1. 電主軸溫升都有哪些抑制措施方法
一、減小軸承發熱量的措施
(1)適當減小軸承滾珠直徑
減小滾珠直徑可以減小離心力,從而減小摩擦力矩。但是,滾珠直徑的減小應以不過多削弱軸承的剛度為限。一般高速精密滾動軸承的滾珠直徑約為標准系列滾珠軸承滾珠直徑的70%,而且做成小直徑密珠的結構形式,通過增加軸承的滾珠數和滾珠與內外套圈的接觸點,提高滾珠軸承的剛度。
(2)採用新材料
陶瓷球軸承與鋼質角接觸球軸承相比,在高速回轉時,滾珠與滾道間的滾動和滑動摩擦減小,發熱量降低。比如陶瓷球軸承與鋼質角接觸球軸承相比的主要優點有:
1、質量輕。材料密度僅為3.218×103kg/m3,只相當於鋼球的40%。在高速回轉時,滾動體的離心力和陀螺力矩可顯著減小從而接觸應力減小,摩擦功耗下降,發熱量降低。
2、線膨脹系數小。α=3.2×10-6/℃,約為鋼球的25%,使得在不同溫升的條件下,球與內外環的配合間隙變化小,提高了軸承工作的可靠性,並減小了溫升導致的軸承軸向位移,也使得預載入荷變化小。
二、電主軸單元發熱的解決方法
電主軸單元異常發熱後如何將熱量盡快帶走,從而有效控制溫升。
(1)主軸軸承的潤滑冷卻措施———油氣潤滑系統
油氣潤滑是將微量的潤滑油均勻、連續地混入壓縮空氣流,再把噴入要潤滑的摩擦副內的一種潤滑方法。除了具有很好的潤滑性能之外,還有極強的冷卻效果。雖油氣潤滑系統比較昂貴,但對於高精密加工中心來說,一套油氣潤滑系統不至於將產品成本提高很多。
油氣潤滑在加工中心中應用,應注意以下事項:
①噴嘴距滾動軸承端面的距離可在3~25mm之間;
②在軸承腔壁上需開設排氣孔,以便流通;
③油氣潤滑系統的用油量極少,大約1mL/h;
④油氣潤滑系統的含油量:採用油氣潤滑時影響軸承溫升的因素之一是供油量。供油量決定著油氣兩者混合流中的含油量,給定速度下的軸承溫升與該含油量有關,初始階段軸承溫升隨含油量增加而迅速下降,而後其影響減弱,當含油量增加到某一數值後溫升緩慢增加,繼而急劇上升,因而油氣兩者的混合流中的含油量達到一個最佳值,才能既保證軸承的潤滑充足又保證軸承的強力冷卻。為此,油氣潤滑系統參數確定為:空氣壓力為0.4MPa,空氣流量為(3.3~6.7)×10-4m3/s,潤滑油運動粘度為32mm2/s,潤滑油流量約為(0.28~0.83)×10-10m3/s,調整潤滑油流量取得最佳含油量;
⑤油氣潤滑系統供油的均勻性:採用油氣潤滑時影響軸承溫升的因素之二是供油的均勻性。決定供油均勻性的最主要參數是供油頻率。為了獲得合適的供油量,不能只降低供油頻率,而是合理匹配活塞直徑、沖程、供油頻率(2~8min),取得最佳方案,獲得理想的供油量。軸承潤滑方式的選擇與軸承的轉速、負荷、許用溫升及軸承類型有關,一般根據速度因數dm·n值選擇。
其中:dm為軸承中徑(mm):n為工作轉速(r/min)。採用油氣潤滑系統來解決高速電主軸中陶瓷球軸承的潤滑與冷卻問題。
油氣潤滑系統的基本原理是,利用具有一定壓力的壓縮空氣和由定量分配器每隔一定時間定量輸出微量的潤滑油,在一定長度的管道中混合,通過壓縮空氣在管道中的流動,帶動潤滑油沿管道內壁不斷地流動,把油氣混合物輸送到安裝於軸承近處的噴嘴(孔徑1mm中),經噴嘴射向內圈和滾動體的接觸點實現潤滑和冷卻,達到「最佳供油量」和「壓縮空氣進行冷卻」
油氣潤滑與油霧潤滑的主要區別在於供給軸承的潤滑油未被霧化,而是以油粒狀被壓縮空氣吹入軸承,向大氣中排放的僅是空氣,因此對環境沒有污染。具有一定壓力的潤滑油在接觸點除潤滑外還有帶走熱量和密封的作用。由於油滴是噴射而出,故可穿透在高速運轉時由於離心力的作用而在軸承周圍形成的空氣渦流,實現潤滑軸承的目的。油氣潤滑用大量的壓縮空氣來冷卻軸承,使得軸承的溫升比用油霧潤滑時要低很多。實驗表明,使用油氣潤滑的軸承溫升可比使用脂潤滑時降低5~80℃,比油霧潤滑降低9~160℃,隨著dm·n值的增大,降溫的效果更明顯。
軸承潤滑的目的是減少軸承內部摩擦及磨損,防止燒粘,延長疲勞壽命,排出摩擦熱,冷卻。傳統的滾動軸承潤滑方法,如油浴潤滑法、油杯潤滑法、飛濺潤滑法、循環潤滑法和油霧潤滑法等已均不能滿足高速主軸軸承對潤滑的要求,這是因為高速主軸軸承不僅對油的粘度有嚴格要求,而且對供油量也有著嚴格要求。為了獲得最佳的潤滑效果,供油量過多或過少都是有害的。而油氣潤滑系統則可以精確地控制各個摩擦點的潤滑油量,可靠性極高,因而可在高速主軸軸承領域應用。
(2)主軸軸承外環和內裝式電動機的循環冷卻措施———油—水熱交換系統
為了提高軸承外環的散熱效果,在主軸設計中可採用主軸套筒螺旋槽冷卻劑熱交換系統,對主軸套筒進行強製冷卻,從而帶走主軸軸承外環異常產生的熱量。主軸套筒螺旋槽冷卻劑熱交換系統採用連續、大流量、冷卻液對主軸套筒進行循環冷卻,冷卻液從主軸套筒上的入油口輸入,通過主軸軸承外環主軸套筒上的螺旋槽,與主軸套筒進行充分的熱交換,將主軸軸承外環產生的絕大部分熱量轉移到冷卻液中,從主軸套筒上的出油口輸出,然後流經熱交換器,進行再一次熱交換,將冷卻液溫度降到接近室溫後,流回冷卻箱,再經過壓力泵增壓輸到入油口,從而實現循環冷卻。
主軸套筒螺旋槽冷卻劑熱交換系統在加工中心中應用,應考慮以下內容:
①冷卻劑的選擇:常用的冷卻劑有製冷劑、水、油及油水混合物,因產品具體情況選取,其中水冷降熱比高、價格低廉、維護方便,深受廣大用戶青睞;
②冷卻液或油或油水混合物冷卻時介質壓力約0.4MPa為宜,介質流量約50L/min為宜。由於主軸電動機兩端就是主軸軸承,電動機的發熱會直接降低軸承的工作精度,如果主電動機的散熱解決得不好,將會影響到機床工作的可靠性和穩定性。有限元分析表明,電主軸的定子和轉子是電主軸的兩大熱源。另外,電動機高速運轉條件下,有近1/3的電動機發熱量是由電動機轉子產生的,並且轉子產生的絕大部分熱量都通過轉子與定子間的氣隙傳入定子中,只有少部分熱量直接傳入主軸和端蓋上,其餘2/3的熱量產生於電動機定子。
轉子散熱條件差,又直接安裝在主軸上,設計中應盡量減小電動機徑向傳熱熱阻,使轉子的發熱量盡可能多地通過氣隙傳到定子和殼體中去,並由冷卻液帶走。為了提高散熱效果,保證電動機的絕緣安全,高速電主軸採用油一水熱交換循環冷卻系統。系統採用連續、大流量、冷卻油對定子進行循環冷卻,冷卻油從主軸殼體上的入油口輸入,通過定子冷卻套上的螺旋槽,與電動機定子進行充分的熱交換,將電動機產生的絕大部分熱量轉移到油中,從殼體的出油口輸出,然後流經逆流式冷卻交換器,與冷卻水進行再一次熱交換,將熱油溫度降到接近室溫後,流回油箱,再經過壓力泵增壓輸到入油口,從而實現循環冷卻。根據主軸電動機的要求,冷卻油的入口溫度T在10~40℃之間,溫升不得超過10℃。
現有的高速主軸主要是通過在主軸殼體內加冷卻油,並不斷地循環,把熱量帶走,來進行冷卻。其基本的冷卻路線是:首先從主軸冷卻油溫控制器流出冷卻油,經過在靠近前端蓋的入水口,冷卻油進入前端軸承的外圍,對前端軸承進行冷卻。接著流向主軸的定子和後端軸承進行冷卻,最後從出水口流回主軸冷卻油溫控制器完成循環。
(3)主軸軸承內環和內裝式電動機轉子的冷卻措施———B型內冷
採用主軸套筒螺旋槽冷卻液熱交換系統,與不採用主軸套筒熱交換系統冷卻時軸承內環的溫度也下降了一些,只有4~5℃,這表明主軸套筒熱交換系統對軸承內環的散熱效果不明顯。要減少主軸軸承內環的溫升和熱影響,必須採用冷卻劑對主軸中心孔冷卻(B型內冷),提高主軸軸承內環的散熱來實現。
2. 高壓電機運行中給電機軸承加油脂,如何操作能控制好溫升,確保在短時間內完成加油脂工作。
轉速?有無絕緣要求?非密封軸承
填滿軸承內部空間
軸承座內加入30 - 50%的滑脂
確保密封潤滑良好
如轉速低,加脂量可以大於 50%
密封(終生潤滑) / 高速軸承
30% 的軸承內部空間(密封軸承)
公式 : G (克)= 0.005 D(軸承外徑, mm) x B(軸承寬度, mm)
例 : 150 馬力 的電機其軸承型號為:313
65 mm 內徑
140 mm 外徑
33 mm 寬度
答案: G = 0.005 x 140 x 33 = 23 克
23 g/ (28.3 g/盎司) = 0.8 oz
0.8 x (33 次/盎司) = 27 次
補充滑脂的方法
加脂管線(通路)必須將滑脂導至軸承的相互運動的表面
軸承座應有一個出口便於多餘的滑脂排出
在注脂前清潔油嘴
如有可能,應在軸承轉動時加脂 (對於有些電機來說並非如此)
經過幾次補充潤滑脂後,應清潔軸承及軸承座,重新加脂
影響補脂周期的因素
軸承的類型
如果 L = 給定尺寸和轉速的軸承的補脂周期:
1xL= 球軸承補脂周期
L/2 = 圓柱滾子軸承的補脂周期
L/10=球面滾子軸承或圓錐滾子軸承的補脂周期
軸承的轉速
軸承轉速越高,要求的補脂頻率越高
軸承的溫度
絕緣等級, 電機類型 (防滴電機, TENV全封閉不通風電機, TEFC全封閉風冷式電機)
環境溫度, 電機功率系數
軸承溫度每增加 15 °C, 補脂周期減半
軸承尺寸
軸承尺寸越大,補脂越頻繁
軸承安裝方向
安裝在立軸上的軸承,其補脂周期為水平軸軸承的一半
工作環境
潮濕 / 粉塵的環境應縮短補脂周期
滑脂的質量
一些高性能的滑脂 (如 POLYREX EM) 其潤滑壽命遠遠長於一般鋰基滑脂
3. 軸承溫度的標准
表面溫度:軸承在規定工況下運轉時,內裝式軸承處外表面溫度不應高出輸送介質溫度20℃,最高溫度不高於80℃。外裝式軸承處外表面溫升不應高處環境溫度40℃。最高溫度不高於80℃。
使用溫度:軸承溫升不得超過環境溫度35℃,最高溫度不得超過75℃。
滾動軸承的潤滑目有減少軸承內部摩擦及磨損,防止燒粘;延長其使用壽命;排出摩擦熱、冷卻,防止軸承過熱,防止潤滑油自身老化;也有防止異物侵入軸承內部,或防止生銹、腐蝕之效果。
軸承的密封可分為自帶密封和外加密封兩類。所謂軸承自帶密封就是把軸承本身製造成具有密封性能裝置的。如軸承帶防塵蓋、密封圈等。這種密封佔用空間很小,安裝拆卸方便,造價也比較低。
所謂軸承外加密封性能裝置,就是在安裝端蓋等內部製造成具有各種性能的密封裝置。軸承外加密封又分為非接觸式密封與接觸式密封兩種。
其中非接觸式密封適用於高速和高溫場合,有間隙式、迷宮式和墊圈式等不同結構形式。接觸式密封適用於中、低速的工作條件,常用的有毛氈密封、皮碗密封等結構形式。
(3)高速運轉軸承溫度怎麼控制擴展閱讀:
額定動載荷
為比較軸承抗點蝕的承載能力,規定軸承的額定壽命為一百萬轉(106)時,所能承受的最大載荷為基本額定動載荷,以C表示。
也就是軸承在額定動載荷C作用下,這種軸承工作一百萬轉(106)而不發生點蝕失效的可靠度為90%,C越大承載能力越高。
對於基本額定動載荷
1、向心軸承是指純徑向載荷
2、推力球軸承是指純軸向載荷
3、向心推力軸承是指產生純徑向位移得徑向分量
4. 軸承溫度過高怎麼辦
軸承溫度過高是礦山機械常見且損害較大的故障,如原因不明,處理不妥,往往會得不償失,將削減軸承的運用壽數,添加檢修費用,甚至會構成軸承燒壞。因而,迅速判別故障發作的原因,採納得當的辦法處理,才是設備接連安全運轉的確保。
一、軸承溫度過高原因
導致軸承溫度過高的原因有許多。
1、光滑不良
光滑對軸承的運用壽數和沖突、磨損、振盪等有重要影響,良好的光滑是確保軸承正常作業的必要條件。據統計,40%左右的軸承損壞都和光滑不良有關。
光滑對軸承的作用主要包含:
1)避免金屬銹蝕;
2)避免異物侵入,起到密封作用;
3)排出沖突熱,避免軸承溫升過高;
4)減輕沖突及磨損,延伸軸承壽數。
通常構成軸承光滑不良的要素有:
1)光滑油(光滑脂)缺乏;
2)光滑油管被異物阻塞等;
3)光滑油(光滑脂)質量有問題;
4)未按時添加光滑油(光滑脂);
5)光滑油(光滑脂)內含有雜質。
2、軸承磨損
軸承作為重要零件,運用於各種大小型機械,而一些機械(例如破碎機)的作業環境粉塵多,當部分細粉塵進入高速作業的軸承座內,構成軸承座內的光滑油或光滑脂蛻變,光滑不良,繼而使軸承呈現磨損。
軸承在磨損狀態下繼續作業,由於沖突力增大,熱量添加,從而導致軸承溫度升高。
破碎機在粉塵環境中作業。
3、裝置不妥
裝置不妥是軸承發熱的另一重要原因。由於軸承裝置的正確與否,對其壽數和主機精度有著直接影響,故裝置時要求軸與軸承孔的中心線有必要重合。
假如軸承裝置不正,精度低,軸承存在撓度,滾動時就會發作力矩,引起軸承發熱或磨損。別的,軸承還會發作振盪,雜訊增大,也會使溫升遞增。
4、冷卻缺乏
冷卻缺乏通常表現為:管路阻塞,冷卻器選用不適宜,冷卻作用差等。
光滑管路的冷卻器結垢阻塞,會致使冷卻作用變差,特別是夏季出產,此問題尤其普遍。個別廠家不吝加大或並串聯冷卻器來加強冷卻作用。
冷卻器結垢嚴峻,軸承溫度過高頻頻報警的狀況在許多出產現場都會遇到,比較有用的處理辦法是每年入夏之前對冷卻器進行酸洗除垢。
5、振盪大
例如聯軸器找正工藝差不符合要求,轉子存在動、靜不平衡,基礎剛性差、地腳虛,旋轉失速和喘振。
有些轉子在運轉過程中由於遭到介質的腐蝕或固體雜質的磨損,或者是軸呈現彎曲,就會導致發作不平衡的離心力,從而使軸承發熱、振盪,滾道嚴峻磨損,直至破壞。
6、查看替換不及時
軸承如發現嚴峻的疲勞脫落、氧化銹蝕、磨損的凹坑、裂紋,或有過大噪音無法調整時,若替換不及時,則會構成軸承呈現發熱、異聲、振盪等狀況,從而影響正常的出產。
別的,軸承拆卸不妥、設備地腳螺栓松動構成的振盪,也會導致軸承滾道和滾動體發作壓痕,軸承內、外座圈的開裂。軸承運轉過程中,應按規則周期進行查看。
7、軸承質量不良
滾動軸承零件以點接觸或線接觸的方式,在高的交變接觸應力下長時間作業。主機的精度、壽數和可靠性很大程度上決定於軸承,因而在軸承的收購檢驗環節中一定要留意查看,採用正規廠家的合格優質產品。
8、軸承選型不妥
選用軸承時應留意該軸承的極限轉速、負載能力,不能超轉速、超負荷運用,那樣只會縮短軸承的運用壽數,得不償失。
二、軸承降溫有好方法
當軸承溫度高時,應先從以下幾個方面處理問題。
1、加油量不妥,光滑油脂過多或過少時:
應當按照作業的要求定時給軸承箱加油。軸承加油後有時也會呈現溫度高的狀況,主要是加油過多。
電機軸承光滑油脂缺乏導致軸承燒壞:
這時現象為溫度繼續不斷上升,到達某點後(一般在比正常運轉溫度高10℃——15℃左右)就會保持不變,然後會逐漸下降。
2、所加油脂不符合要求或被污染時:
光滑油脂選用不適宜,不易構成均勻的光滑油膜,無法削減軸承內部沖突及磨損,光滑缺乏,軸承溫度升高。
當不同類型的油脂混合時,可能會發作化學反應,構成油脂蛻變、結塊,降低光滑作用。
油脂受污染也會使軸承溫度升高,加油脂過程中落入塵埃,構成油脂污染,導致軸承箱內部油脂劣化破壞軸承光滑,溫度升高。
因而應選用適宜的油脂,檢修中對軸承箱及軸承進行清洗,加油管路進行查看疏通,不同類型的油脂不許混用;若替換其它類型的油脂時,應先將原來油脂整理干凈;運轉保護中定時加油脂,油脂應妥善保管做防潮防塵辦法。
3、冷卻缺乏時:
查看管路是否阻塞,進油溫度及回水溫度是否超支。
若冷卻器選用不適宜,冷卻作用差,無法滿意運用要求時,應及時進行替換或並排裝置新冷卻器。軸流式引風機還應查看中芯筒的保溫文密封性。
4、以上方面都不存在問題時,查看聯軸器:
聯軸器的找正要符合工藝標准。在軸流式引風機、液力耦合器等找正時還應考慮運轉中設備受熱膨脹的問題。
5. 滾動軸承的溫度不能超過多少
一般工作溫度不超過50℃。
軸承和軸承室內過多的油脂將造成油脂的過度攪拌,從而產生極高的溫度。軸承充填潤滑劑的數量以充滿軸承內部空間1/2~1/3為宜,高速時應減少到1/3。
在機構運轉時,安裝軸承的部位允許有一定的溫度,當用手撫摸機構外殼時,應以不感覺燙手為正常,反之則表明軸承溫度過高。
軸承溫度過高的原因有:潤滑油質量不符合要求或變質,潤滑油粘度過高;機構裝配過緊(間隙不足);軸承裝配過緊;軸承座圈在軸上或殼內轉動;負荷過大;軸承保持架或滾動體碎裂等。
(5)高速運轉軸承溫度怎麼控制擴展閱讀
軸承安裝前應清洗干凈。安裝時,應使用專用工具將輔承平直均勻地壓入,不要用手錘敲擊,特別禁止直接在軸承上敲擊。當軸承座圈與座孔配合松動時,應當修復座孔或更換軸承,不要採用在軸承配合表面上打麻點或墊銅皮的方法勉強使用。軸承拆卸時應使用合適的拉器將軸承拉出,不要用鑿子、手錘等敲擊軸承。
滾動軸承中任一元件出現接觸疲勞磨損前的運轉總轉數或在一定轉速下的總工作時數,稱為軸承壽滾動軸承的壽命參差很大,同一批生產的軸承在相同條件下運轉,其壽命可相差數倍甚至數十倍。同一批軸承中的90%在疲勞剝落前能達到或超過的總轉數(或工作時數)時稱為額定壽命L。
額定壽命為100萬轉時所能承受的載荷為額定動負荷C。承受載荷最大的滾動體與滾道接觸處的塑性變形量之和達到萬分之一滾動體直徑時,所能承受的負荷為額定靜負荷C0。
額定負荷越大,軸承的負荷能力越強。向心軸承的額定負荷是純徑向負荷,推力軸承的額定載荷是純軸向載荷。軸承的實際負荷情況常與額定負荷不同,須換算成當量負荷。
6. 電動機運轉時,軸承溫度過高,可能由哪些原因引起怎樣解決
1,電動機運轉時,軸承溫度過高,可能由以下原因引起的,軸承損壞,應換新;潤滑脂牌號不對或過多、過少;滑動軸承潤滑油不夠或有雜質,或油環卡住,應修復;軸承與端蓋配合過松(走外或過緊)。
2,過松時將軸頸噴塗金屬;過緊時重新加工;軸承與端蓋配合過松(走外圓)或過緊。過松時端蓋鑲套;過緊時重新加工;電動機兩側端蓋或軸承蓋沒裝配好。重新裝平;傳動帶過緊或過松,聯軸器不對中,應進行調整。
3,一般應用
3
號鋰基脂或
3
號復合鈣基脂、
ZL3
(
SY1412-75
)或復合鈣基脂。將軸承及蓋清洗干凈後,加油脂達凈容積的
1/2
左右;
7. 關於高速軸承發熱 怎麼辦
軸承發熱原因:
(1)軸承配合不合理。與軸承內孔、外圈的配合部位,即軸承台、軸承室的尺寸公差超差。與軸承配合的部位其尺寸及表面光潔度是關繫到軸承運行狀況是否良好的直接因素,如果軸承台的尺寸偏大,或者軸承室的尺寸偏小時,當軸承熱裝後,就會減小軸承的徑向游隙,使軸承轉動困難,導致軸承發熱,嚴重時引起軸承抱死;如果軸承台的尺寸偏小,則軸承內圈與軸配合轉動時就會出現松動,出現內圈與滾動體-起轉動,致使軸承內圈與軸發生嚴重磨損,發生軸承振動、發熱故障。
(2)軸承安裝歪斜。在重新處理軸承台精度或重新加工軸承台時,轉軸軸承擋與軸肩端面的垂直度沒有保證,導致軸承安裝後內外圈偏斜或不同心,滾動體不在軸承滾道的正確位置滾動,滾道局部過負荷,引起了軸承過熱。
(3)潤滑脂添加不適當。軸承在運轉過程中,潤滑是很重要的,對於雙面是密封軸承可不用再添加潤滑脂,正確使用就能夠保證它的正常壽命。而對於非密封軸承,添加不幹凈和過量的潤滑脂是導致軸承發熱的主要因素,在修理高速電機過程中,常遇到這樣的情況,電機組裝後成品試驗時,軸承溫度迅速上升,檢查其它部件均未發現異常,二次分解後,發現軸承內部及內外小蓋內潤滑脂添加過量,取出部分後,再次組裝試驗時,軸承溫升穩定,達到了出廠要求。另外,潤滑脂添加太少,軸承滾動體得不到有效潤滑也會導致軸承發熱。
軸承是高速電機上極為重要的零部件,電機出現機械故障的大多數原因都集中在軸承部位,只要從軸承的選用、裝配、潤滑及現場運行維護等過程中層層把關,嚴格按照電機特點選配軸承,高速電機的軸承運行溫度就會得到有效控制。
正確選用軸承型號滾動軸承在電機零部件中屬於標准部件,其型號由基本代號、前置代號和後置代號組成,各代號分別表示軸承的尺寸、結構和公差等級等,高速電機在選用軸承型號時,要以電機轉速對軸承的要求作為選型依據。選型時要重點考慮以下5個方面 :(1)球軸承與滾子軸承相 比較,有較高的極限轉速,故在高速時優先選用了球軸承;(2)在內徑相同的條件下,外徑越小,則滾動體就越小,運轉時滾動體加在外圈滾道上的離心力也就越小,所以在高速時,宜選用相同內徑而外徑較小的軸承,即輕系列軸承;(3)若電機體積較大,用-個外徑較小的軸承其承載能力達不到要求時,可再並裝-個相同的軸承 ;(4)保持架的材料和結構對軸承的轉速影響也很大,實體保持架比沖壓保持架允許高-些的轉速,青銅實體架可允許更高的轉速。(5)若電機轉速很高,如2極電機則考慮選用公差等級較高、游隙較大的軸承,這時選擇軸承時多注重軸承後置代號中字母及數字的選擇。
正確選擇軸承配合正確地選擇軸承配合,對保證電機正常運轉,提高軸承的使用壽命,充分利用軸承的承載能力關系很大。在選擇軸承配合時,應綜合考慮以下因素:軸承的工作條件;作用在軸承上負荷的大孝方向和性質;軸承類型和尺寸;與軸承相配的軸和殼體孔的材料和結構,工作溫度、裝卸和調整等。其中,軸承內孔與軸頸的配合採用基孔制,外徑與殼體孔的配合採用基軸制,與軸承相配合的軸頸、殼體孔的公差帶要從公差與配合國家標准中選出
正確裝配軸承裝配軸承的方法可根據軸承的外形尺寸、過盈量大型電機結構特點來確定,-般都採用熱裝,通過軸承加熱器加熱後,施工人通過干凈輔助工具對中軸頸平穩推到位,使軸承與軸肩貼嚴,若過程中稍有歪斜可用銅錘輕輕對稱敲打軸承外圈使其順利靠位,絕不能用錘子猛力固定敲打-處,這很容易損壞軸承游隙。另外,在軸承裝配過程中-定要考慮軸向間隙,因為高速電機在運轉時,轉軸因溫度的變化導致軸向方向發生變化,從而使軸承徑向間隙減少或軸承外圈與小蓋止口摩擦導致升溫,所以在檢修高速電機時軸承室相關尺寸的測量是很有必要的。
為避免這種現象,電機負荷側軸承裝配時需在軸承與側蓋間預留0.3~0.5 mm的間隙。
8. 高速主軸正常溫度多少
電主軸電機在高速運轉的過程中,內部產生功率損耗(包括機械損耗、電損耗等),從而使電機發熱。由於電主軸電機裝在主軸單元殼體內,所以主軸電機不能直接採用風扇散熱,自然散熱條件也比較差。調查結果表明,電動機在高速旋轉時,電動機轉子的工作溫度達140~160℃,定子的溫度也在45~85℃。電動機產生的熱量會直接傳遞給主軸,引起主軸熱變形而產生加工誤差。
電主軸冷卻迴路的目的是保持主軸溫度恆定,且其溫度與主軸轉速無關,因而可以避免主軸前端伸長並且保護主軸軸承,從而保證主軸的精度不受電動機發熱的影響;電動機冷卻迴路主要在於電機定子的冷卻,只要將定子的溫度控制在較低的范圍之內,就能將電機的溫度加以控制。
9. 如何解決高速電主軸運轉中的發熱和溫升問題
高速電主軸單元的內部有兩個主要熱源:一是電主軸軸承,另一個是內藏式主電動機。其中最突出的問題就是內藏式主電動機的發熱。由於主電動機旁邊就是電主軸軸承,如果主電動機的兆族散熱問題解決不好,還會影響機床工作的可靠性。主要的解決方法是採用循環冷卻結構,分外循環和內循環兩種,冷卻介質可以是水或油,使電動機與前後電主軸軸承都能得到充分冷卻。
高速電主軸軸承是電機主軸的核心支承,也是電機主軸的主要熱源之一。當前高速電機主軸,大多數採用角接觸陶瓷球軸承。由於電機主軸的運轉速度高,因此對電主軸軸承的動態、熱態性能有嚴格要求。合理的預緊力,良好而充分的潤滑是保證電主軸正常運轉的必要條件。採用油霧潤滑,霧化發生器進氣壓為0.25~0.3mpa,選用20#透平油,油滴速度控制在80~100滴/min。潤滑油霧在充分潤滑軸承的同時,還帶走了大量的熱量。前後電主軸軸承的潤鎮譽滑油分配是非常重要的問題,必須加以嚴格控制。進氣口截面大於前後噴油口截面御猜段的總和,排氣應順暢,各噴油小孔的噴射角與軸線呈15o夾角,使油霧直接噴入軸承工作區。高速電機www.84385453.com