼要緩慢加入固體碳酸鈉來調解pH值?
答:對於酸鹼中和反應,若加入碳酸鈉的速度過快,易產生大量CO2的氣泡,而且不利於准確調節pH值。
7、久置的苯甲醛中有何雜質?如何除去?為什麼要除去苯甲醛中的雜質?
答:久置的苯甲醛中含有較多的苯甲酸雜質;採用蒸餾的方法除去;若不先除去,則混在肉桂酸產品中,由於結構相似,不易除去。
8、制備肉桂酸時為何採用水蒸汽蒸餾?
答:因為在反應混合物中含有未反應的苯甲醛油狀物,它在常壓下蒸餾時易氧化分解,故採用水蒸汽蒸餾,以除去未反應的苯甲醛。
9、在肉桂酸制備實驗中,能否在水蒸汽蒸餾前用氫氧化鈉代替碳酸鈉來中和水溶液?
答:不能。因為苯甲醛在強鹼存在下可發生Cannizzaro反應。
10、用水蒸氣蒸餾的物質應具備什麼條件?
答:(1)隨水蒸氣蒸出的物質應不溶或難溶於水;
(2)在沸騰下與水長時間共存而不起化學變化;
(3)在一定大氣壓下,要有一定的蒸汽壓。
11、什麼情況下需要採用水蒸汽蒸餾?
答:下列情況需要採用水蒸氣蒸餾:
(1)混合物中含有大量的固體,通常的蒸餾、過濾、萃取等方法都不適用。
(2)混合物中含有焦油狀物質,採用通常的蒸餾、萃取等方法都不適用。
(3)在常壓下蒸餾會發生分解的高沸點有機物質。
12、怎樣正確進行水蒸汽蒸餾操作?
答:(1)在進行水蒸氣蒸餾之前,應認真檢查水蒸氣蒸餾裝置是否嚴密。
(2)開始蒸餾時,應將T形管的止水夾打開,當水蒸氣發生器里的水沸騰,有大量水蒸氣溢出時再旋緊夾子,使水蒸氣進入三頸燒瓶中,並調整加熱速度,以餾出速度2—3滴/秒為宜。
(3)操作中要隨時注意安全管中的水柱是否有異常現象發生,若有,應立即打開夾子,停止加熱,找出原因,排除故障後方可繼續加熱。
附: 1、肉桂酸制備合成方法綜述:
http://wenku..com/view/dc409efa700abb68a982fb4c.html
2、視頻:
肉桂酸的制備
http://v.youku.com/v_show/id_XMTgzMzkwMTE2.html