導航:首頁 > 軸承鑄造 > 鑄造冷疊什麼意思

鑄造冷疊什麼意思

發布時間:2023-02-07 02:13:30

① 鑄件和鍛件的區別

區別
一、機械性能差異。
鍛件經過二次加工之後,會有一個硬化的進程,這個進程會致使安排細密,機械性能無方向性,優於鑄件。

二、成型方法差異。
鑄件是經過熔煉爐將配比好的資料溶化後,澆入模型,冷卻成型;鍛件是經過壓力機在壓力效果下重復限制構成。
三、材料不同。
鑄造件:由鋼水直接澆鑄構成,晶粒度較差粗糙,金屬密度略低,機械性能安穩性差;齒輪鍛件:鑄造後經高溫鍛打構成,晶粒度細,密度略高,機械性能安穩。
五、從非加工外表調查。
鑄造件呈小顆粒狀,能看到披縫(澆鑄磨具合蓋口);自由鍛,鑄造後外表發黑,外表略稱片狀,能看到鑄造褶子 ;模鍛,乍一看與鑄造件有點類似,但外表的顆粒狀仍是對比細膩的。且模鍛常常都是做小件,大部件難做。
六、從加工面調查。
鑄鐵是與鍛件有顯著的差異的,鑄鐵外表沒有光澤(磨加工後仍是會發亮的),切屑的屑子都是斷屑,灰口鑄鐵會有粉末狀屑子;鑄鋼加工面與鍛件加工面自己認為是沒有很顯著的差異的,都具有光澤度。
七、從外觀對兩者進行分辨。
鑄件的表較粗,且有偏析和縮孔存在,而齒輪鍛件的表面光滑有光澤。因為齒輪鍛件受外力鍛壓,而鑄件則是凝固成型。

② 鑄造熱裂與冷裂的區別

鑄造件冷裂紋與熱裂紋的區別


鑄鋼的熔煉一般採用平爐,電弧爐和感應爐等。平爐的特點是容量大、可利用廢鋼作原料、能准確控制鋼的成分並能熔煉優質鋼及低合金鋼,多用於熔煉質量要求高的、大型鑄鋼件用的鋼液。但是如果控制不好,就容易出現裂紋。

防止鑄造熱裂缺陷的措施
為使樹脂砂鑄造,尤其呋喃樹脂砂鑄造避免或減少熱裂,可採取以下幾個方面的措施:
1.合金方面
(1)控制鑄件的含硫量,宜在0.03%以下,並且避免鑄件中出現Ⅱ型硫化物。(鑄鋼件中的硫化物呈三種形態,即Ⅰ型、Ⅱ型和Ⅲ型,其中Ⅱ型的硫化物沿晶界分布,呈斷續狀,容易引起鑄件熱裂。)通過調整錳硫比來改變硫的分布型態。
(2)對於碳鋼件,應使S+P≤0.07%,因為硫與磷的疊加作用,使熱裂傾向性增加。
(3)用A1脫氧時,應將鋁的殘留量A1殘留控制≤0.1%;過高的A1殘量,有利於形成A12S3,甚至可能形成A1N,使鋼的斷口呈現「岩石狀」,大大降低鑄鋼件的抗熱裂能力。
(4)使鋼的晶粒能細化。如在鋼液中加入稀土和硅鈣,既可脫氧、脫硫,又可以細化晶粒。對NiCrMoV鋼的測定表明:在相同的條件下,經稀土+硅鈣處理的鋼液,較之未處理的鋼液,其抗裂能力高2倍以上。
2.樹脂砂鑄造工藝方面
(1)在滿足鑄件的充填性的要求時,盡量降低鋼液的澆注溫度。對0.19%C的碳鋼,在1550℃時澆注比在1600℃時澆注,其抗熱裂能力幾乎高一倍。
(2)對於薄壁鑄件,宜採用較高的澆注速度。如對某鑄鋼件,重量為 125Kg,壁厚為15mm,澆注時間為14秒時不出現熱裂;延長至40秒就觀察到裂紋。
(3)在鑄件易發生裂紋處設置防裂筋,是防止鑄鋼件熱裂的有效措施。
(4)及時松箱,也有助於減少熱裂,因為可以減少鑄件的收縮應力。
3.造型材料方面
(1)降低樹脂加入量,或對樹脂改性,使樹脂具有熱塑性,讓呋喃樹脂在高溫時不結焦或少結焦,從而保證其有良好的高溫容讓性。
(2)在呋喃樹脂砂中加入附加物,使樹脂砂具有熱塑性;或者在收縮受阻最嚴重處,加入木粉、泡沫珠粒;或者在鑄型中相應部位放塑性好的退讓塊,提高其高溫退讓性。
(3)採用磷酸固化劑。因為磺酸類固化劑容易引起鑄件表面滲硫,在鑄件表面引起微裂紋,成為龜裂源。
(4)使用熱膨脹系數較小的造型材料,如用鉻鐵礦砂等代替石英砂等。
(5)減薄砂芯(型)的砂層厚度,如採用中空砂芯。例如:某類閥門鑄件,僅僅通過減薄型芯砂層厚度,改變芯骨的連接方法,就消除了鑄件的熱裂缺陷。
(6)在易產生裂紋的地方合理使用冷鐵或找其它激冷措施。
(7)採用能有效減少滲硫的塗料。
4.鑄件結構方面
鑄件的形狀與尺寸,是由設計者決定的,生產方無法改變。但是,對於園角的大小,壁厚過渡處的處理等,可以與有關設計部門協商,按照鑄造生產要求作適當修改。
上述幾方面的因素對鑄鋼件熱裂都有影響,但對於某一具體鑄件,可能只有其中的部分因素是主要的。

冷裂紋是鑄件凝固後冷卻到彈性狀態時,因局部鑄造應力大於合金極限強度而引起的開裂。冷裂紋總是發生在冷卻過程中承受拉應力的部位,特別是拉應力集中的部位。

冷裂紋與熱裂紋不同,冷裂紋往往穿晶擴展到整個截面,外形呈寬度均勻細長的直線或折線狀,冷裂紋的斷口表面子凈有金屬光澤或呈輕度氧化色,裂紋走向平滑,而非沿晶界發生。這與熱裂紋有顯著的不同。冷裂紋檢驗用肉眼可見,可根據其宏觀形貌及穿晶擴展的微觀特徵,與熱裂紋區別。

③ 鑄造工藝圖

1.一般程序
1)根據產品圖及技術條件、產品的批量及需用日期,結合工廠實際條件選擇鑄造方法。
2)分析鑄件的結構工藝性,判斷缺陷傾向,提出結構改進意見和確定鑄件凝固原則。
3)標出澆注位置和分型面。
4)繪出各視圖上的加工餘量及不鑄孔、溝槽等工藝符號。
5)標出與分型面垂直壁的起模斜度。
6)繪出砂芯形狀、砂芯分塊線(包括分芯負數)、芯頭間隙、壓緊環和防壓環、積砂槽,標出有關
尺寸和砂芯負數,必要時設計芯骨形狀、尺寸和吃砂量。
7)畫出分盒面,填砂(射砂)方向,砂芯出氣方向,起吊方向等符號。
8)繪出澆注系統、冒口的位置、形狀、尺寸和數量,同鑄試樣的形狀、位置和尺寸。
9)冷鐵和鑄筋的位置、形狀、尺寸和數量,固定組合方法及冷鐵留縫大小等。
10)模樣的分型負數,分模面及活塊形狀,反變形量的大小和位置、形狀、非加工壁厚的負餘量,
工藝補正量的加設位置和尺寸等。
11)大型鑄件的吊柄,某些零件上所加的機械加工用夾頭或加工基準檯面等。此外,有的鑄造工藝
圖尚需說明:澆注要求,壓鐵重,冒口切割殘留量,冷卻保溫處理方式,拉筋處理要求,退火要求等。
2.注意事項
1)凡是能在某一視圖或剖視圖上表示清楚即可的工藝內容,不必在每個視圖上都反應出所有工藝
符號,以免符號遍布圖紙、相互重疊。
2)加工餘量的尺寸,如果頂面、內孔和底、側面數值相同,圖面上不標注尺寸,可填寫在圖紙背面的「模樣工藝卡」中,也可寫在技術條件中。
3)相同尺寸的鑄造圓角、等角度的起模斜度,圖形上可不標注,只寫在技術條件中。
4)砂芯邊界線,如果和零件線或加工餘量線、冷鐵線等重合時,則可省去砂芯邊界線。
5)在剖面圖中,砂芯線和加工餘量線的相互關系處理上,不同工廠有不同做法。
6)單件小批產品,甚至在某些成批生產的工廠中,鑄造工藝圖是在產品圖上繪制的,直接用於指導生產。
7)所標注的各種工藝尺寸或數據,不要蓋住產品圖上的數據,應方便工人操作,符合工廠的實際條件。

④ 求助鐵型覆膜砂鑄造工藝

鐵型覆砂鑄造是在金屬型(稱為鐵型)內腔覆上一薄層型砂而形成鑄型的一種鑄造工藝。由於覆砂層比較薄(4~8mm),因此採用比較貴的高質量造型材料,在經濟上也是合理的,其結果是使鑄件質量大大改善和廢品顯著減少;由於鐵型覆砂鑄型剛度很好,從而顯著地提高了鑄件的尺寸精度和緻密性。

德國、前蘇聯等國於60年代前後開始把鐵型覆砂鑄造應用於鑄造生產,主要用於生產球鐵曲軸、剎車轂、剎車盤、缸套、炸彈殼、坦克履帶和電機底座等30餘種鑄件。我國對鐵型覆砂鑄造的應用性研究起始於70年代初,至1979年,浙江省機電設計研究院和永康拖拉機廠等單位合作,首次將該工藝用於S195曲軸毛坯的批量鑄造生產,同時,完成了對該工藝所生產的球鐵曲軸性能的考核評價,在疲勞強度(疲勞極限應力σ-1的比較)、斷裂強度(門檻值ΔKth的比較以及斷裂韌性K1C的比較)和使用壽命(10000h台架耐久試驗對比)等方面,與砂型鑄造麯軸進行了大量的試驗對比,皆優於砂型鑄造。在其後的10餘年裡,該工藝不斷在應用中提高完善,至90年代初,已有7家企業應用了該工藝,尤其是單缸曲軸和四缸曲軸的鐵型覆砂鑄造工藝取得了很大的成功。這段時期的代表企業是永康拖拉機廠、上虞動力機廠、望都曲軸連桿廠、皖北曲軸廠、金華內燃機配件廠、常州柴油機廠等。1991年國家計委將鐵型覆砂鑄造批准為國家「八五」重點新技術推廣項目,並把浙江省機電設計研究院作為該項目的技術依託單位,這對於我國鐵型覆砂鑄造技術的發展起了巨大的推動作用。我院承擔了該推廣項目後,在其後的5~6年時間里基本上解決了鐵型覆砂鑄造用於批量生產的一系列問題。

主要是:

①設計和定型了覆砂造型機,解決了長期以來由射芯機改裝代用的問題;
②定型規范了標準的鐵型覆砂鑄造生產線,使原來比較簡單的鐵型覆砂鑄造生產線得到了改進,在上海球鐵廠等企業應用;
③鐵型覆砂鑄造應用擴大到鑄造工藝難度較大的一些鑄件,例如六缸曲軸和三缸曲軸等;
④將覆膜砂引入鐵型覆砂鑄造生產中,大大提高了覆砂造型質量;
⑤鐵型覆砂鑄造工藝設計進一步規范,設計水平也大大提高,並開發了鐵型覆砂鑄造過程的計算機模擬軟體和引入了鐵型覆砂鑄造工藝的計算機輔助設計軟體。

目前,全國已有近百家企業應用了鐵型覆砂鑄造工藝生產球鐵曲軸、凸輪軸、平衡軸、耐壓閥體、缸套,耐磨齒盤等30餘種鑄件,估計年產鑄件在10×104t左右。比較典型的企業有上海汽車鑄造總廠球鐵廠、沈陽第一曲軸廠、廣西百礦集團、宜興機械總廠、山東九羊集團、浙江曙光曲軸廠、本溪天緣曲軸廠、保定電影機械廠、山西潞城曲軸廠、河北辛集曲軸廠等。但是由於這些企業引入該工藝的方式不同:有委託我院進行設計或承建的,也有自行仿造開發的。因此他們對鐵型覆砂鑄造工藝的掌握程度相差甚遠。僅以鐵型覆砂鑄造廢品率為例,不少掌握得比較好的企業可穩定在3%左右,取得了非常好的經濟效益。但也有少數企業的鐵型覆砂鑄造廢品率卻高達20%左右,這大大地抵消了該工藝來該產生的的經濟效益。究其原因,發現是由於這些企業還沒有完全掌握該工藝的設計和生產要領,以及疏於生產管理所致。

鐵型覆砂鑄造工藝設計及實際生產主要解決:

①鐵型壁厚和覆砂層厚度及二者的配合,以滿足不同壁厚和不同材質鑄件對凝固和冷卻的不同要求;
②便捷和經濟的覆砂成型方法,以滿足不同鑄件對表面質量和尺寸精度的要求;
③工藝參數。如澆注系統、射砂系統、排氣系統等的確定;
④批量生產的實現。例如生產線及覆砂主機和輔機的設計定型;
⑤工藝規程的制定,例如澆注、冷卻和開箱等規程,以及鑄件成分的調整等。

2鐵型覆砂鑄造的熱交換特點

液態金屬澆入鐵型覆砂鑄型以後,「鑄件——覆砂層——鐵型」是一個不穩定的熱交換系統。為了使問題簡化,假設鑄件是半元限的;並假設系統中各組元的溫度場按直線規律分布的。圖1表示系統的一部分,顯然,同樣的比熱流q通過了系統中各個組元:

圖1鑄件—覆砂層—鐵型的溫度分布

令分別表示鑄件與覆砂 層、鐵型與覆砂層之間熱交換強度的兩個傳熱准則。k1是鑄件熱阻與覆砂層熱阻之比;k2是鐵型的熱阻與覆砂層熱阻之比。將k1和k2結合起來考慮,隨著覆砂層厚度的變化,有以下三種實際上可能發生的「鑄件——覆砂層——鐵型」間不同的傳熱情況:

①當k≤1,k2≤1時,覆砂層在正常的厚度之內,鑄件的冷卻速度隨著覆砂層厚度的減少而增大。
②當覆砂層的厚度超過某一厚度以後,鐵型對鑄件冷卻已不產生影響,這時就相當於普通的砂型鑄造或樹脂砂鑄造。由於覆砂層的導熱系數比鐵型的導熱系數小得多,所以鑄件冷卻緩慢。
③當k≧1,k2≧1時,覆砂層厚度太薄,這時就相當於金屬型鑄造了。

以上熱交換特點已為實驗所證實,當曲軸(CTЦ-14)鐵型覆砂鑄造的覆砂層厚度從4~32mm逐漸變化時,曲軸組織中的滲碳體量不斷減少,珠光體量和鐵素體量不斷增加。而當覆砂層厚度小於4mm時,鑄件的冷卻強度與金屬型(厚塗料)相近;覆砂層大於32mm時,則其冷卻強度相當於普通樹脂砂鑄造了。

當鐵型覆砂鑄造用於各種不同鑄件的生產時,就是通過試驗或經驗類比,以確定不同的覆砂層厚度和鐵型厚度來控制鑄件的凝固速度。例如在490Q球鐵曲軸鐵型覆砂鑄造工藝設計中,取覆砂層厚度為5~8mm,鐵型壁厚為20~30mm,生產出了優質的無冒口鑄態球鐵,其主要原因:

①覆砂層有效地調節了鑄件的冷卻速度,一方面使鑄件不易出現白口,另一方面又使冷卻速度大於砂型鑄造。如圖2所示,當鐵水澆入鐵型覆砂鑄型後,經8min鑄件溫度降到930℃左右,而砂型要降到同樣溫度,就需要24min,冷卻速度提高了3倍左右,其結果使鑄件的機械性能顯著提高。

②鐵型無退讓性,但很薄的覆砂層卻能適當減少鑄型的收縮阻力;而鐵型所具有的剛性,又有效地利用了球鐵在凝固過程中的石墨化膨脹,實現了無冒口鑄造;由於覆砂層薄,型腔不易變形,鑄件精度比砂型大為提高。

1-鐵型覆砂2-砂型
圖2球鐵澆注後的冷卻曲線

3鐵型覆砂鑄件的冷卻速度

影響鐵型覆砂鑄件冷卻速度的因素有鑄件壁厚、鑄件材質、澆注溫度、覆砂層厚度、覆砂層的材料、鐵型厚度、鐵型材質和鑄型溫度等因素。在此,僅討論鑄件壁厚(bc)、覆砂層厚度(bm)及鐵型厚度(bi)的影響。

3.1 bc、bm和bi對鑄件冷卻的影響

圖3是在下列實驗條件下做出的不同鑄件壁厚(分別是10mm、20mm、40mm、80mm)、不同覆砂層厚度(分別是4mm和32mm)以及不同鐵型壁厚(分別是32mm和8mm)對鐵型覆砂鑄件冷卻速度的影響情況:鑄件化學成分3.52%C、2.46%Si、0.80%Mn、0.18%P、0.031%S,覆砂層化學成分為:石英砂90%,粘土8%,煤粉2%,水分3%。

圖3鑄件壁厚、覆砂層厚度、鐵型壁厚對冷卻速度的影響

從圖3可見:①鑄件壁厚、覆砂層厚度和鐵型壁厚共同影響鑄件的冷卻速度。因此,在實際生產中,應根據不同的鑄件壁厚來選擇合適的鐵型厚度和覆砂層厚度,以得到所需的冷卻速度。②不同厚度的鑄件可以通過選擇合適的覆砂層厚度和鐵型壁厚得到相同的冷卻速度,例如圖3中的Ⅰ區表示厚度為10mm和20mm、Ⅱ區表示20mm和40mm、Ⅲ區表示40mm和80mm鑄件冷卻范圍之間的重疊。③雖然可以改變bm和bi使不同厚度的鑄件獲得相同的冷卻速度,但並非任何厚度的鑄件都可獲相同的冷卻速度,在本實驗條件下,厚度為10mm和厚度為40mm的鑄件就不能獲得完全一樣的冷卻速度(曲線沒有重疊部分)。

3.2覆砂厚度(bm)和鐵型壁厚(bi)的選擇

bm和bi一般都是根據經驗或實驗確定,這里介紹一種圖表法。圖4是用以確定鐵型覆砂鑄造應用范圍的曲線圖表,適用於鑄件厚度(bc)從10~80mm,開箱溫度600℃的條件。縱座標為冷卻時間。圖右邊曲線的橫座標上標有覆砂層厚度,它可以從已知的鑄件冷卻到600℃所需要的時間以及各種鑄件厚度而查定,而且在所求的鑄件壁厚中(10、20、40、80mm)已知一個,那麼覆砂層厚度及鐵型厚度的確定是很方便的。從左半部曲線的橫座標上找到相應的bc(比如bc=20mm)畫一條水平線,如果這兩條線相交在畫有剖面線的曲線范圍里,那麼表明這種鑄件適宜採用鐵型覆砂鑄造。把這條水平線向右延伸,它便伸入bc=20mm的區域里,在這個區域里引一根垂直線向下就可得到所需要的覆砂層厚度。但應使這根垂線盡可能地向右邊畫,以便得到最小的覆砂層厚度及鐵型厚度。如果所需確定的覆砂層厚度不在這個范圍以內,則可按照類似方法從鄰近的曲線范圍中去找。

圖4鐵型厚度、覆砂層厚度、鑄件壁厚和鑄件冷卻速度關系曲線圖

如果鑄件的壁厚各處不均勻,則先看一下這個鑄件能否採用鐵型覆砂鑄造,然後按照各個壁厚來確定其覆砂層厚度及鐵型厚度。例如,一個鑄件具有15mm、30mm和45mm三種不同的壁厚,同上在圖4的左半部按照這三個壁厚數值引三根垂線,然後使其與一根水平線相交,它們的交點應盡可能處在鐵型覆砂范圍里。把這根水平線向右半部引伸,在那裡可以獲得各個壁厚所需要的覆砂層厚度,利用水平線可以得到鑄件冷卻到600℃所需的時間。對厚度為15mm的部分,其垂線選在bc為20~10mm之間;對厚度為30mm的部分其垂線選在20~40mm之間;而對於壁厚為45mm的部分,只要查bm等於4mm的地方就可以了。覆砂層厚度確定以後,可從圖5確定鐵型的厚度。

圖5不同壁厚與覆砂層厚度及冷卻時間的關系

4生產實現

4.1覆砂造型

大批量生產的鐵型覆砂鑄造,其覆砂造型如圖6所示。即從鐵型背面的一組射砂孔經鐵型和模型合模後形成的間隙(覆砂層厚度)中射入流動性較好的型砂,經固化起模後形成鐵型覆砂鑄型。整個造型過程在專用的覆砂造型機或由射芯機改裝的覆砂造型機上完成。

1.射砂頭2.覆砂層3.鐵型4.型板
圖6覆砂造型1

實際生產中有時還有如圖7所示的覆砂造型方式。一般用於生產批量比較小的情況,覆砂過程由人工完成。

1.型板2.覆砂層3.鐵型4.吹嘴5.吹砂頭
圖7覆砂造型2

吹制覆砂層的壓縮空氣壓力的選擇可參考圖8。從圖中可見,當覆砂層不厚於4~5mm時,把射砂壓力從2個大氣壓增加到6個大氣壓,覆砂層的密度增高了;當覆砂層較厚時,壓力增加,效果較小。當覆砂層厚度為4~6mm時,其密度最大。

圖8不同空氣壓力下覆砂層厚度與密度的關系圖

4.2鑄件成分調整

鐵型覆砂鑄造由於冷卻速度比較快,因此鑄件的化學成分(主要是C和Si)要做適當的調整。圖9方框中的成分是鐵型覆砂鑄造用於生產球鐵件時的成分范圍。當C少於3.5%,Si少於2.3%,則因為有助於鐵水凝固膨脹的有效石墨少而產生縮孔;而當C高於3.9%,Si高於2.9%則產生石墨漂浮和疏鬆。此外,實驗指出,與碳當量CE(C+1/3Si)相比,Si的效果要大,並且(C+1/2Si)<4.9%時發生縮孔,在5.2%以上時發生石墨漂浮和疏鬆。一般建議(C+1/2Si)在5.0%~5.1%范圍所得效果最好。

圖9鐵型覆砂鑄造球鐵曲軸用C、Si含量范圍

4.3工藝流程及生產線

目前,在生產中應用的鐵型覆砂鑄造生產線的工藝流程,如圖10示。其中覆砂造型由覆砂造型機完成,這種造型機有單工位和雙工位兩種,90年代以前單工位使用較多,90年代以後雙工位使用更多。其它工序由各種輔機完成,輔機有氣動和手動兩種。鐵型在輥道上輸送,輸送輥道也有人工和機動兩種,以適應不同機械化程度的要求。目前鐵型覆砂鑄造生產線用於生產球鐵曲軸時,典型的技術數據是:①鑄件平均精度CT7級左右,表面粗糙度6.3~12.5μm;②鑄態QT800;③鑄造工藝出品率90%以上。

圖10鐵型覆砂鑄造生產流程

5存在問題

5.1優化工藝設計

由於鐵型覆砂鑄造的工裝造價較高,且修改比較困難。因此該工藝的設計要求一次成功。而目前一些生產企業由於工藝工裝設計不當,而造成鑄件廢品率居高不下的情況時有發生。近年我院完成了鐵型覆砂鑄造球鐵件凝固過程計算機數值模擬課題,能進行多種工藝方案的優化對比。但由於准確的熱物性參數難以獲得以及一些簡化處理,目前要達到真正意義的優化設計還有一定距離。

5.2工裝的通用性

鐵型覆砂鑄造由於每種鑄件都需要不同的鐵型和模型,因此用砂量很少,生產成本很低。但對於鑄件品種很多的鑄造車間,則鐵型的管理、保存就很麻煩。如果解決好了鐵型的專用和通用問題,則該工藝的應用將會更加普遍。

5.3生產線水平仍不高

目前鐵型覆砂鑄造的機械化和自動化水平尚不高。尤其是缸套的鐵型覆砂鑄造,國外有多工位轉盤式鐵型覆砂造型機,效率很高

⑤ 大功率疊陣是什麼退火

是極冷退火,按照退火分類原則,大功率疊陣是屬於極冷退火。

⑥ 細化晶粒的方法有哪些

方法:

(1)在液態金屬結晶時,提高冷卻速度,增大過冷度,來促進自發形核。晶核數量愈多,則晶粒愈細。

(2)在金屬結晶時,有目的地在液態金屬中加入某些雜質,做為外來晶核,進行非自發形核,以達到細化晶粒的目的,此方法稱為變質處理。這種方法在工業生產中得到了廣泛的應用。如鑄鐵中加入硅、鈣等。

(3)在結晶過程中,採用機械振動、超聲波振動、電磁攪拌等,也可使晶粒細化。

因為一般地說,在室溫下,細晶粒金屬具有較高的強度和韌性,所以需要細化晶粒。

(6)鑄造冷疊什麼意思擴展閱讀:

理想的鑄錠組織是鑄錠整個截面上具有均勻、細小的等軸晶,這是因為等軸晶各向異性小,加工時變形均勻、性能優異、塑性好,利於鑄造及隨後的塑性加工。要得到這種組織,通常需要對熔體進行細化處理。

都與過冷度有關,過冷度增加,形核率與長大速度都增加,但兩者的增加速度不同,形核率的增長率大於長大速度的增長率。在一般金屬結晶時的過冷范圍內,過冷度越大,晶粒越細小。

鋁及鋁合金鑄錠生產中增加過冷度的方法主要有降低鑄造速度、提高液態金屬的冷卻速度、降低澆注溫度等。

但是,如果沒有較多的游離晶粒的存在,增加激冷作用反而不利於細晶粒區的形成和擴大。

動態晶粒細化就是對凝固的金屬進行振動和攪動,一方面依靠從外面輸入能量促使晶核提前形成,另一方面使成長中的枝晶破碎,增加晶核數目。當前已採取的方法有機械攪拌、電磁攪拌、音頻振動及超聲波振動等。

利用機械或電磁感應法攪動液穴中熔體,增加了熔體與冷凝殼的熱交換,液穴中熔體溫度降低,過冷帶增大,破碎了結晶前沿的骨架,出現了大量可作為結晶核的枝晶碎塊,從而使晶粒細化。

1.晶界上有界面能的作用,因此晶粒形成一個在幾何學上與肥皂泡相似的三維陣列。

2.晶粒邊界如果都具有基本上相同的表面張力,晶粒呈正六邊形。

3.在晶界上的第二類夾雜物(雜質或氣泡),如果它們在燒結溫度下不與主晶相形成液相,則將阻礙晶界移動。

在燒結體內晶界移動有以下七種方式: 氣孔靠晶格擴散移動; 氣孔靠表面擴散移動; 氣孔靠氣相傳遞; 氣孔靠晶格擴散聚合; 氣孔靠晶界擴散聚合; 單相晶界本徵遷移; 存在雜質牽制晶界移動。

⑦ 常見鑄造、鍛壓、焊接缺陷

常見的鑄造缺陷:砂眼、氣孔、縮松、
縮孔

夾砂

夾渣
、澆不足、冷隔、
裂紋
鍛壓缺陷:折疊、白點、裂紋
、流線不順、
渦流
和穿流、過熱、過燒、
晶粒
粗大、脫碳
焊接缺陷:焊縫波紋粗劣,焊縫不均勻、不整齊,焊縫與
母材
不圓滑過渡,
焊接接頭
差,焊縫高低不平、咬邊、
錯口
、彎折、
弧坑

表面
氣孔、表面夾渣、
支吊架
等T型焊接接頭焊縫不
包角

電弧
擦傷
焊件

表面裂紋
、焊接變形、
內部
氣孔和裂紋

⑧ 泥范鑄造法的具體步驟

「泥范鑄造法」的具體步驟是:制模——翻外范——制內范——合范——澆鑄。

⑨ 鑄造應力按產生原因的不同分為哪兩種

1、鑄造應力的產生

通常說的鑄造應力,有時是泛指,即不論產生應力的原因如何,凡鑄件冷卻過程中尺寸變化受阻,產生的應力都稱作鑄造應力。但通常指的鑄造應力多指殘余應力。鑄件有殘余應力時,經機械加工後可能產生新的變形,使零件精度降低或尺寸超差;若鑄件承受的工作應力與殘余應力方向相同而疊加,就可能超過材料強度極限而破壞;有殘余應力的鑄件在長期存放後,會產生變形;若在腐蝕介質中存放或工作時,還會產生應力腐蝕而開裂。因此,應盡量減少鑄件冷卻過程中產生的殘余應力並設法消除之。

鑄件凝固結束後,鑄件都要隨著溫度的下降發生固態收縮或相變,在固態相變的同時,有相變體(線)膨脹或收縮,由於厚壁鑄件外層比內層冷卻的快,壁厚不同的鑄件厚壁冷的慢,薄壁冷的快。從而導致外層與內層,厚壁與薄壁固態線收縮率(mm/s)不一致,使厚壁的外層和內層、厚壁與薄壁就相互制約收縮,發生拉伸或壓縮變形。在固態冷卻前期,薄壁降溫比厚壁快,產生的收縮量較大,從而使薄壁部位受到拉伸變形,產生拉應力,而在厚壁部位形成壓縮變形,產生壓應力;在冷卻後期,厚壁的降溫又比薄壁快,產生的收縮量較薄壁部位大,所以又在厚壁部位形成拉伸變形,產生拉應力,而在薄壁部位形成壓縮變形,產生壓應力。如果在冷卻前期和冷卻後期形成的應力能相互抵消,則鑄件最終不產生應力,而只在冷卻過程中表現出來的應力稱為臨時應力。如果兩種應力不能相互抵消,則有一部分應力會殘留在鑄件上,這種應力稱為殘余應力。

除此之外,鑄件的固態線收縮還受到外部因素的阻礙(如砂芯、冒口、澆注系統等),如果外部因素退讓性不足,溫度下降時不能實現應有的收縮值,鑄件將產生拉應力。在冷卻過程中,固態收縮由於上述各種因素的影響,使鑄件的收縮受阻,發生變形而產生應力,這種應力為鑄造應力。

鑄造應力包括:熱應力、相變應力、收縮應力三種。

2、鑄造殘余應力

鑄件清理完後,仍然存在宏觀的殘余應力。殘余應力也稱「內應力」。鑄件殘余應力不是一種鑄造缺陷,但對鑄件產生裂紋和變形起著重要的作用。鑄件的殘余應力(拉應力)大於材料的抗拉強度時,就會使鑄件產生裂紋;當鑄件存在殘余應力時,會使鑄件變「脆」;殘余應力還會使鑄件產生應力腐蝕開裂。鑄件殘余應力有宏觀和微觀之分,按形成原因可分為熱應力型殘余應力、相變型殘余應力、收縮應力型殘余應力。生產實踐表明鑄件殘余應力主要為熱應力型,即為殘余熱應力。

閱讀全文

與鑄造冷疊什麼意思相關的資料

熱點內容
光碟機如何改裝機械硬碟嗎 瀏覽:480
工具箱漢化smart 瀏覽:133
鑄造除塵器為什麼要做保溫層 瀏覽:617
怎麼看機械表要保養 瀏覽:517
小學生雕刻工具箱 瀏覽:417
k5儀表信息怎麼調 瀏覽:936
青島泰科閥門怎麼樣 瀏覽:277
地熱總閥門開關擰不動怎麼辦 瀏覽:60
03儀表盤模式怎麼換 瀏覽:284
ktv設備有哪些設備 瀏覽:191
關節軸承怎麼安裝使用 瀏覽:838
生產山楂糕需要哪些設備 瀏覽:91
機械表後面的飛輪是什麼 瀏覽:163
怎麼實現儀表盤ar導航 瀏覽:722
某同學設計了如下裝置來 瀏覽:633
超聲波儀器動態范圍是什麼意思 瀏覽:11
傳動裝置分析 瀏覽:263
風機與閥門連鎖怎麼實現 瀏覽:314
消防管道閥門抽檢比例 瀏覽:313
礦用自動除塵噴霧裝置生產工藝 瀏覽:334