A. 減速器的那些附件有何作用啊,請前輩指點。如何選擇及設計其結構尺寸
減速器主要由傳動零件(齒輪或蝸桿)、軸、軸承、箱體及其附件所組成。其作用如下:
首先齒輪和軸可以作為一個整體,主要是為了承受徑向載荷和減速器大的軸向載荷的情況。而箱體可以單獨作為一個整體,它是減速器的基礎零件,具有穩定整個支架的作用。最後減速器的潤滑油也非常重要,這是減速器正常工作的關鍵。
減速器的選擇及其結構尺寸的構造應遵循這幾點原則:
1、減速器使用系數越大,減速器使用壽命越長。
2、減速器選擇時,應使[使用系數fa]控制在 1.2-1.3 之間最合理,電機和減速器使用效率最佳,壽命更長。
3、傳動比i=四級電機轉速/減速器輸出轉速。
4、對於[恆功率]減速器而言,其減速機輸出軸要比同規格電機的[恆扭矩]減速器輸出軸細。
(1)減速器軸承旁凸台高度怎麼設計擴展閱讀
減速器的潤滑保養:
1、在投入運轉之前,在減速機中裝入建議的型號和數值的潤滑脂。減速機採用潤滑油潤滑。對於豎直安裝的減速機,鑒於潤滑油可能不能保證最上面的軸承的可靠潤滑,因此採用另外的潤滑措施。
2、在運行以前,在減速機中注入適量的潤滑油。減速機通常裝備有注油孔和放油塞。因而在訂購減速機的時候必須指定安裝位置。
3、工作油溫不能超過80℃。
4、終生潤滑的組合減速機在製造廠注滿合成油,除此之外,減速機供貨時通常是不帶潤滑油的,並帶有注油塞和放油塞。根據訂貨時指定的安裝位置設置油位塞的位置以保證正確注油,減速機注油量應該根據不同安裝方式來確定。如果傳輸功率超過減速機的熱容量,必須提供外置冷卻裝置。
B. 減速器凸台高度一般多少
35CM。根據查詢減速桐檔器資料顯示,減伏輪核速器凸台高度是35CM。減速器是一種由封閉在剛性殼體缺掘內的齒輪傳動、蝸桿傳動、齒輪-蝸桿傳動所組成的獨立部件,常用作原動件與工作機之間的減速傳動裝置。
C. 急求:兩級圓柱齒輪減速器課程設計
設 計 任 務 書
一、 課程設計題目:
設計帶式運輸機傳動裝置(簡圖如下)
原始數據:
數據編號 3 5 7 10
運輸機工作轉矩T/(N.m) 690 630 760 620
運輸機帶速V/(m/s) 0.8 0.9 0.75 0.9
捲筒直徑D/mm 320 380 320 360
工作條件:
連續單向運轉,工作時有輕微振動,使用期限為10年,小批量生產,單班制工作(8小時/天)。運輸速度允許誤差為 。
二、 課程設計內容
1)傳動裝置的總體設計。
2)傳動件及支承的設計計算。
3)減速器裝配圖及零件工作圖。
4)設計計算說明書編寫。
每個學生應完成:
1) 部件裝配圖一張(A1)。
2) 零件工作圖兩張(A3)
3) 設計說明書一份(6000~8000字)。
本組設計數據:
第三組數據:運輸機工作軸轉矩T/(N.m) 690 。
運輸機帶速V/(m/s) 0.8 。
捲筒直徑D/mm 320 。
已給方案:外傳動機構為V帶傳動。
減速器為兩級展開式圓柱齒輪減速器。
第一部分 傳動裝置總體設計
一、 傳動方案(已給定)
1) 外傳動為V帶傳動。
2) 減速器為兩級展開式圓柱齒輪減速器。
3) 方案簡圖如下:
二、該方案的優缺點:
該工作機有輕微振動,由於V帶有緩沖吸振能力,採用V帶傳動能減小振動帶來的影響,並且該工作機屬於小功率、載荷變化不大,可以採用V帶這種簡單的結構,並且價格便宜,標准化程度高,大幅降低了成本。減速器部分兩級展開式圓柱齒輪減速,這是兩級減速器中應用最廣泛的一種。齒輪相對於軸承不對稱,要求軸具有較大的剛度。高速級齒輪常布置在遠離扭矩輸入端的一邊,以減小因彎曲變形所引起的載荷沿齒寬分布不均現象。原動機部分為Y系列三相交流 非同步電動機。
總體來講,該傳動方案滿足工作機的性能要求,適應工作條件、工作可靠,此外還結構簡單、尺寸緊湊、成本低傳動效率高。
計 算 與 說 明 結果
三、原動機選擇(Y系列三相交流非同步電動機)
工作機所需功率: =0.96 (見課設P9)
傳動裝置總效率: (見課設式2-4)
(見課設表12-8)
電動機的輸出功率: (見課設式2-1)
取
選擇電動機為Y132M1-6 m型 (見課設表19-1)
技術數據:額定功率( ) 4 滿載轉矩( ) 960
額定轉矩( ) 2.0 最大轉矩( ) 2.0
Y132M1-6電動機的外型尺寸(mm): (見課設表19-3)
A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:270 AD:210 HD:315 BB:238 L:235
四、傳動裝置總體傳動比的確定及各級傳動比的分配
1、 總傳動比: (見課設式2-6)
2、 各級傳動比分配: (見課設式2-7)
初定
第二部分 V帶設計
外傳動帶選為 普通V帶傳動
1、 確定計算功率:
1)、由表5-9查得工作情況系數
2)、由式5-23(機設)
2、選擇V帶型號
查圖5-12a(機設)選A型V帶。
3.確定帶輪直徑
(1)、參考圖5-12a(機設)及表5-3(機設)選取小帶輪直徑
(電機中心高符合要求)
(2)、驗算帶速 由式5-7(機設)
(3)、從動帶輪直徑
查表5-4(機設) 取
(4)、傳動比 i
(5)、從動輪轉速
4.確定中心距 和帶長
(1)、按式(5-23機設)初選中心距
取
(2)、按式(5-24機設)求帶的計算基礎准長度L0
查圖.5-7(機設)取帶的基準長度Ld=2000mm
(3)、按式(5-25機設)計算中心距:a
(4)、按式(5-26機設)確定中心距調整范圍
5.驗算小帶輪包角α1
由式(5-11機設)
6.確定V帶根數Z
(1)、由表(5-7機設)查得dd1=112 n1=800r/min及n1=980r/min時,單根V帶的額定功率分呷為1.00Kw和1.18Kw,用線性插值法求n1=980r/min時的額定功率P0值。
(2)、由表(5-10機設)查得△P0=0.11Kw
(3)、由表查得(5-12機設)查得包角系數
(4)、由表(5-13機設)查得長度系數KL=1.03
(5)、計算V帶根數Z,由式(5-28機設)
取Z=5根
7.計算單根V帶初拉力F0,由式(5-29)機設。
q由表5-5機設查得
8.計算對軸的壓力FQ,由式(5-30機設)得
9.確定帶輪的結構尺寸,給制帶輪工作圖
小帶輪基準直徑dd1=112mm採用實心式結構。大帶輪基準直徑dd2=280mm,採用孔板式結構,基準圖見零件工作圖。
第三部分 各齒輪的設計計算
一、高速級減速齒輪設計(直齒圓柱齒輪)
1.齒輪的材料,精度和齒數選擇,因傳遞功率不大,轉速不高,材料按表7-1選取,都採用45號鋼,鍛選項毛坯,大齒輪、正火處理,小齒輪調質,均用軟齒面。齒輪精度用8級,輪齒表面精糙度為Ra1.6,軟齒面閉式傳動,失效形式為占蝕,考慮傳動平穩性,齒數宜取多些,取Z1=34 則Z2=Z1i=34×2.62=89
2.設計計算。
(1)設計准則,按齒面接觸疲勞強度計算,再按齒根彎曲疲勞強度校核。
(2)按齒面接觸疲勞強度設計,由式(7-9)
T1=9.55×106×P/n=9.55×106×5.42/384=134794 N?mm
由圖(7-6)選取材料的接觸疲勞,極限應力為
бHILim=580 бHILin=560
由圖 7-7選取材料彎曲疲勞極限應力
бHILim=230 бHILin=210
應力循環次數N由式(7-3)計算
N1=60n, at=60×(8×360×10)=6.64×109
N2= N1/u=6.64×109/2.62=2.53×109
由圖7-8查得接觸疲勞壽命系數;ZN1=1.1 ZN2=1.04
由圖7-9查得彎曲 ;YN1=1 YN2=1
由圖7-2查得接觸疲勞安全系數:SFmin=1.4 又YST=2.0 試選Kt=1.3
由式(7-1)(7-2)求許用接觸應力和許用彎曲應力
將有關值代入式(7-9)得
則V1=(πd1tn1/60×1000)=1.3m/s
( Z1 V1/100)=1.3×(34/100)m/s=0.44m/s
查圖7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.則KH=KAKVKβKα=1.42 ,修正
M=d1/Z1=1.96mm
由表7-6取標准模數:m=2mm
(3) 計算幾何尺寸
d1=mz1=2×34=68mm
d2=mz2=2×89=178mm
a=m(z1+z2)/2=123mm
b=φddt=1×68=68mm
取b2=65mm b1=b2+10=75
3.校核齒根彎曲疲勞強度
由圖7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齒輪的彎曲強度.
二、低速級減速齒輪設計(直齒圓柱齒輪)
1.齒輪的材料,精度和齒數選擇,因傳遞功率不大,轉速不高,材料按表7-1選取,都採用45號鋼,鍛選項毛坯,大齒輪、正火處理,小齒輪調質,均用軟齒面。齒輪精度用8級,輪齒表面精糙度為Ra1.6,軟齒面閉式傳動,失效形式為點蝕,考慮傳動平穩性,齒數宜取多些,取Z1=34
則Z2=Z1i=34×3.7=104
2.設計計算。
(1) 設計准則,按齒面接觸疲勞強度計算,再按齒根彎曲疲勞強度校核。
(2)按齒面接觸疲勞強度設計,由式(7-9)
T1=9.55×106×P/n=9.55×106×5.20/148=335540 N?mm
由圖(7-6)選取材料的接觸疲勞,極限應力為
бHILim=580 бHILin=560
由圖 7-7選取材料彎曲疲勞極陰應力
бHILim=230 бHILin=210
應力循環次數N由式(7-3)計算
N1=60n at=60×148×(8×360×10)=2.55×109
N2= N1/u=2.55×109/3.07=8.33×108
由圖7-8查得接觸疲勞壽命系數;ZN1=1.1 ZN2=1.04
由圖7-9查得彎曲 ;YN1=1 YN2=1
由圖7-2查得接觸疲勞安全系數:SFmin=1.4 又YST=2.0 試選Kt=1.3
由式(7-1)(7-2)求許用接觸應力和許用彎曲應力
將有關值代入式(7-9)得
則V1=(πd1tn1/60×1000)=0.55m/s
( Z1 V1/100)=0.55×(34/100)m/s=0.19m/s
查圖7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.則KH=KAKVKβKα=1.377 ,修正
M=d1/Z1=2.11mm
由表7-6取標准模數:m=2.5mm
(3) 計算幾何尺寸
d1=mz1=2.5×34=85mm
d2=mz2=2.5×104=260mm
a=m(z1+z2)/2=172.5mm
b=φddt=1×85=85mm
取b2=85mm b1=b2+10=95
3.校核齒根彎曲疲勞強度
由圖7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齒輪的彎曲強度.
總結:高速級 z1=34 z2=89 m=2
低速級 z1=34 z2=104 m=2.5
第四部分 軸的設計
高速軸的設計
1.選擇軸的材料及熱處理
由於減速器傳遞的功率不大,對其重量和尺寸也無特殊要求故選擇常用材料45鋼,調質處理.
2.初估軸徑
按扭矩初估軸的直徑,查表10-2,得c=106至117,考慮到安裝聯軸器的軸段僅受扭矩作用.取c=110則:
D1min=
D2min=
D3min=
3.初選軸承
1軸選軸承為6008
2軸選軸承為6009
3軸選軸承為6012
根據軸承確定各軸安裝軸承的直徑為:
D1=40mm
D2=45mm
D3=60mm
4.結構設計(現只對高速軸作設計,其它兩軸設計略,結構詳見圖)為了拆裝方便,減速器殼體用剖分式,軸的結構形狀如圖所示.
(1).各軸直徑的確定
初估軸徑後,即可按軸上零件的安裝順序,從左端開始確定直徑.該軸軸段1安裝軸承6008,故該段直徑為40mm。2段裝齒輪,為了便於安裝,取2段為44mm。齒輪右端用軸肩固定,計算得軸肩的高度為4.5mm,取3段為53mm。5段裝軸承,直徑和1段一樣為40mm。4段不裝任何零件,但考慮到軸承的軸向定位,及軸承的安裝,取4段為42mm。6段應與密封毛氈的尺寸同時確定,查機械設計手冊,選用JB/ZQ4606-1986中d=36mm的毛氈圈,故取6段36mm。7段裝大帶輪,取為32mm>dmin 。
(2)各軸段長度的確定
軸段1的長度為軸承6008的寬度和軸承到箱體內壁的距離加上箱體內壁到齒輪端面的距離加上2mm,l1=32mm。2段應比齒輪寬略小2mm,為l2=73mm。3段的長度按軸肩寬度公式計算l3=1.4h;去l3=6mm,4段:l4=109mm。l5和軸承6008同寬取l5=15mm。l6=55mm,7段同大帶輪同寬,取l7=90mm。其中l4,l6是在確定其它段長度和箱體內壁寬後確定的。
於是,可得軸的支點上受力點間的跨距L1=52.5mm,L2=159mm,L3=107.5mm。
(3).軸上零件的周向固定
為了保證良好的對中性,齒輪與軸選用過盈配合H7/r6。與軸承內圈配合軸勁選用k6,齒輪與大帶輪均採用A型普通平鍵聯接,分別為16*63 GB1096-1979及鍵10*80 GB1096-1979。
(4).軸上倒角與圓角
為保證6008軸承內圈端面緊靠定位軸肩的端面,根據軸承手冊的推薦,取軸肩圓角半徑為1mm。其他軸肩圓角半徑均為2mm。根據標准GB6403.4-1986,軸的左右端倒角均為1*45。。
5.軸的受力分析
(1) 畫軸的受力簡圖。
(2) 計算支座反力。
Ft=2T1/d1=
Fr=Fttg20。=3784
FQ=1588N
在水平面上
FR1H=
FR2H=Fr-FR1H=1377-966=411N
在垂直面上
FR1V=
Fr2V=Ft- FR1V=1377-352=1025N
(3) 畫彎矩圖
在水平面上,a-a剖面左側
MAh=FR1Hl3=966 52.5=50.715N?m
a-a剖面右側
M』Ah=FR2Hl2=411 153=62.88 N?m
在垂直面上
MAv=M』AV=FR1Vl2=352×153=53.856 N?m
合成彎矩,a-a剖面左側
a-a剖面右側
畫轉矩圖
轉矩 3784×(68/2)=128.7N?m
6.判斷危險截面
顯然,如圖所示,a-a剖面左側合成彎矩最大、扭矩為T,該截面左側可能是危險截面;b-b截面處合成灣矩雖不是最大,但該截面左側也可能是危險截面。若從疲勞強度考慮,a-a,b-b截面右側均有應力集中,且b-b截面處應力集中更嚴重,故a-a截面左側和b-b截面左、右側又均有可能是疲勞破壞危險截面。
7.軸的彎扭合成強度校核
由表10-1查得
(1)a-a剖面左側
3=0.1×443=8.5184m3
=14.57
(2)b-b截面左側
3=0.1×423=7.41m3
b-b截面處合成彎矩Mb:
=174 N?m
=27
8.軸的安全系數校核:由表10-1查得 (1)在a-a截面左側
WT=0.2d3=0.2×443=17036.8mm3
由附表10-1查得 由附表10-4查得絕對尺寸系數 ;軸經磨削加工, 由附表10-5查得質量系數 .則
彎曲應力
應力幅
平均應力
切應力
安全系數
查表10-6得許用安全系數 =1.3~1.5,顯然S> ,故a-a剖面安全.
(2)b-b截面右側
抗彎截面系數 3=0.1×533=14.887m3
抗扭截面系數WT=0.2d3=0.2×533=29.775 m3
又Mb=174 N?m,故彎曲應力
切應力
由附表10-1查得過盈配合引起的有效應力集中系數 。 則
顯然S> ,故b-b截面右側安全。
(3)b-b截面左側
WT=0.2d3=0.2×423=14.82 m3
b-b截面左右側的彎矩、扭矩相同。
彎曲應力
切應力
(D-d)/r=1 r/d=0.05,由附表10-2查得圓角引起的有效應力集中系數 。由附表10-4查得絕對尺寸系數 。又 。則
顯然S> ,故b-b截面左側安全。
第五部分 校 核
高速軸軸承
FR2H=Fr-FR1H=1377-966=411N
Fr2V=Ft- FR1V=1377-352=1025N
軸承的型號為6008,Cr=16.2 kN
1) FA/COr=0
2) 計算當量動載荷
查表得fP=1.2徑向載荷系數X和軸向載荷系數Y為X=1,Y=0
=1.2×(1×352)=422.4 N
3) 驗算6008的壽命
驗算右邊軸承
鍵的校核
鍵1 10×8 L=80 GB1096-79
則強度條件為
查表許用擠壓應力
所以鍵的強度足夠
鍵2 12×8 L=63 GB1096-79
則強度條件為
查表許用擠壓應力
所以鍵的強度足夠
聯軸器的選擇
聯軸器選擇為TL8型彈性聯軸器 GB4323-84
減速器的潤滑
1.齒輪的潤滑
因齒輪的圓周速度<12 m/s,所以才用浸油潤滑的潤滑方式。
高速齒輪浸入油里約0.7個齒高,但不小於10mm,低速級齒輪浸入油高度約為1個齒高(不小於10mm),1/6齒輪。
2.滾動軸承的潤滑
因潤滑油中的傳動零件(齒輪)的圓周速度V≥1.5~2m/s所以採用飛濺潤滑,
第六部分 主要尺寸及數據
箱體尺寸:
箱體壁厚
箱蓋壁厚
箱座凸緣厚度b=15mm
箱蓋凸緣厚度b1=15mm
箱座底凸緣厚度b2=25mm
地腳螺栓直徑df=M16
地腳螺栓數目n=4
軸承旁聯接螺栓直徑d1=M12
聯接螺栓d2的間距l=150mm
軸承端蓋螺釘直徑d3=M8
定位銷直徑d=6mm
df 、d1 、d2至外箱壁的距離C1=18mm、18 mm、13 mm
df、d2至凸緣邊緣的距離C2=16mm、11 mm
軸承旁凸台半徑R1=11mm
凸台高度根據低速軸承座外半徑確定
外箱壁至軸承座端面距離L1=40mm
大齒輪頂圓與內箱壁距離△1=10mm
齒輪端面與內箱壁距離△2=10mm
箱蓋,箱座肋厚m1=m=7mm
軸承端蓋外徑D2 :凸緣式端蓋:D+(5~5.5)d3
以上尺寸參考機械設計課程設計P17~P21
傳動比
原始分配傳動比為:i1=2.62 i2=3.07 i3=2.5
修正後 :i1=2.5 i2=2.62 i3=3.07
各軸新的轉速為 :n1=960/2.5=3.84
n2=384/2.61=147
n3=147/3.07=48
各軸的輸入功率
P1=pdη8η7 =5.5×0.95×0.99=5.42
P2=p1η6η5=5.42×0.97×0.99=5.20
P3=p2η4η3=5.20×0.97×0.99=5.00
P4=p3η2η1=5.00×0.99×0.99=4.90
各軸的輸入轉矩
T1=9550Pdi1η8η7/nm=9550×5.5×2.5×0.95×0.99=128.65
T2= T1 i2η6η5=128.65×2.62×0.97×0.99=323.68
T3= T2 i3η4η3=323.68×3.07×0.97×0.99=954.25
T4= T3 η2η1=954.23×0.99×0.99=935.26
軸號 功率p 轉矩T 轉速n 傳動比i 效率η
電機軸 5.5 2.0 960 1 1
1 5.42 128.65 384 2.5 0.94
2 5.20 323.68 148 2.62 0.96
3 5.00 954.25 48 3.07 0.96
工作機軸 4.90 935.26 48 1 0.98
齒輪的結構尺寸
兩小齒輪採用實心結構
兩大齒輪採用復板式結構
齒輪z1尺寸
z=34 d1=68 m=2 d=44 b=75
d1=68
ha=ha*m=1×2=2mm
hf=( ha*+c*)m=(1+0.25)×2=2.5mm
h=ha+hf=2+2.5=4.5mm
da=d1+2ha=68+2×2=72mm
df=d1-2hf=68-2×2.5=63
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
齒輪z2的尺寸
由軸可 得d2=178 z2=89 m=2 b=65 d4=49
ha=ha*m=1×2=2mm
h=ha+hf=2+2.5=4.5mm
hf=(1+0.5)×2=2.5mm
da=d2+2ha=178+2×2=182
df=d1-2hf=178-2×2.5=173
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
DT≈
D3≈1.6D4=1.6×49=78.4
D0≈da-10mn=182-10×2=162
D2≈0.25(D0-D3)=0.25(162-78.4)=20
R=5 c=0.2b=0.2×65=13
齒輪3尺寸
由軸可得, d=49 d3=85 z3=34 m=2.5 b=95
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.125=5.625
hf=(ha*+c*)m=(1+0.25)×2.5=3.125
da=d3+2ha=85+2×2.5=90
df=d1-2hf=85-2×3.125=78.75
p=πm=3.14×2.5=7.85
s=πm/2=3.14×2.5/2=3.925
e=s c=c*m=0.25×2.5=0.625
齒輪4寸
由軸可得 d=64 d4=260 z4=104 m=2.5 b=85
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.25=5.625
hf=(ha*+c*)m=(1+0.25)×0.25=3.125
da=d4+2ha=260+2×2.5=265
df=d1-2hf=260-2×3.125=253.75
p=πm=3.14×2.5=7.85
s=e=πm/2=3.14×2.5/2=3.925
c=c*m=0.25×2.5=0.625
D0≈da-10m=260-10×2.5=235
D3≈1.6×64=102.4
D2=0.25(D0-D3)=0.25×(235-102.4)=33.15
r=5 c=0.2b=0.2×85=17
參考文獻:
《機械設計》徐錦康 主編 機械工業出版社
《機械設計課程設計》陸玉 何在洲 佟延偉 主編
第3版 機械工業出版社
《機械設計手冊》
設計心得
機械設計課程設計是機械課程當中一個重要環節通過了3周的課程設計使我從各個方面都受到了機械設計的訓練,對機械的有關各個零部件有機的結合在一起得到了深刻的認識。
由於在設計方面我們沒有經驗,理論知識學的不牢固,在設計中難免會出現這樣那樣的問題,如:在選擇計算標准件是可能會出現誤差,如果是聯系緊密或者循序漸進的計算誤差會更大,在查表和計算上精度不夠准
在設計的過程中,培養了我綜合應用機械設計課程及其他課程的理論知識和應用生產實際知識解決工程實際問題的能力,在設計的過程中還培養出了我們的團隊精神,大家共同解決了許多個人無法解決的問題,在這些過程中我們深刻地認識到了自己在知識的理解和接受應用方面的不足,在今後的學習過程中我們會更加努力和團結。
由於本次設計是分組的,自己獨立設計的東西不多,但在通過這次設計之後,我想會對以後自己獨立設計打下一個良好的基礎。。。
D. 單級蝸輪蝸桿減速器設計(F=5KN,V=0.7,D=390)
機械設計課程設計說明書
前言
課程設計是考察學生全面在掌握基本理論知識的重要環節。根據學院的教學環節,在2006年6月12日-2006年6月30日為期三周的機械設計課程設計。本次是設計一個蝸輪蝸桿減速器,減速器是用於電動機和工作機之間的獨立的閉式傳動裝置。本減速器屬單級蝸桿減速器(電機——聯軸器——減速器——聯軸器——帶式運輸機),本人是在周知進老師指導下獨立完成的。該課程設計內容包括:任務設計書,參數選擇,傳動裝置總體設計,電動機的選擇,運動參數計算,蝸輪蝸桿傳動設計,蝸桿、蝸輪的基本尺寸設計,蝸輪軸的尺寸設計與校核,減速器箱體的結構設計,減速器其他零件的選擇,減速器的潤滑等和A0圖紙一張、A3圖紙三張。設計參數的確定和方案的選擇通過查詢有關資料所得。
該減速器的設計基本上符合生產設計要求,限於作者初學水平,錯誤及不妥之處望老師批評指正。
設計者:殷其中
2006年6月30日
參數選擇:
總傳動比:I=35 Z1=1 Z2=35
捲筒直徑:D=350mm
運輸帶有效拉力:F=6000N
運輸帶速度:V=0.5m/s
工作環境:三相交流電源
有粉塵
常溫連續工作
一、 傳動裝置總體設計:
根據要求設計單級蝸桿減速器,傳動路線為:電機——連軸器——減速器——連軸器——帶式運輸機。(如圖2.1所示) 根據生產設計要求可知,該蝸桿的圓周速度V≤4——5m/s,所以該蝸桿減速器採用蝸桿下置式見(如圖2.2所示),採用此布置結構,由於蝸桿在蝸輪的下邊,嚙合處的冷卻和潤滑均較好。蝸輪及蝸輪軸利用平鍵作軸向固定。蝸桿及蝸輪軸均採用圓錐滾子軸承,承受徑向載荷和軸向載荷的復合作用,為防止軸外伸段箱內潤滑油漏失以及外界灰塵,異物侵入箱內,在軸承蓋中裝有密封元件。 圖2.1
該減速器的結構包括電動機、蝸輪蝸桿傳動裝置、蝸輪軸、箱體、滾動軸承、檢查孔與定位銷等附件、以及其他標准件等。
二、 電動機的選擇:
由於該生產單位採用三相交流電源,可考慮採用Y系列三相非同步電動機。三相非同步電動機的結構簡單,工作可靠,價格低廉,維護方便,啟動性能好等優點。一般電動機的額定電壓為380V
根據生產設計要求,該減速器捲筒直徑D=350mm。運輸帶的有效拉力F=6000N,帶速V=0.5m/s,載荷平穩,常溫下連續工作,工作環境多塵,電源為三相交流電,電壓為380V。
1、 按工作要求及工作條件選用三相非同步電動機,封閉扇冷式結構,電壓為380V,Y系列
2、 傳動滾筒所需功率
3、 傳動裝置效率:(根據參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社 第133-134頁表12-8得各級效率如下)其中:
蝸桿傳動效率η1=0.70
攪油效率η2=0.95
滾動軸承效率(一對)η3=0.98
聯軸器效率ηc=0.99
傳動滾筒效率ηcy=0.96
所以:
η=η1•η2•η33•ηc2•ηcy =0.7×0.99×0.983×0.992×0.96 =0.633
電動機所需功率: Pr= Pw/η =3.0/0.633=4.7KW
傳動滾筒工作轉速: nw=60×1000×v / ×350
=27.9r/min
根據容量和轉速,根據參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社 第339-340頁表附表15-1可查得所需的電動機Y系列三相非同步電動機技術數據,查出有四種適用的電動機型號,因此有四種傳動比方案,如表3-1:
表3-1
方案 電動機型號 額定功率
Ped kw 電動機轉速 r/min 額定轉矩
同步轉速 滿載轉速
1 Y132S1-2 5.5 3000 2900 2.0
2 Y132S-4 5.5 1500 1440 2.2
3 Y132M2-6 5.5 1000 960 2.0
4 Y160M-8 5.5 750 720 2.0
綜合考慮電動機和傳動裝置的尺寸、重量、價格和減速器的傳動比,可見第3方案比較適合。因此選定電動機機型號為Y132M2-6其主要性能如下表3-2:
表3-2
中心高H 外形尺寸
L×(AC/2+AD)×HD 底角安裝尺寸
A×B 地腳螺栓孔直徑K 軸身尺寸
D×E 裝鍵部位尺寸
F×G×D
132 515×(270/2+210)×315 216×178 12 38×80 10×33×38
四、運動參數計算:
4.1蝸桿軸的輸入功率、轉速與轉矩
P0 = Pr=4.7kw
n0=960r/min
T0=9.55 P0 / n0=4.7×103=46.7N .m
4.2蝸輪軸的輸入功率、轉速與轉矩
P1 = P0•η01 = 4.7×0.99×0.99×0.7×0.992 =3.19 kw
nⅠ= = = 27.4 r/min
T1= 9550 = 9550× = 1111.84N•m
4.3傳動滾筒軸的輸入功率、轉速與轉矩
P2 = P1•ηc•ηcy=3.19×0.99×0.99=3.13kw
n2= = = 27.4 r/min
T2= 9550 = 9550× = 1089.24N•m
運動和動力參數計算結果整理於下表4-1:
表4-1
類型 功率P(kw) 轉速n(r/min) 轉矩T(N•m) 傳動比i 效率η
蝸桿軸 4.7 960 46.75 1 0.679
蝸輪軸 3.19 27.4 1111.84 35
傳動滾筒軸 3.13 27.4 1089.24
五、蝸輪蝸桿的傳動設計:
蝸桿的材料採用45鋼,表面硬度>45HRC,蝸輪材料採用ZCuA110Fe3,砂型鑄造。
以下設計參數與公式除特殊說明外均以參考由《機械設計 第四版》 邱宣懷主編 高等教育出版社出版 1996年 第13章蝸桿傳動為主要依據。
具體如表3—1:
表5—1蝸輪蝸桿的傳動設計表
項 目 計算內容 計算結果
中心距的計算
蝸桿副的相對滑動速度
參考文獻5第37頁(23式) 4m/s<Vs<7m/s
當量摩擦
系數 4m/s<Vs<7m/s
由表13.6取最大值
選[ ]值
在圖13.11的i=35的線上,查得[ ]=0.45
[ ]=0.45
蝸輪轉矩
使用系數 按要求查表12.9
轉速系數
彈性系數 根據蝸輪副材料查表13.2
壽命系數
接觸系數 按圖13.12I線查出
接觸疲勞極限 查表13.2
接觸疲勞最小安全系數 自定
中心距
傳動基本尺寸
蝸桿頭數
Z1=1
蝸輪齒數模數
m=10
蝸桿分度圓 直徑
或
蝸輪分度圓
直徑
mm
蝸桿導程角
表13.5
變位系數 x=(225-220)/10=0.5 x=0.5
蝸桿齒頂圓 直徑 表13.5
mm
蝸桿齒根圓 直徑 表13.5
mm
蝸桿齒寬
mm
蝸輪齒根圓直徑
mm
蝸輪齒頂圓直徑(吼圓直徑)
mm
蝸輪外徑
mm
蝸輪咽喉母圓半徑
蝸輪齒寬 B =82.5
B=82mm
mm
蝸桿圓周速度
=4.52 m/s
相對滑動速度
m/s
當量摩擦系數 由表13.6查得
輪齒彎曲疲勞強度驗算
許用接觸應力
最大接觸應力
合格
齒根彎曲疲勞強度 由表13.2查出
彎曲疲勞最小安全系數 自取
許用彎曲疲勞應力
輪齒最大彎曲應力
合格
蝸桿軸擾度驗算
蝸桿軸慣性矩
允許蝸桿擾度
蝸桿軸擾度
合格
溫度計算
傳動嚙合效率
攪油效率 自定
軸承效率 自定
總效率
散熱面積估算
箱體工作溫度
此處取 =15w/(m²c)
合格
潤滑油粘度和潤滑方式
潤滑油粘度 根據 m/s由表13.7選取
潤滑方法 由表13.7採用浸油潤滑
六、蝸桿、蝸輪的基本尺寸設計
6.1蝸桿基本尺寸設計
根據電動機的功率P=5.5kw,滿載轉速為960r/min,電動機軸徑 ,軸伸長E=80mm
軸上鍵槽為10x5。
1、 初步估計蝸桿軸外伸段的直徑
d=(0.8——10) =30.4——38mm
2、 計算轉矩
Tc=KT=K×9550× =1.5×9550×5.5/960=82.1N.M
由Tc、d根據《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社第334頁表14-13可查得選用HL3號彈性柱銷聯軸器(38×83)。
3、 確定蝸桿軸外伸端直徑為38mm。
4、 根據HL3號彈性柱銷聯軸器的結構尺寸確定蝸桿軸外伸端直徑為38mm的長度為80mm。
5、 由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社的第305頁表10-1可查得普通平鍵GB1096—90A型鍵10×70,蝸桿軸上的鍵槽寬 mm,槽深為 mm,聯軸器上槽深 ,鍵槽長L=70mm。
6、 初步估計d=64mm。
7、 由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社第189頁圖7-19,以及蝸桿上軸承、擋油盤,軸承蓋,密封圈等組合設計,蝸桿的尺寸如零件圖1(蝸桿零件圖)
6.2蝸輪基本尺寸表(由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社第96頁表4-32及第190頁圖7-20及表5—1蝸輪蝸桿的傳動設計表可計算得)
表6—1蝸輪結構及基本尺寸
蝸輪採用裝配式結構,用六角頭螺栓聯接( 100mm),輪芯選用灰鑄鐵 HT200 ,輪緣選用鑄錫青銅ZcuSn10P1+* 單位:mm
a=b C x B
160 128 12 36 20 15 2 82
e n
10 3 35 380 90º 214 390 306
七、蝸輪軸的尺寸設計與校核
蝸輪軸的材料為45鋼並調質,且蝸輪軸上裝有滾動軸承,蝸輪,軸套,密封圈、鍵,軸的大致結構如圖7.1:
圖7.1 蝸輪軸的基本尺寸結構圖
7.1 軸的直徑與長度的確定
1.初步估算軸的最小直徑(外伸段的直徑)
經計算D6>51.7>100mm
又因軸上有鍵槽所以D6增大3%,則D6=67mm
計算轉矩
Tc=KT=K×9550× =1.5×9550×3.19/27.4=1667.76N.M<2000 N.M
所以蝸輪軸與傳動滾筒之間選用HL5彈性柱銷聯軸器65×142,
因此 =65m m
2.由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社的第305頁表10-1可查得普通平鍵GB1096—90A型鍵20×110,普通平鍵GB1096—90A型鍵20×70,聯軸器上鍵槽深度 ,蝸輪軸鍵槽深度 ,寬度為 由參考文獻《機械設計基礎》(下冊) 張瑩 主編 機械工業出版社 1997年的第316頁—321頁計算得:如下表:
圖中表注 計算內容 計算結果
L1 (由參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社第182頁表15-1查得滾動軸承6216的基本結構) L1=25
L2 自定 L2=20
L3 根據蝸輪 L3=128
L4 自定 L4=25
L5 (由參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社第182頁表15-1查得滾動軸承6216的基本結構) L5=25
L6 自定 L6=40
L7 選用HL5彈性柱銷聯軸器65×142 L7=80
D1 (由參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社第182頁表15-1查得滾動軸承6216的基本結構) D1=80
D2 便於軸承的拆卸 D2=84
D3 根據蝸輪 D3=100
D4 便於軸承的拆卸 D4=84
D5 自定 D5=72
D6 D6>51.7>100mm
又因軸上有鍵槽所以D6增大3%,則D6=67mm D6=67
7.2軸的校核
7.2.1軸的受力分析圖
圖7.1
X-Y平面受力分析
圖7.2
X-Z平面受力圖:
圖7.3
水平面彎矩
1102123.7
521607
97 97 119
圖7.4
垂直面彎矩 714000
圖7.5
436150.8
合成彎矩
1184736.3
714000
681175.5
圖7.6
當量彎矩T與aT
T=1111840Nmm
aT=655985.6Nmm
圖7.7
7.2.2軸的校核計算如表5.1
軸材料為45鋼, , ,
表7.1
計算項目 計算內容 計算結果
轉矩
Nmm
圓周力 =20707.6N
=24707.6N
徑向力
=2745.3N
軸向力 =24707.6×tan 20º
Fr =8992.8N
計算支承反力
=1136.2N
=19345.5N
垂直面反力
=4496.4N
水平面X-Y受力圖 圖7.2
垂直面X-Z受力 圖7.3
畫軸的彎矩圖
水平面X-Y彎矩圖 圖7.4
垂直面X-Z彎矩圖 圖7.5
合成彎矩 圖7.6
軸受轉矩T T= =1111840Nmm
T=1111840Nmm
許用應力值 表16.3,查得
應力校正系數a a=
a=0.59
當量彎矩圖
當量彎矩 蝸輪段軸中間截面
=947628.6Nmm
軸承段軸中間截面處
=969381.2Nmm
947628.6Nmm
=969381.2Nmm
當量彎矩圖 圖7.7
軸徑校核
驗算結果在設計范圍之內,設計合格
軸的結果設計採用階梯狀,階梯之間有圓弧過度,減少應力集中,具體尺寸和要求見零件圖2(蝸輪中間軸)。
7.3裝蝸輪處軸的鍵槽設計及鍵的選擇
當軸上裝有平鍵時,鍵的長度應略小於零件軸的接觸長度,一般平鍵長度比輪轂長度短5—10mm,由參考文獻1表2.4—30圓整,可知該處選擇鍵2.5×110,高h=14mm,軸上鍵槽深度為 ,輪轂上鍵槽深度為 ,軸上鍵槽寬度為 輪轂上鍵槽深度為
八、減速器箱體的結構設計
參照參考文獻〈〈機械設計課程設計》(修訂版) 鄂中凱,王金等主編 東北工學院出版社 1992年第19頁表1.5-1可計算得,箱體的結構尺寸如表8.1:
表8.1箱體的結構尺寸
減速器箱體採用HT200鑄造,必須進行去應力處理。
設計內容 計 算 公 式 計算結果
箱座壁厚度δ =0.04×225+3=12mm
a為蝸輪蝸桿中心距 取δ=12mm
箱蓋壁厚度δ1 =0.85×12=10mm
取δ1=10mm
機座凸緣厚度b b=1.5δ=1.5×12=18mm b=18mm
機蓋凸緣厚度b1 b1=1.5δ1=1.5×10=15mm b1=18mm
機蓋凸緣厚度P P=2.5δ=2.5×12=30mm P=30mm
地腳螺釘直徑dØ dØ==20mm dØ=20mm
地腳螺釘直徑d`Ø d`Ø==20mm d`Ø==20mm
地腳沉頭座直徑D0 D0==48mm D0==48mm
地腳螺釘數目n 取n=4個 取n=4
底腳凸緣尺寸(扳手空間) L1=32mm L1=32mm
L2=30mm L2=30mm
軸承旁連接螺栓直徑d1 d1= 16mm d1=16mm
軸承旁連接螺栓通孔直徑d`1 d`1=17.5 d`1=17.5
軸承旁連接螺栓沉頭座直徑D0 D0=32mm D0=32mm
剖分面凸緣尺寸(扳手空間) C1=24mm C1=24mm
C2=20mm C2=20mm
上下箱連接螺栓直徑d2 d2 =12mm d2=12mm
上下箱連接螺栓通孔直徑d`2 d`2=13.5mm d`2=13.5mm
上下箱連接螺栓沉頭座直徑 D0=26mm D0=26mm
箱緣尺寸(扳手空間) C1=20mm C1=20mm
C2=16mm C2=16mm
軸承蓋螺釘直徑和數目n,d3 n=4, d3=10mm n=4
d3=10mm
檢查孔蓋螺釘直徑d4 d4=0.4d=8mm d4=8mm
圓錐定位銷直徑d5 d5= 0.8 d2=9mm d5=9mm
減速器中心高H H=340mm H=340mm
軸承旁凸台半徑R R=C2=16mm R1=16mm
軸承旁凸台高度h 由低速級軸承座外徑確定,以便於扳手操作為准。 取50mm
軸承端蓋外徑D2 D2=軸承孔直徑+(5~5.5) d3 取D2=180mm
箱體外壁至軸承座端面距離K K= C1+ C2+(8~10)=44mm K=54mm
軸承旁連接螺栓的距離S 以Md1螺栓和Md3螺釘互不幹涉為准盡量靠近一般取S=D2 S=180
蝸輪軸承座長度(箱體內壁至軸承座外端面的距離) L1=K+δ=56mm L1=56mm
蝸輪外圓與箱體內壁之間的距離 =15mm
取 =15mm
蝸輪端面與箱體內壁之間的距離 =12mm
取 =12mm
機蓋、機座肋厚m1,m m1=0.85δ1=8.5mm, m=0.85δ=10mm m1=8.5mm, m=10mm
以下尺寸以參考文獻《機械設計、機械設計基礎課程設計》 王昆等主編 高等教育出版社 1995年表6-1為依據
蝸桿頂圓與箱座內壁的距離 =40mm
軸承端面至箱體內壁的距離 =4mm
箱底的厚度 20mm
軸承蓋凸緣厚度 e=1.2 d3=12mm 箱蓋高度 220mm 箱蓋長度
(不包括凸台) 440mm
蝸桿中心線與箱底的距離 115mm 箱座的長度
(不包括凸台) 444mm 裝蝸桿軸部分的長度 460mm
箱體寬度
(不包括凸台) 180mm 箱底座寬度 304mm 蝸桿軸承座孔外伸長度 8mm
蝸桿軸承座長度 81mm 蝸桿軸承座內端面與箱體內壁距離 61mm
九、減速器其他零件的選擇
經箱體、蝸桿與蝸輪、蝸輪軸以及標准鍵、軸承、密封圈、擋油盤、聯軸器、定位銷的組合設計,經校核確定以下零件:
表9-1鍵 單位:mm
安裝位置 類型 b(h9) h(h11) L9(h14)
蝸桿軸、聯軸器以及電動機聯接處 GB1096-90
鍵10×70 10 8 70
蝸輪與蝸輪軸聯接處 GB1096-90
鍵25×110 25 14 110
蝸輪軸、聯軸器及傳動滾筒聯接處 GB1096-90
鍵20×110 20 12 110
表9-2圓錐滾動軸承 單位:mm
安裝位置 軸承型號 外 形 尺 寸
d D T B C
蝸 桿 GB297-84
7312(30312) 60 130 33.5 31 26
蝸輪軸 GB/T297-94
30216 80 140 28.25 26 22
表9-3密封圈(GB9877.1-88) 單位:mm
安裝位置 類型 軸徑d 基本外徑D 基本寬度
蝸桿 B55×80×8 55 80 8
蝸輪軸 B75×100×10 75 100 10
表9-4彈簧墊圈(GB93-87)
安裝位置 類型 內徑d 寬度(厚度) 材料為65Mn,表面氧化的標准彈簧墊圈
軸承旁連接螺栓 GB93-87-16 16 4
上下箱聯接螺栓 GB93-87-12 12 3
表9-5擋油盤
參考文獻《機械設計課程設計》(修訂版) 鄂中凱,王金等主編 東北工學院出版社 1992年第132頁表2.8-7
安裝位置 外徑 厚度 邊緣厚度 材料
蝸桿 129mm 12mm 9mm Q235
定位銷為GB117-86 銷8×38 材料為45鋼
十、減速器附件的選擇
以下數據均以參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社的P106-P118
表10-1視孔蓋(Q235) 單位mm
A A1 A。 B1 B B0 d4 h
150 190 170 150 100 125 M 8 1.5
表10-2吊耳 單位mm
箱蓋吊耳 d R e b
42 42 42 20
箱座吊耳 B H h
b
36 19.2 9..6 9 24
表10-3起重螺栓 單位mm
d D L S d1
C d2 h
M16 35 62 27 16 32 8 4 2 2 22 6
表10-4通氣器 單位mm
D d1 d2 d3 d 4 D a b s
M18×1.5 M33×1.5 8 3 16 40 12 7 22
C h h1 D1 R k e f
16 40 8 25.4 40 6 2 2
表10-5軸承蓋(HT150) 單位mm
安 裝
位 置 d3 D d 0 D0 D2 e e1 m D4 D5 D6 b1 d1
蝸桿 10 130 11 155 180 12 13 35.5 120 125 127 8 80
蝸輪軸 10 140 11 165 190 12 13 20 130 135 137 10 100
表10-6油標尺 單位mm
d1 d2 d3 h a b c D D1
M16 4 16 6 35 12 8 5 26 22
表10-7油塞(工業用革) 單位mm
d D e L l a s d1 H
M1×1.5 26 19.6 23 12 3 17 17 2
十一、減速器的潤滑
減速器內部的傳動零件和軸承都需要有良好的潤滑,這樣不僅可以減小摩擦損失,提高傳動效率,還可以防止銹蝕、降低雜訊。
本減速器採用蝸桿下置式,所以蝸桿採用浸油潤滑,蝸桿浸油深度h大於等於1個螺牙高,但不高於蝸桿軸軸承最低滾動中心。
蝸輪軸承採用刮板潤滑。
蝸桿軸承採用脂潤滑,為防止箱內的潤滑油進入軸承而使潤滑脂稀釋而流走,常在軸承內側加擋油盤。
1、《機械設計課程設計》(修訂版) 鄂中凱,王金等主編 東北工學院出版社 1992年
2、《機械設計 第四版》 邱宣懷主編 高等教育出版社出版 1996年
3、《機械設計、機械設計基礎課程設計》 王昆等主編 高等教育出版社 1995年
4、《機械設計課程設計圖冊》(第三版) 龔桂義主編 高等教育出版社 1987年
5、《機械設計課程設計指導書》(第二版) 龔桂義主編 高等教育出版社 1989年
6、簡明機械設計手冊(第二版) 唐金松主編 上海科學技術出版社 2000年
《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社 1993年
《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社1989
《機械設計 第四版》 邱宣懷主編 高等教育出版社出版 1996年
E. 支承螺栓凸台高度應如何確定
承旁凸台高度H由低速級軸承座外徑確定,以便於扳手操作為准。低速的一般用滾動軸承,高速滲畝的一般用滑動軸戚消承。顧名思義,滾動軸承里有滾珠,有球形的,圓柱形的,圓錐形的。滑動軸承里一般是軸瓦叢仔森
F. 凸台高度怎麼計算
軸承旁凸台高度h
由低速級軸承座外徑確定,以便於扳手操滑畝作或型為准。
取50mm
軸承旁連接螺栓的距離S
以Md1螺信團森栓和Md3螺釘互不幹涉為准盡量靠近一般取S=D
G. 減速器軸承座螺栓凸台的布置及作用
減速器箱體凸緣的螺栓連接處做成凸台或者沉孔平面是因為螺栓通孔處做成凸台或者沉孔平面可以讓螺栓跟箱體更好的緊密接觸,增加和緊力度。由於減速器工作時各軸傳遞轉矩時要產生比較大的反作用力,並作用在箱體上,因此要求箱體具有足夠的剛度,以確保各傳動軸的相對位置精度。箱體結構應具有良好的工藝性。鑄造工藝性的要求,箱壁不宜太薄,δmin大於8mm,以免澆鑄時鐵水流動困難,出現充不滿型腔的現象。
注意以下事項
箱體應具有足夠的剛度。軸承座上下設置加強筋。軸承座房設計凸台結構。凸台的設置可使軸承座旁的連接螺栓靠近座孔,以提高連接的剛性。確保箱體接合面的密封、定位和內部傳動零件的潤滑。
機械加工工藝性的要求軸承座孔應為通孔,最好兩端孔徑一樣以利於加工。兩端軸承外徑不同時,可以在座孔中安裝襯套,使支座孔徑相同,利用襯套的厚度不等,形成不同的孔徑以滿足兩端軸承不同外徑的配合要求。
減速器是在原動機和工作機之間的單獨的減速用的部件,一般做成閉式傳動裝置,傳動件和軸、軸承等裝在鑄鐵或焊接的箱體中,稱為減速器或減速箱。
H. 怎麼確定減速器箱體軸承旁凸台的高度
11.測量齒側隙 Cn的大小。為此,在齒輪間塞入一鉛片,其厚度銷大於所假設的側隙,轉動齒輪,使碾壓齒輪間的鉛片,鉛片變形部分厚度相當於側隙大小。其厚度用卡尺測量,每一傳動件測量不同的齒間兩次。 12.安裝軸承端蓋並用墊片組調節軸承游隙。調整時,首先不用墊片而裝上軸承端蓋,一面均勻地旋緊蓋上螺釘,一面用手轉動軸,直到滾動體正確與內外圈接觸,軸承內無游隙為止。這時量出軸承端蓋與軸承座孔端面的間隙 T ,把軸承正常工作所需要的游隙 S 加上間隙 T ,即得墊片總厚度 K 。即 S+T=K 。然後根據墊片組成所需厚度裝在軸承蓋和軸承孔端面間,旋緊螺釘即可。