導航:首頁 > 軸承鑄造 > 減速箱軸承受剪切力怎麼算

減速箱軸承受剪切力怎麼算

發布時間:2025-09-10 11:25:09

A. 榨油機哪個牌子最好

御明電器。

維修保養:

每工作50小時後應檢查潤滑情況,減速箱上面的油杯不得缺油,源通榨螺軸調整螺桿內軸承應從調整螺桿孔內抽出加註黃油一次,嚴禁干磨。

各潤滑部位應防止灰塵和其他雜質侵入,每年需檢查減速箱的機油質量一次,如發現變質,應更換全部機油。

當壓榨量降低,出餅或出油不正常時,應將榨螺軸抽出,檢查榨螺、榨條、出餅頭、出餅口的磨損情況,磨損零件要及時更換。

原理:

其內部油脂以球狀或顆粒狀存在於細胞內被一層封閉的薄膜所包圍,在受到外界擠壓的過程中,這層薄膜和細胞壁一起破裂,花生油便從裂縫中流出;在擠壓過程中,花生中的油脂部分擠出。

花生變得脆而硬,失去了原有的彈性;而花生紅衣含纖維較多,在施加壓力後,與花生表面分離,從而使花生紅衣容易脫落;在擠壓過程中,花生受的是壓力而不是剪切力,所以無碎仁現象,很容易恢復原狀。

以上內容參考:網路-榨油機

B. 渦扇發動機 反推怎麼工作

有的發動機有折板,在引擎尾部,需要反推時,折板折起封閉原有的氣流排氣口,出現新的導流口,示意圖如下,

本人見過教材上的圖片,機械構造就不畫了,比較復雜。手裡暫時沒有資料引擎型號也就不能告訴你了,

我記得那張圖是用與小型客機的引擎,

大型渦扇和戰斗機的渦扇的反推我就不清楚了,

簡單示意,一下希望對你能有幫助,

如果想知道的更詳細,建議你買一些教材,現在的網上的磚家魚龍混雜,還是弄本專業的書更有用。

C. 試例舉幾種啤酒發酵設備,並闡明其特點。

啤酒發酵設備-發酵罐介紹 發酵罐:承擔產物的生產任務。它必須能夠提供微生物生命活動和代謝所要求的條件,並便於操作和控制,保證工藝條件的實現,從而獲得高產。
一個優良的發酵罐裝置和組成
(1)應具有嚴密的結構
(2)良好的液體混合特性
(3)好的傳質相傳熱速率
(4)具有配套而又可靠的檢測,控制儀表啤酒發酵設備-發酵罐發展歷史 第一階段:1900年以前,是現代發酵罐的雛形,它帶有簡單的溫度和熱交換儀器。
第二階段:1900-1940年,出現了200m3的鋼制發酵罐,在麵包酵母發酵罐中開始使用空氣分布器,機械攪拌開始用在小型的發酵罐中。
第三階段:1940-1960年,機械攪拌,通風,無菌操作和純種培養等一系列技術開始完善,發酵工藝過程的參數檢測和控制方面已出現,耐蒸汽滅菌的在線連續測定的pH電極和溶氧電極,計算機開始進行發酵過程的控制。發酵產品的分離和純化設備逐步實現商品化。
第四階段:1960-1979年,機械攪拌通風發酵罐的容積增大到80-150m3。由於大規模生產單細胞蛋白的需要,又出現了壓力循環和壓力噴射型的發酵罐,它可以克服—些氣體交換和熱交換問題。計算機開始在發酵工業上得到廣泛應用。
第五階段:1979年至今。生物工程和技術的迅猛發展,給發酵工業提出了新的課題。於是,大規模細胞培養發酵罐應運而生,胰島素,干擾素等基因工程的產品走上商品化。啤酒發酵設備-發酵罐的特點 (1)發酵罐與其他工業設備的突出差別是對純種培養的要求之高,幾乎達到十分苛刻的程度。因此,發酵罐的嚴密性,運行的高度可靠性是發酵工業的顯著特點。
(2)現代發酵工業為了獲取更大的經濟利益,發酵罐更加趨向大型化和自動化發展。在發酵罐的自動化方面,作為參數檢測的眼睛如pH電極,溶解氧電極,溶解CO2電極等的在線檢測在國外巳相當成熟。發酵檢測參數還只限於溫度,壓力,空氣流量等一些最常規的參數。啤酒發酵設備-發酵罐的種類發酵工業上最常用的是通風攪拌罐。除了通風攪拌發酵罐外,其它型式的發酵罐如:氣提式發酵罐,壓力循環發酵罐,帶超濾膜的發酵罐等。
典型發酵設備:種子制備設備、主發酵設備、輔助設備(無菌空氣和培養基的制備)、發酵液預處理設備、粗產品的提取設備、產品精製與乾燥設備、流出物回收,利用和處理設備發酵罐工藝操作條件
1。溫度:25~40℃。
2。壓力:0~1kg/cm3(表壓)。
3。滅菌條件;溫度100~140℃,壓力0~3kg/cm3(表壓)。
4。pH:2~11。
5。需氧量:0。05~0。3kmo1/m3·h。
6。通氣量:0。3~2VVM。
7。功率消耗:0。5~4kW/m3。
8。發酵熱量:5000~20000kcal/m3。h。啤酒發酵設備-發酵罐的類型 1。按微生物生長代謝需要分類
好氣:抗生素,酶制劑,酵母,氨基酸,維生素等產品是在好氣發酵罐中進行的;需要強烈的通風攪拌,目的是提高氧在發酵液中的傳質系數。厭氣:丙酮丁醇,酒精,啤酒,乳酸等採用厭氣發酵罐。不需要通氣。
2。按照發酵罐設備特點分類
機械攪拌通風發酵罐:包括循環式,如伍式發酵罐,文氏管發酵罐,以及非循環式的通風式發酵罐和自吸式發酵罐等。非機械攪拌通風發酵罐:包括循環式的氣提式,液提式發酵罐,以及非循環式的排管式和噴射式發酵罐。這兩類發酵罐是採用不同的手段使發酵罐內的氣,固,液三相充分混合,從而滿足微生物生長和產物形成對氧的需求。
3。按容積分類
一般認為500L以下的是實驗室發酵罐;500-5000L是中試發酵罐;5000L以上是生產規模的發酵罐。密閉厭氧發酵罐
對這類發酵罐的要求是:能封閉;能承受一定壓力;有冷卻設備;罐內盡量減少裝置,消滅死角,便於清洗滅菌。
酒精和啤酒都屬於嫌氣發酵產物,其發酵罐因不需要通入昂貴的無菌空氣,因此在設備放大,製造和操作時,都比好氣發酵設備簡單得多。
它的容積常大於50m3,H:Dt=1-2,罐的上,下部都是錐形的。
上部有物料口,冷卻水口,CO2和氣體出口,人孔和壓力表開口等。
溫度控制採用罐內蛇管和罐外壁直接水噴淋相結合,排料管在罐的底部。
一,酒精發酵罐
酵母將糖轉化為酒精高轉化率條件
(1)滿足酵母生長和代謝的必要工藝條件
(2)一定的生化反應時間
(3)及時移走在生化反應過程中將釋放的生物熱
酒精發酵罐的結構要求:滿足工藝要求,有利於發酵熱的排出,從結構上有利於發酵液的排出,有利於設備清洗,維修以及設備製造安裝方便等問題。
啤酒發酵設備-發展趨勢 近年來,啤酒發酵設備向大型,室外,聯合的方向發展,迄今為止,使用的大型發酵罐容量已達1500噸。大型化的目的是:
(1)由於大型化,使啤酒質量均一化;由於啤酒生產的罐數減少,使生產合理化,降低了主要設備的投資。
發酵容器材料的變化。由陶器向木材---水泥----金屬材料演變。現在的啤酒生產,後兩種材料都在使用。我國大多數啤酒發酵容器為內有塗料的鋼筋水泥槽,新建的大型容器一般使用不銹鋼
(2)開放式發酵容器向密閉式轉變。
小規模生產時,一般用開放式,對發酵的管理,泡沫形態的觀察和醪液濃度的測定等比較方便。隨著啤酒生產規模的擴大,發酵容器大型化,並為密閉式。從開放式轉向密閉發酵的最大問題是發酵時被氣泡帶到表面的泡蓋的處理。可用吸取法分離泡蓋。
(3)密閉容器的演變。
原來是在開放式長方形容器上面加弓形蓋子的密閉發酵槽;隨著技術革新過渡到用鋼板,不銹鋼或鋁制的卧式圓筒形發酵罐。後來出現的是立式圓筒體錐底發酵罐。目前使用的大型發酵罐主要是立式罐,如奈坦罐,聯合罐,朝日罐等。由於發酵罐容量的增大,要求清洗設備裝置也有很大的改進,大都採用CIP自動清洗系統。啤酒前,後發酵設備及計算。啤酒發酵設備-前後發酵設備(一)前發酵設備
傳統的前發酵槽均置於發酵室內,發酵槽大部分為開口式。前發酵槽可為鋼板制,常見的採用鋼筋混凝上製成,也有用磚砌,外面抹水泥的發酵槽。形式以長方形或正方形為主。前發酵槽內要塗布一層特殊塗料作為保護層。採用不飽和聚脂樹脂,環氧樹脂或其他特殊塗料較為廣泛,但還未完全符合啤酒低溫發酵的防腐要求。
前發酵槽的底略有傾斜,利於廢水排出離槽底10-15cm處,伸出有嫩啤酒放出管為了維持發酵槽內醪液的低溫,在槽中裝有冷卻蛇管或排管。前發酵槽的冷卻面積,根據經驗,對下面啤酒發酵取每立方米發酵液約為0。2平方米冷卻面積,蛇管內通入0-2度的冰水。注意CO2的排放,防止中毒。
後發酵設備
主要完成嫩啤酒的繼續發酵,並飽和二氧化碳,促進啤酒的穩定,澄清和成熟。
根據工藝要求,貯酒室內要維持比前發酵室更低的溫度,一般要求0-2℃,特殊產品要求達到-2℃左右。後發酵過程殘糖較低,發酵溫和,故槽內一般無須再裝置冷卻蛇管。貯酒室的建築結構和保溫要求,均不能低於前發酵,室內低溫的維持,是借室內冷卻排管或通入冷風循環而得。後發酵槽是金屬的圓筒形密閉容器,有卧式和立式兩種。工廠大多數採用卧式。發酵過程中需飽和CO2,後發酵槽應製成耐壓0。1-0。2MPa表壓的容器。後發酵槽槽身裝有人孔,取樣閥,進出啤酒接管,排出二氧化碳接管,壓縮空氣接管,溫度計,壓力表和安全閥等附屬裝置。後發酵槽的材料,一般用A3鋼板製造,內壁塗以防腐層。貯酒槽全部放置在隔熱的貯酒室內,維持一定的後酵溫度。毗鄰貯酒室外建有絕熱保暖的操作通道,在通道內進行後發酵過程的調節和操作。貯酒室和通道相隔的牆壁上開有一定直徑和數量的玻璃窺察窗,便於觀察後發酵室內部情況。通道內保持常溫,開啟發酵液的管道和閥門都接通到通道里。啤酒發酵設備-新型啤酒發酵設備1。圓筒體錐底發酵耀
圓簡體錐底立式發酵罐(簡稱錐形罐),已廣泛用於上面或下面發酵啤酒生產。錐形罐可單獨用於前發酵或後發酵,還可以將前,後發酵合並在該罐進行(一罐法)。這種設備的優點:在於能縮短發酵時間,而且具有生產上的靈活性,故能適合於生產各種類型啤酒的要求。
設備特點
這種設備一般置於室外。已滅菌的新鮮麥汁與酵母由底部進入罐內;發酵最旺盛時,使用全部冷卻夾套,維持適宜的發酵溫度。冷媒多採用乙二醇或酒精溶液,也可使用氨(直接蒸發)作冷媒;CO2氣體由罐頂排出。罐身和罐蓋上均裝有人孔,罐頂裝有壓力表,安全閥和玻璃視鏡。在罐底裝有凈化的CO2充氣管。罐身裝有取樣管和溫度計接管。設備外部包紮良好的保溫層,以減少冷量損耗。
優點:
(1)是能耗低,採用的管徑小,生產費用可以降低。
(2)最終沉積在錐底的酵母,可打開錐底閥門,把酵母排出罐外,部分酵母留作下次待用。
影響發酵設備造價的因素
發酵設備大小,形式,操作壓力及所需的冷卻工作負荷。容器的形式主要指其單位容積所需的表面積,以m2/100L表示,這是影響造價的主要因素。2.通用罐
用於多罐法及一罐法生產。因而它適合多方面的需要,故又稱該類型罐為通用罐。
結構:主體是一圓柱體,是由7層1。2m寬的鋼板組成。總的表面積是378m3,總體積765m3。
聯合罐是由帶人孔的薄殼垂直圓柱體,拱形頂及有足夠斜度以除去酵母的錐底所組成。錐底的形式可與浸麥槽的錐底相似。聯合罐的基礎是一鋼筋混凝土圓柱體,其外壁約3m高,20cm厚。基礎圓柱體壁上部的形狀是按照罐底的斜度來確定的。有30個鐵錨均勻地分埋入圓柱體壁中,並與罐焊接。圓柱體與罐底之間填入堅固結實的水泥沙漿,在填充料與罐底之間留25。4cm厚的空心層以絕緣。
3。朝日罐
前發酵和後發酵合一的室外大型發酵罐朝日罐是用4—6mm的不綉鋼板製成的斜底圓柱型發酵罐。其高度與直徑比為1:1-2:1外部設有冷卻夾套,冷卻夾套包圍罐身與罐底。外面用泡沫塑料保溫內部設有帶轉軸的可動排油管,用來排出酒液,並有保持酒液中CO2含量均一的作用。
朝日罐特點
朝日罐與錐形罐具有相同的功能,但生產工藝不同。
(1)利用離心機回收酵母
(2)利用薄板換熱器控制發酵溫度
(3)利用循環泵把發酵液抽出又送回去。
優點:
三種設備互相組合,解決了前,後發酵溫度控制和酵母濃度的控制問題,加速了酵母的成熟。使用酵母離心機分離發酵液的酵母,可以解決酵母沉澱慢的缺點利用凝聚性弱的酵母進行發酵,增加酵母與發酵濃接觸時間,促進發酵液中乙醛和雙乙醯的還原,減少其含量。啤酒發酵設備-啤酒的連續發酵罐種類1。兩個攪拌罐和一個酵母分離罐串聯起來,加入酒花的麥芽汁流加入第一個攪拌罐,經發酵後,成熟啤酒從分離罐中流出。這種流程已達到日產100m2的規模。
2。由數個高度6~9m的塔式發酵罐串聯起來,附加一些酵母分離和啤酒貯藏設備。
還有一個由主發酵塔和一個發酵塔組成,發酵周期40,50小時,連續發酵兩個月,各項經濟指標均優於間歇法。
丙酮—丁醇發酵罐
生產丙酮,丁醇的發酵罐比酒精發酵罐高,罐身需承受高壓,罐壁較厚,用鋼板製成。頂蓋和底部採用球形封頭,罐內表面平整光滑,無內部件,採用表面噴淋冷卻。種子罐採用夾套冷卻。一,機械攪拌發酵罐
機械攪拌發酵罐是發酵工廠常用類型之一。它是利用機械攪拌器的作用,使空氣和醪液充分混合促使氧在醪液中溶解,以保證供給微生物生長繁殖,發酵所需要的氧氣。
啤酒發酵設備-發酵罐的結構1,罐體
2,攪拌器和擋板
3,消泡器
4,聯軸器及軸承
5,變速裝置
6,空氣分布裝置
7,軸封
8,冷卻裝置
罐體
由圓柱體及橢圓形或碟形封頭焊接而成,材料為碳鋼或不銹鋼,對於大型發酵罐可用襯不銹鋼板或復合不銹鋼製成,襯里用的不銹鋼板厚為2-3毫米。為了滿足工業要求,在一定壓力下操作,空消或實消,罐為一個受壓容器,通常滅菌的壓力為2。5公斤/厘米2(絕對壓力)。
攪拌器
攪拌器有平葉式,彎葉式,箭葉式三種其作用是打碎氣泡,使氧溶解於醪液中,從攪拌程度來說,以平葉渦輪最為激烈,功率消耗也最大,彎葉次之,箭葉最小。為了拆裝方便,大型攪拌器可做成兩半型,用螺栓聯成整體。
通用發酵罐的攪拌槳類型
(1)通用發酵罐的攪拌槳最廣泛使用的是平葉渦輪攪拌槳,國內採用的大多數是六平葉式,其各部分尺寸比例已規范化。這種攪拌槳具有很大的循環液體輸送量,功率消耗大。因此特別適用於絲狀菌發酵。
(2)船用螺旋攪拌器,它具有比渦輪槳更為強烈的軸向流動,但是氧傳遞效率低。
(3)振動混合器,盡管可以提供較高的氧傳遞效率,但剪切力較低。
(4)多棒攪拌槳,已用於粘稠的絲狀鏈黴菌發酵的發酵罐中。這種攪拌槳具有較好的剪切分散能力和較低的功率消耗,在整個發酵過程中功率變化相對渦輪槳要小的多。
(5)氣體導入式攪拌器,是由一個空心的攪拌槳組成,安裝在空心的攪拌軸上。攪拌槳上至少有一個暴露在液體中的開口。由於攪拌槳轉動,開口處的壓力隨之減少,使導入的氣體沿著攪拌軸向下流動。它適應於低粘度的發酵液。
消泡裝置
消泡方式有兩種:一是加入化學消泡劑消除泡沫,但高濃度的化學消泡劑會對發酵產生抑製作用,故不能添加太多;第二種方式,即機械消泡。機械消泡裝置主要有四種。
一是鋸齒式消泡槳。它安裝於罐內頂部,高出液面的位置,固定在攪拌軸上,隨攪拌軸轉動,不斷將泡沫打破。
二是半封閉式渦輪消泡器,它是由前者發展改進而來,泡沫可直接被渦輪打碎或被渦輪拋出撞擊到罐壁而破碎。
三是離心式消泡器,它們置於發酵罐的頂部,利用高速旋轉產生的離心力將泡沫破碎,液體仍然返回罐內。
第四種是刮板式消泡器,它安裝於發酵罐的排氣口處,泡沫從氣液進口進到高速旋轉的刮板中,刮板轉速為1000—1450rpm,泡沫迅速被打碎,由於離心力作用,液體披甩向殼體壁上,返回罐內,氣體則由汽孔排出。
擋板
擋板的作用是改變液流的方向,由徑向流改為軸向流,促使液體激烈翻動,增加溶解氧。通常擋板寬度取(0。1-0。12)D,裝設4-6塊即可滿足全擋板條件。所謂"全擋板條件"是指在一定轉速下再增加罐內附件而軸功率仍保持不變。要達到全擋板條件必須滿足下式要求:
D—罐的直徑(mm)
Z—擋板數
W—擋板寬度(mm)
豎立的列管,排管,也可以起擋板作用,故一般具有冷卻列管或排管的發酵罐內不另設擋板。(但冷卻管為盤管時,則應設擋板。)擋板的長度自液面起到罐底為止。擋板與罐壁之間的距離為(1/5~1/9)W,避免形成死角,防止物料與菌體堆積。
聯軸器及軸承
大型發酵罐攪拌軸較長,常分為二至三段,用聯軸器使上下攪拌軸成牢固的剛性聯接。常用的聯軸器有鼓形及夾殼形兩種。小型的發酵罐可採用法蘭將攪拌軸連接,軸的連接應垂直,中心線對正。為了減少震動,中型發酵罐一般在罐內裝有底軸承,而大型發酵罐裝有中間軸承,底軸承和中間軸承的水平位置應能適當調節。罐內軸承不能加潤滑油,應採用液體潤滑的塑料軸瓦(如石棉酚醛塑料,聚四氟乙烯等)。軸瓦與軸之間的間隙常取軸徑的0。4-0。7%,以適應溫度差的變化。罐內軸承接觸處的軸頸極易磨損,尤其是底軸承處的磨損更為嚴重,可以在與軸承接觸處的軸上增加一個軸套,用緊固螺釘與軸固定,這樣僅磨損軸套而軸不會磨損,檢修時只要更換軸套就可以了。
變速裝置
試驗罐採用無級變速裝置,發酵罐常用的變速裝置有三角皮帶伸展動,圓柱或螺旋圓錐齒輪減速裝置,其中以三角皮帶變速傳動效率較高,但加工,安裝精度要求高。採用變極電動機作階段變速,即在需氧高峰時採用高轉速,而在不需較高溶解氧的階段適當降低轉速。這樣,發酵產率並不降低,而動力消耗則有所節約。自動化程度較高的發酵罐,採用可控硅變頻裝置,根據溶氧測定儀連續測定發酵液中溶解氧濃度的情況,並按照微生物生長需要的耗氧及發酵情況,隨時自動變更轉速,這種裝置進一步節約了動力消耗,並可相應提高發酵產率,但其裝置頗為復雜。
空氣分布裝置
空氣分布裝置的作用是吹入無菌空氣,並使空氣均勻分布。分布裝置的形式有單管及環形管等。常用的為單管式,管口對正罐底中央,裝於最低一擋攪拌器下面,管口與罐低的距離約40mm,並且空氣分散效果較好。若距離過大,空氣分散效果較差。該距離可根據溶氧情況適當調整,空氣由分布管噴出上升時,被攪拌器打碎成小氣泡,並與醪液充分混合,增加了氣液傳質效果。通常通風管的空氣流速取20米/秒。為了防止吹管吹入的空氣直接噴擊罐底,加速罐底腐蝕,在空氣分布器下部罐底上加焊一塊不銹鋼補強。可延長罐底壽命。通風量在0。02~0。5ml/sec時,氣泡的直徑與空氣噴口直徑的1/3次方成正比。也就是說,噴口直徑越小,氣泡直徑也越小。因而氧的傳質系數也越大。但是生產實際的通風量均超過上述范圍,因此氣泡直徑僅與通風量有關,而與噴口直徑無關。
軸封
軸封的作用:使罐頂或罐底與軸之間的縫隙加以密封,防止泄露和污染雜菌。常用的軸封有填料函軸封和端面軸封兩種。填料函軸封是由填料箱體,填料底襯套,填料壓蓋和壓緊螺栓待零件構成,使旋轉軸達到密封的效果。安裝在旋轉軸與設備之間的部件,它的作用是阻止工作介質(液體,氣體)沿轉動軸伸出設備之處泄漏冷卻裝置
5M3以下發酵罐一般採用夾套冷卻。大型發酵罐採用列管冷卻(四至八組)。帶夾套的發酵罐罐體壁厚要按外壓計算[即3。5Kg/厘米2(絕對壓力)]夾套內設置螺旋片導板,來增加換熱效果,同時對罐身起加強作用。冷卻列管極易腐蝕或磨損穿孔,最好用不銹鋼製造。啤酒發酵設備-標准通用式發酵罐編輯本段 通用式發酵罐是最廣泛應用的深層好氣培養設備。
在工業生產中,尤其是制葯工業中,使用得最廣泛的就是通用式發酵罐。這種發酵繞既具有機械攪拌裝置,又具有壓縮空氣分布裝置。發酵罐的攪拌軸既可置於發酵罐的頂部,也可置於其底部,其高徑比為2:1-6:19有關的重要因素是氧傳遞效率,功率輸入,混合質量,攪拌槳形式和發酵罐的幾何比例等。
自吸式發酵罐
它與通用發酵罐的主要區別是:①有一個特殊的攪拌器,攪拌器由轉子和定子組成;②沒有通氣管。
具有轉子和定子的攪拌器的吸氣原理:浸在發酵液中的轉子迅速旋轉,液體和空氣在離心力的作用下,被甩向葉輪外緣。這時,轉子中心處形成負壓,轉子轉速愈大,所造成的負壓也愈大。由於轉子的空膛與大氣相通,發酵罐外的空氣通過過濾器不斷地被吸入,隨即甩向葉輪外緣,再通過異向葉輪使氣液均勻分布甩出。轉子的攪拌,又使氣液在葉輪周圍形成強烈的混合流,空氣泡被粉碎,氣液充分混合。
自吸式發酵罐的攪拌器
①回轉翼片式自吸攪拌器;
②噴射式自吸攪拌器;
③具有轉子和定子的自吸攪拌器。
氣泡塔式發酵罐
塔式發酵罐系一直立長圓筒,筒內安裝孔板,有的還在罐內安裝攪拌器,罐壁四周裝擋板。與分批的機械攪拌發酵罐類似,有的塔頂橫截面擴大,供以降低流速,截留液體夾帶的懸浮物。發酵液和空氣可以並流,也可逆流。
_罐的特點是:罐身高,高徑比為6;土黴素等生產用的設備,高徑比達到7。由於液位高,空氣利用率高,節省空氣約5%,節省動力約30%,但底部存在沉澱現象;溫度高時降溫較難。

現代發酵罐的大型化給STF帶來—系列難以克服的困難。要大於1000kW的機械攪拌;大量的冷卻水和排除熱量;能量的均勻分布;溶解氧,碳源和其它營養與pH控制等。
帶升式發酵罐
帶升式發酵罐也稱為氣流攪拌發酵罐,不用機械攪拌,借通風起到攪拌作用並供給氧氣。
特點:結構簡單,冷卻面積小,無攪拌傳動設備,料液充滿系數大,無須加消泡劑,維修,操作及清洗簡便,節省動力,減少染菌等。
工作原理:外循環氣流攪拌罐是將空氣上升管裝在罐外,下端與罐底連通,管底裝空氣噴嘴,壓縮空氣以250~300m/s高速噴出,與上升管內醪液接觸,由於氣液混合體密度小於罐內醪液,所以在管內上升,管上端與罐身切線相連,液體由切線進入在罐內迴旋下降,形成激烈循環。
液提式發酵罐
液提發酵罐是液體藉助於一個液體泵進行輸送,同時氣體在液體的噴嘴處被吸入發酵罐。
噴嘴是這類發酵罐的一個特殊部件,製造要求精密。
氣提式發酵罐
空氣壓縮機是氣提式發酵罐的重要組成部分,它的效率決定於它的形式。
壓縮氣體通過空氣分布器進入液體後,最初形成的氣泡是由液體劇烈翻動來分散的,所以氣泡的分散程度決定於功率消耗速率。
(一)噴嘴塔式
這是由一個兩相噴嘴和鼓泡柱組成的發醉罐,它的通氣效率比多孔管式或多孔板式好得多。
這種形式的反應器常用於廢水處理,如在一個15000m'的活性污泥池中,安裝56個噴嘴,每天可轉化30000kg的氧。
(二)噴嘴塔循環式
它以兩相噴嘴作為通氣裝置,具有高的液體循環速度。
(三)噴璃循環式
它利用噴嘴的噴射力,吸入氣體,使氣體在罐體內部循環,達到較好的傳氧效果。
的傳氧效果。
(四)噴射通道式
在這種反應器里,液體在細長形的噴嘴裡被加速,使循環液體的位能更有效地轉變成動能。噴嘴最窄處液體的速度最大,而靜壓最低,空氣通過小孔或狹窄處被吸入和分散,在噴嘴處形成的氣泡被向下流動的液體帶到罐的底部。在窄管的終端,氣體向上運動並離開液體排出。
(五)滴流床式
液體在罐頂部被分散,然後向下滴流通過已被固定化的微生物細胞。空氣是在罐底導入並與液體逆向流動。它在好氧廢水處理中有著廣泛的應用。
(六)多級塔循環式
這種罐以多孔盤管或篩孔發作為一級分離器。液休平面由溢流管控制。(七)管道循環式
空氣以3-4m/s的速度導入液體流中,然後通過—個多孔過濾器在
旋風分離器中分離,最後排出系統。這種液流以單向通過泵和流量計。採用這種可以有很高的細胞濃度〔可達t659(乾重細胞)/L和高的氧傳遞速率。然而功率輸入也是相當高的。(八)液體流化床式
近年來,沉化床生化反應器的研究報道很多,它主要應用在3個方面
①酶固定在固體基質上;
②完整細胞固定在固體基質上進行純培養;
③生化流化床廣泛應用於廢水處理過程。

D. 攪拌車料斗

是的,質量可靠。
混凝土攪拌運輸車由汽車底盤和混凝土攪拌運輸專用裝置組成。我國生產的混凝土攪拌運輸車的底盤多採用整車生產廠家提供的二類通用底盤。其專用機構主要包括取力器、攪拌筒前後支架、減速機、液壓系統、攪拌筒、操縱機構、清洗系統等。工作原理是,通過取力裝置將汽車底盤的動力取出,並驅動液壓系統的變數泵,把機械能轉化為液壓能傳給定量馬達,馬達再驅動減速機,由減速機驅動攪拌裝置,對混凝土進行攪拌。
1.取力裝置
國產混凝土攪拌運輸車採用主車發動機取力方式。取力裝置的作用是通過操縱取力開關將發動機動力取出,經液壓系統驅動攪拌筒,攪拌筒在進料和運輸過程中正向旋轉,以利於進料和對混凝土進行攪拌,在出料時反向旋轉,在工作終結後切斷與發動機的動力聯接。
2.液壓系統
將經取力器取出的發動機動力,轉化為液壓能(排量和壓力),再經馬達輸出為機械能(轉速和扭矩),為攪拌筒轉動提供動力。3.減速機
將液壓系統中馬達輸出的轉速減速後,傳給攪拌筒。4.操縱機構
(1)控制攪拌筒旋轉方向,使之在進料和運輸過程中正向旋轉,出料時反向旋轉。 (2)控制攪拌筒的轉速。5.攪拌裝置
攪拌裝置主要由攪拌筒及其輔助支撐部件組成。攪拌筒是混凝土的裝載容器,轉動時混凝土沿葉片的螺旋方向運動,在不斷的提升和翻動過程中受到混合和攪拌。在進料及運輸過程中,攪拌筒正轉,混凝土沿葉片向里運動,出料時,攪拌筒反轉,混凝土沿著葉片向外卸出。
葉片是攪拌裝置中的主要部件,損壞或嚴重磨損會導致混凝土攪拌不均勻。另外,葉片的角度如果設計不合理,還會使混凝土出現離析。
6.清洗系統
清洗系統的主要作用是清洗攪拌筒,有時也用於運輸途中進行乾料拌筒。清洗系統還對液壓系統起冷卻作用。

1、公司設計的罐體葉片,使攪拌罐攪拌均勻,出料快速、流暢,並且獨具三維攪拌、干攪拌的功能。
(1)在前錐葉片上開有輔助攪拌孔,在攪拌過程中物料沿這些孔形成由前向後的小范圍軸向運動,這種軸向運動可引起其周圍物料的紊動,使攪拌更加均勻;同時在罐體軸線的平面上增加攪拌板,進行輔助攪拌,從而可以實現大骨料混凝土的攪拌運輸。
(2)罐口最後一對葉片製成月牙型,實現出料的連續過渡。在葉片中間增加一對相同的輔助葉片,加強出料連續性。
(3)前錐、中筒、後錐三部分葉片之間圓滑過渡、曲率平順。在保證攪拌均勻性的同時,提高混凝土的出料速度,降低出料殘余率;新式葉片使整車更加節能,在發動機怠速工況下即能滿足工地對車泵的泵送要求。
(4)通過專用模具壓制的葉片,採用變角的雙對數螺旋曲面,精密復雜、過渡圓滑,使攪拌罐成為一個理想的三維攪拌空間,使攪拌罐具備乾式攪拌功能,且混凝土攪拌均勻、不離析。
(5)攪拌葉片左旋設計,適應我國靠右行駛、路面左高右低的情況,從而提高了攪拌車的行車穩定性.
2、採用特種鋼材和特殊的焊接工藝,攪拌罐體強度高、耐磨性高。
(1)、筒體及葉片均採用高強度細晶粒合金鋼板,具有極高耐磨性。進料斗及出料滑槽加襯耐磨鋼板,極大延長使用壽命。
(2)、為加強攪拌筒的強度,所有關鍵位置焊縫均為搭接,其優點是圓柱筒和錐筒連接處有兩道焊縫,增加了攪拌筒結構強度和焊接強度,攪拌筒壁更耐磨。
(3)、 對葉片進行了折彎翻邊後與攪拌筒內壁焊接,葉片焊接牢固,攪拌時承載面積大,完全可以滿足乾式攪拌和三維攪拌所需的承載能力。
混凝土攪拌車早期攪拌葉片的母線採用阿基米德螺旋線,從1965年以後開始採用對數螺旋線,直到現在,攪拌葉片的母線基本很少改變。根據目前的研究熱點,混凝土攪拌車向著兩個方向發展:一是向著大型化、功能多樣化、控制自動化方向發展;二是傳統攪拌系統的變革,如採用新的攪拌系統設計思想,改變傳統的攪拌筒的外形、攪拌葉片的母線、攪拌葉片的安裝形式等等。本公司提出的母線改進設計正是基於後者的設計思想。 1 對數螺旋線新型母線的設計
設計攪拌車圓錐螺旋葉片時往往引入計算錐的概念,即假想存在一個錐面平行於攪拌桶錐面,且螺旋面與之交線上的所有螺旋角均相等,這個假想的圓錐面就叫計算錐。計算錐的引入雖然方便了計算,但在實際生產製造中卻不那麼方便。為了獲得螺旋角變化的螺旋面葉片,直接採用攪拌筒的錐面作為設計錐面,採用非等角對數螺旋線作為攪拌葉片的設計母線,其性能更加優越,而且在實際生產時也便於劃線和確定準確位置。 1.1 攪拌葉片的母線方程
攪拌葉片在前錐和後錐部分採用的是對數螺旋線,其母線的方程為:

其中β為螺旋角,ρ0為初始極徑;θ為半錐角;φ為螺旋轉角。
當口β一定值時,螺旋線為等角對數(圓錐)螺旋線;當β是一個變數時,該螺旋線即為非等角對數螺旋線,則β可以表示為: β=β0±cδ(t)
其中β0為初始螺旋角,c為系數,δ(t)為變化函數,可採用多種函數規律。 可以看出等角對數螺旋線是非等角對數螺旋線的一個特例。 1.2 攪拌葉片的設計
以華菱集團8.5LP混凝土攪拌車的攪拌系統為設計基礎,進行攪拌葉片的改進設計。設計時,保持攪拌筒的外形尺寸和基本參數不變,只對攪拌葉片進行了重新設計。已知攪拌筒的外形尺寸為:後錐長A=1036mm,後錐小端直徑Φ1=1715mm;中圓長B=1566rnm,直徑Φ2=2305mm;前錐長C=1673mm,前錐小端直徑Φ3=1103mm。螺旋葉片設計規律及參數如表1所示,新方案與原設計繪制的螺旋線如圖1和圖2所示,圖中標記A、B為3段螺旋線的接合處。
3 實驗研究
為了驗證設計的效果以及有限元分析的正確性,還需對這兩種母線的攪拌葉片進行實驗研究。攪拌葉片的優劣要從混凝土攪拌的效果進行評定,最重要的是要看混凝土最終的攪拌質量。根據微觀攪拌理論,混凝土各組分不僅要在宏觀上達到均勻,微觀上也要達到均勻分布,這樣,每一骨料都被水化物薄膜包圍,混合物的凝膠結構才最穩定。而驗證攪拌均勻性的方法則是在混凝土硬化28天後測量其抗壓強度。
用於試驗的混凝土攪拌筒採用1:4的有機玻璃模型,用於試驗的混凝土是採用同一配比的混凝土,每筒裝載容量1m3,混凝土的基本參數如下:
水灰比:0.45;砂率:32%,採用中砂;碎石直徑:10~20mm;坍落度:30mm;水泥:水:砂:石=1:0.45:1.48:3.15。試驗結果如表2所示。
從表2中可以看出:非等角對數螺旋線在攪拌後的坍落度相對比較均勻,出料速度、出料殘余率等性能指標相對較好。從28天的抗壓強度可看出,新方案攪拌的效果較好。
表2 試驗結果對比
2 攪拌葉片的有限元分析
為了對比非等角對數螺旋線攪拌葉片與等角對數螺旋線的優劣,首先對其進行了有限元受力分析和位移的對比。
對於研究對象,如果攪拌葉片的母線比較光順,其受力就比較均勻,應力集中現象以及奇異點會比較少,產生的變形就小,其攪拌性能相對也會更加優越。首先對兩種設計方案進行有限元受力分析的比較,根據攪拌的特點,主要考慮拌合料的軸向運動和周向運動_3]。簡化它們的受力情況如下: (1)軸向運動:其動力為葉片的軸向推力,動阻力有筒底的反推力、筒壁和葉片的軸向摩擦力及以上流層的軸向剪切力。
(2)周向運動:其動力為葉片的周向推力和筒壁及葉片的摩擦力,兩者等效為葉片的周向推力,其動阻力有自重力形成的周向流動阻力和上流層的周向剪切力。
對混凝土攪拌葉片兩種方案的有限元受力分析如圖3和圖4所示,其對應的位移變形圖如圖5和圖6所示。
從圖3和圖4顯示的葉片有限元分析的等效應力雲圖可以看出:兩種方案的攪拌葉片所受的應力分布都是不均勻的。但是從節點結果可以看出,等角對數螺旋線的最大應力值為37MPa,非等角對數螺旋線的最大應力值為15MPa,都遠小於材料的屈服強度360MPa。可以明顯看出非等角對數螺旋線由於其曲線本身的特點以及便於擬合的優良特性,比等角對數螺旋線更加光順,所以受力也更加均勻,奇異點也就更少。
從圖5圖6可以看出,等角對數螺旋線的最大位移為0.000461,非等角對數螺旋線的位移為0.000339,都發生在各段攪拌葉片的擬合處。從位移變形的發生情況,一方面可以看出非等角對數螺旋線具有明顯的優良性能,另一方面也對以後的優化設計提出了方向。
根據受力及變形情況,可以推斷出攪拌葉片設計的優劣,為了進一步驗證所設計葉片的攪拌性能,採用相似原理對兩種線型的攪拌葉片攪拌效果進行了試驗驗證。

3 實驗研究
為了驗證設計的效果以及有限元分析的正確性,還需對這兩種母線的攪拌葉片進行實驗研究。攪拌葉片的優劣要從混凝土攪拌的效果進行評定,最重要的是要看混凝土最終的攪拌質量。根據微觀攪拌理論,混凝土各組分不僅要在宏觀上達到均勻,微觀上也要達到均勻分布,這樣,每一骨料都被水化物薄膜包圍,混合物的凝膠結構才最穩定。而驗證攪拌均勻性的方法則是在混凝土硬化28天後測量其抗壓強度。
用於試驗的混凝土攪拌筒採用1:4的有機玻璃模型,用於試驗的混凝土是採用同一配比的混凝土,每筒裝載容量1m3,混凝土的基本參數如下:
水灰比:0.45;砂率:32%,採用中砂;碎石直徑:10~20mm;坍落度:30mm;水泥:水:砂:石=1:0.45:1.48:3.15。試驗結果如表2所示。
從表2中可以看出:非等角對數螺旋線在攪拌後的坍落度相對比較均勻,出料速度、出料殘余率等性能指標相對較好。從28天的抗壓強度可看出,新方案攪拌的效果較好。
表2 試驗結果對比

混凝土攪拌車攪拌罐及螺旋葉片總成建模與模擬

攪拌總成作為混凝土攪拌運輸車的核心部分, 直接決定了整車性能。通過對華菱星馬,三一重工,中聯重科等攪拌車攪拌總成的研究, 指出了攪拌葉片在前錐、中圓和後錐部分分別採用的螺旋線形式, 並對攪拌罐總成進行了建模和模擬,為指導生產實踐奠定了理論基礎。 關鍵詞: 混凝土攪拌罐總成; 螺旋葉片
攪拌葉片是混凝土攪拌車的關鍵部件, 它的好壞直接影響著攪拌罐的壽命、出料殘余率、攪拌效果、出料速度等。在攪拌罐裝料、運料和卸料三個過程的運動中, 要達到新拌混凝土均質性好、進出料效率高、出料殘余率低且性能可靠的技術要求, 需找出最佳的罐體和葉片配置尺寸。目前國內攪拌葉片的製造靠測繪仿製 , 鑒於此, 有待研究開發出指導葉片和罐體及相關件的關鍵技術。
1 攪拌筒和葉片參數設計
設計攪拌罐的攪拌葉片時, 一般在前錐和後錐段採用對數圓錐螺旋線, 中圓段採用圓柱螺旋線。攪拌罐的攪拌和出料性能與螺旋線的螺旋升角和螺旋角有著密切的關系, 攪拌罐與地面的夾角為14o , A角為葉片曲線圍繞攪拌筒軸心的螺旋升角, 它與旋角B之間的關系為: A+ B= 90o [ 2 ]。螺旋升角A越大, 攪拌性能越好, 但出料性能越差。隨著A角的增大, 混凝土沿葉片滑移的摩擦力也相應加大, 達到一定程度, 就易造成混凝土在葉片上的淤積, 使其運動受阻, 攪拌效率降低, 尤其在卸料工況時, 由於淤積而造成的堵塞會使卸料發生困難。當A趨於90o 時, 葉片與攪拌曲線近似平行, 這時葉片對混凝土類似於自落式攪拌機而幾乎沒有軸向的推移作用, 因而喪失卸料功能。為了避免前錐積料, 改善出料性能, 應減小小端處的螺旋升角, 但A角不能太小, 當A角很小時, 葉片幾乎與攪拌軸線垂直, 混凝土在轉動的攪拌筒中軸向運動非常微小, 近似於只作沿筒葉的切向滑跌。在這種情況下, 不但攪拌作用很弱, 而且也不具備實際的卸料能力。因此, 要綜合考慮以下幾點:
(1) 後錐螺旋葉片主要是為了實現攪拌功能, 在滿足物料下滑(一般下滑角C> 30o [ 3 ]) 的前提下盡量加大螺旋升角, 但為了避免前錐積料, 改善出料性能, 應減小小端處的螺旋升角。
(2) 中圓段是攪拌與出料的過渡段, 為提高攪拌性能應適當提高螺旋葉片頂端螺旋升角, 為改善出料性能應使螺旋葉片直紋與攪拌筒軸線有一定夾角, 這個夾角等於後錐的半錐角的餘角, 以實現以上這兩種功能。
(3) 前錐螺旋葉片實現快速卸料, 並起一定拌和作用, 避免出料時出現離析。越靠近出口的位置越要選用大的螺旋角, 即小的螺旋升角, 可提高攪拌罐的出料性能。
從以上分析可見, 葉片曲線的螺旋升角, 決定混凝土在攪拌筒沿軸向或切向運動的強度, 影響著攪拌和卸料功能。當A較大或很小時, 葉片的工作性能差,甚至沒有攪拌或卸料能力。為保證攪拌質量或卸料速度, 應選擇適當的螺旋升角, 以上的分析只是定性分析。螺旋升角的確定, 還要受混凝土性質和攪拌筒斜置角度等因素的制約, 從理論上確定還有一定困難。實驗結果表明當攪拌罐的斜置角度在14o~ 20o 左右時,對於攪拌工況和卸料工況一般都使A≤30o

選擇攪拌罐前錐與圓柱段葉片為平直截面, 前錐葉片與罐壁垂直焊接, 葉片母線B 1= 80mm; 圓柱段葉片母線B 2= 380mm , 與罐壁呈74111o 焊接; 後錐段葉片與罐壁呈74111o , 並且後錐段葉片母線沿出料方向逐漸減小。
混凝土攪拌運輸車由汽車底盤和混凝土攪拌運輸專用裝置組成。我國生產的混凝土攪拌運輸車的底盤多採用整車生產廠家提供的二類通用底盤,其專用機構主要包括取力器、攪拌筒前後支架、減速機、液壓系統、攪拌筒、操縱機構,清洗系統等。混凝土貯罐由優質耐磨薄鋼板製成,為了能夠自動裝、卸混凝土,其內壁焊有特殊形狀的螺旋葉片。當混凝土貯罐正向轉動時,混凝土可裝滿貯罐並且因不斷被攪動而不會很快凝結;當它反向轉動時,混凝土會自動從卸料口卸出。
混凝土攪拌運輸車用的汽車底盤要求要有足夠的載重能力和強勁的輸出功率。一般要求發動機要有230kW(300馬力)以上的功率,裝載量為6~7m的混凝土攪拌運輸車需選用6×4載質量為15 t級的通用底盤;裝載量為8~10m的需選用雙前橋8×4載質量為20t級的底盤;而裝載量為10~12m的則要採用6×4的牽引車加半掛車的方式。混凝土貯罐的轉動則是靠液壓驅動機構來保證。裝載量為6~8m的混凝土攪拌運輸車一般採用由汽車發動機通過動力輸出軸帶動液壓泵,再由高壓油推動液壓馬達驅動混凝土貯罐。裝載量為9~12m的,則由車載輔助柴油機帶動液壓泵驅動液壓馬達。
混凝土攪拌運輸車在行車中及等待卸料過程中,
為避免混凝土水份離析或凝固,通過取力裝置將汽車底盤的動力取出,並驅動液壓系統的變數泵把機械能轉化為液壓能傳給定量馬達,馬達再驅動減速機,由減速機驅動攪拌裝置,對混凝土進行攪拌,罐筒均需低速轉動(2~4r/rain)。卸料時,罐筒需反方向轉動(12~14r/min),混凝土被筒內螺旋葉片轉動,均勻連續卸出。罐筒的轉速變化和旋轉方向的改變,均由變數油泵的控制桿完成——改變油泵的轉速、排量和高壓油出口換位(油泵反向旋轉)。
國產混凝土攪拌運輸車採用主車發動機取力方式。取力裝置的作用是通過操縱取力開關將發動機動力取出,經液壓系統驅動攪拌筒,攪拌筒在進料和運輸過程中正向旋轉,以利於進料和對混凝土進行攪拌,出料時反向旋轉,工作終結後切斷與發動機的動力聯接。液壓系統將經取力器取出的發動機動力轉化為液壓能(排量和壓力),再經馬達輸出為機械能(轉速和扭矩),為攪拌筒轉動提供動力。
減速機將液壓系統中馬達輸出的轉速減速後傳給攪拌筒。操縱機構控制攪拌筒旋轉方向,使之在進料和運輸過程中正向旋轉,出料時反向旋轉。攪拌裝置主要由攪拌筒及其輔助支撐部件組成。攪拌筒是混凝土的裝載容器,轉動時混凝土沿葉片的螺旋方向運動,在不斷的提升和翻動過程中受
到混合和攪拌。在進料及運輸過程中,攪拌筒正轉,混凝土沿葉片向里運動;出料時,攪拌筒反轉,混凝土沿著葉片向外卸出。葉片是攪拌裝置中的主要部件,損壞或嚴重磨損會導致混凝土攪拌不均勻。另外,葉片的角度如果設計不合理,還會使混凝土出現離析。清洗系統的主要作用是清洗攪拌筒,有時也用於運輸途中進行乾料攪拌。清洗系統還對液壓系統起冷卻作用。。

混凝土攪拌車罐體製作工裝方案

Tooling Plan of Procing Tank ofConcrete Mixer

馬鞍山中昱機械製造有限公司安徽馬鞍山239056

捕要:介紹了混凝土攪拌車筒體製作工裝的方案。通過對筒體的每節錐筒或直筒分段外卡定位模板,在外卡模板之間通過連接板分段焊接成一體,將每節錐筒或直筒的定位模具通過鍵槽定位,並用螺栓連接成一體,以便將不規則筒體外形轉變成模具的規則形狀,再將外卡模具的筒體吊放到滾輪架上實現變位焊接,以保證裝配後各節筒體能夠同心旋轉·

關鍵訶:混凝土攪拌罐 外卡定位模具鍵槽定位 滾柱式滾輪架 電磁調速 同步旋轉

1前言
近年來隨著國家基礎性建設的加大,混凝土攪拌車的需求量也在不斷增加。混凝土攪拌車的筒體因其形狀是與中筒圓柱體不對稱的前後錐體製作而成,筒體成型後必須保證裝配後各節筒體能夠同心旋轉,在製作工藝上有一定難度。本公司將介紹一種焊裝攪拌車筒體的工裝,用以保證筒體焊裝成形。
2混凝土攪拌車筒體模具的製作
2.1筒體模具製作的思路
根據混凝土攪拌車簡體的外形將其分為封頭、後錐、中筒、前錐1、前錐2五段,針對每段筒體按圖1所示分段,並對各段分別外卡定位模板,其中筒體變截面兩側應分別設置模板,每兩節筒體接觸部位對應模具的模板通過螺栓連接成一體,外卡定位模具模板與簡體接觸面通過精加工保證形狀與筒體錐度一致,各段筒體上的模板之間分別通過連接板焊接成一體,構成與之對應的五段模具。
2.2各段筒體橫具的製作
2.2.1封頭段定位模具
封頭段設一塊定位模板,攪拌車減速機法蘭對應的筒體法蘭定位板與模板毛坯料通過連接板焊接成一體,再精加工法蘭定位孔、模板定位面及外因、模板上的鍵.
2.2.2後錐定位模具
後錐由三塊定位模板通過連接板組焊成一體,精加工模板定位面及外圓、兩側模板上的鍵槽,再將其對半分開,並通過螺栓連接。
2.2.3中筒定位模具
中筒由兩塊模板組成,通過連接板連成一體,精加工模板定位面及外圓、兩側模板上的鍵,再將其對半分開,並通過螺栓連接。
2.2.4前錐2定位模具
前錐2由四塊模板通過連接板組焊成一體,其中一側模板定位在攪拌車筒體滾道上,精加工模板定位面及外圓、兩側模板上的鍵槽。
2.2.5前錐1定位模具
前錐1由三塊模板通過連接板組焊成一體,精加工模板定位面及外圓、與前錐2定位模具連接一側模板上的鍵,精加工 後再將其對半分開,並通過螺栓連接。

2.3各段模具精加工的工藝要求
各段外卡模具精加工時應保證:模板定位面的錐度應與封頭或各段筒體接觸處錐度一致,模板外圓大小一致,相鄰兩段模具接觸面上對應的鍵和鍵槽位置應一致 (通過給定尺寸公差保證)。為了減少精加工的工作量,各段外卡模具連接板內側應高於模板內表面、外側應低於模板外圓面。

3混凝土攪拌車筒體的定位成型
根據混凝土攪拌車筒體的尺寸要求,將放樣下料的各節筒體板材分別卷製成型。各節筒體卷制時將其接縫內側手工分段點焊,再分別將各節筒體放人對應定位的模具中,通過外力使各節筒體外表面與對應筒體模具定位模板內側定位面貼合,其中封頭、法蘭在對應模具中定位並固定,相鄰各節筒體模具分別通過鍵、鍵槽定位,再通過螺栓將各節筒體模具連接成 一體(如圖1),螺栓連接孔、鍵槽連接方式如圖2所示,混凝土攪拌車筒體模具連接後的三維效果如圖3所示。

4筒體滾輪架方案
混凝土攪拌車筒體在滾輪架上滾動的,目的是實現筒體內部環縫及葉片的焊接。滾輪架一方面起到托住筒體及模具的作用,另一方面滾輪架的轉速應適應焊接速度在一定范圍的變化,以便操作人員在筒體內部施工,為此採用圖4所示滾柱式筒體滾輪架方案:通過小托輥(如圖5)分段支撐長托輥以增強長托輥的抗彎強度以長托輥支撐外卡模具的筒體總成,通過外球面球軸承連接長托輥支撐軸以保證其轉動時同心,採用速比相同的二級減速機通過法蘭式連接軸連成一體,再通過滑塊連軸節實現兩個平行長托輥的同向同步轉動,選擇電磁調速電動機滿足長托輥在一定范圍內轉速的可調。

5筒體外環縫焊接方案
為便於筒體外環縫焊接,將內部焊接成型的筒體從模具中取出,使筒體的滾道部位架在驅動托輥上,在筒體法蘭端連接法蘭盤,將法蘭盤焊接在自由轉動的從動軸上,通過支架調整從動軸高度以實現筒體的轉動,然後配合可在導軌上運動的十字形焊接臂,以便在簡體上實現外環縫自動CO:保護焊或埋弧焊接。
6焊接滾輪架的計算
6.1驅動功率計算
滾輪受力狀態和滾輪架偏心距e的關系如如圖6所示

式中,M為驅動輪所受總力矩,N·m, D,為長托輥直徑,mm;n為驅動輪轉速,r/min,
l為總傳動效率。若用一級蝸桿傳動,取l≈O.4。
6.2中心角的選擇
使用滾輪架時,選擇合適的中心角,有利於工件穩定而均勻的轉動,並可降低滾輪支反力和驅動圓周力,降低能源消耗。其對應關系如圖7所示

閱讀全文

與減速箱軸承受剪切力怎麼算相關的資料

熱點內容
超聲波能被什麼干擾 瀏覽:40
留夠設備如何報關 瀏覽:820
電機及電氣技術實驗裝置三相功率表 瀏覽:526
雙金屬鑄鐵軋輥用什麼鑄造方法 瀏覽:384
130後橋用的什麼軸承 瀏覽:815
正常輪胎軸承多少錢 瀏覽:310
老款5系儀表台怎麼拆 瀏覽:126
標配液晶儀表怎麼樣 瀏覽:843
電橋是一種什麼比較什麼是儀表 瀏覽:251
供水管道閥門安裝交底 瀏覽:864
日產天籟怎麼看調過儀表 瀏覽:218
25閥門怎麼開 瀏覽:125
注冊了建築公司還要哪些設備 瀏覽:326
天津塘沽閥門什麼牌的好 瀏覽:668
汽車儀表盤怎麼調成頂配 瀏覽:77
製冷機怎麼樣設置溫度 瀏覽:846
雷電防護裝置設計技術評價 瀏覽:258
福田歐曼240儀表盤多少錢 瀏覽:865
有多個機械硬碟壞的有什麼用 瀏覽:805
如圖是電解水的實驗裝置示意圖 瀏覽:790