⑴ 減速機等傳動設備的精度誤差如何調整
減速機等機械設備的調整,首要是在零部件之間經過挑選適宜的合作關系,使設備具有合理的作業精度和正常的作業機能。因此,從總體上來看,機械設備的調整不能只在零部件裝配今後才著手進行。有必要從分析設備故障並斷定修補有關零件時,就開端考慮這個問題。
減速機等傳動設備的精度,首要體現為主軸的反轉精度、導軌的導向精度和傳動鏈的傳動精度。
一、減速機主軸反轉精度的首要差錯源
主軸反轉精度,是指主軸前端作業部件的徑向圓跳動,端面圓跳動和軸向竄動的巨細。主軸反轉精度的首要差錯源如下。
(1)主軸的加工差錯
1)主軸上兩個軸頸之間有同軸度差錯。
2)主軸錐孔相對軸頸有同軸度差錯。
3)軸頸有圓度差錯。
4)軸承的軸向定位面與主軸軸線有筆直度差錯。
(2)軸承的加工差錯
1)翻滾軸承的翻滾體之間有尺度差錯及圓度差錯;內圓孔相對滾道有偏疼;內圓滾道有圓度差錯;前、後軸承之間有同軸度差錯等。
2)滑動軸承有內、外圓的圓度差錯和同軸度差錯;前、後軸承之間有同軸度差錯;軸承孔與軸頸之間有尺度差錯等。
(3)般配零件的加工差錯及其裝配質量
1)齒輪減速機箱體上的軸承孔有圓度差錯;與軸承處圈相合作時有尺度差錯;軸向定位端面與孔的中凡軸線有筆直度差錯。
2)減速機主軸上鎖緊與調整軸承空隙的螺母有端面平面度差錯;螺母端面與螺紋中心軸線之間有筆直度差錯;螺紋之間存在聯接差錯等。
3)軸承襯套隔圈兩端面有平行度差錯。
4)裝配中,軸承空隙調整是否適宜,直接對主軸反轉精度有顯著影響。
二、導軌導向精度的首要差錯源
導軌的導向精度,是指機械設備的運動部件沿導軌運動時,構成運動軌跡的准確性。影響導軌導向精度的因素,除了在設計中所選導軌的類型、組合形式與尺度之外,設備修理中常見的首要因素有:
(1)受導軌幾何精度的影響。
(2)受導軌空隙是否適宜的影響。
(3)受導軌本身剛度的影響。
三、減速器傳動鏈傳動精度的首要差錯源
傳動精度,是指傳動鏈中,各環節的精度對終端履行件運動的准確性和均勻性的影響程度。
一般機械設備中的傳動鏈都是由齒輪與齒輪、齒輪與齒條、蝸輪與蝸桿、絲杠與螺母等傳動副組成。在整個傳動鏈中,傳動差錯是由動力輸入環節向終端履行件進行傳遞,而且按照傳動比進行累積。傳動鏈的傳動精度對車床加工螺紋和滾齒機滾切齒輪的加工差錯都有顯著的影響。
設備修理過程中,傳動精度常見的差錯源是:
(1)傳動件的差錯對設備傳動精度有著首要的影響。
(2)般配零件的差錯及其裝配質量對傳動精度有顯著影響。
(3)傳動件在作業中,因為受熱、受力,不可避免地要引起變形,對傳動鏈的傳動精度也會有必定影響。
⑵ 減速器軸系各零件(包括軸承)如何定位和固定
軸上零件的軸向定位是以軸肩、套筒、圓螺母、軸端擋圈和軸承端蓋等來保證的,具體內容如下:
1、軸肩:分為定位軸肩和非定位軸肩兩類,利用軸肩定位是最方便可靠的方法,但採用軸肩就必然會使軸的直徑加大,而且軸肩處將因截面突變而引起應力集中。另外,軸肩過多時也不利於加工。因此,軸肩定位多用於軸向力較大的場合。
2、套筒定位:結構簡單,定位可靠,軸上不需開槽﹑鑽孔和切制螺紋,因而不影響軸的疲勞強度,一般用於軸上兩個零件之間的定位。
3、圓螺母:定位可承受大的軸向力,但軸上螺紋處有較大的應力集中,會降低軸的疲勞強度,故一般用於固定軸端的零件,有雙圓螺母和圓螺母與止動墊片兩種型式。當軸上兩零件間距離較大不宜使用套筒定位時,也常採用圓螺母定位。
4、軸端擋圈:適用於固定軸端零件,可以承受較大的軸向力。
5、軸承端蓋:用螺釘或榫槽與箱體聯接而使滾動軸承的外圈得到軸向定位。
在一般情況下,整個軸的軸向定位也常利用軸承端蓋來實現。利用彈性擋圈、緊定螺釘及鎖緊擋圈等進行軸向定位,只適用於零件上的軸向力不大之處。緊定螺釘和鎖緊擋圈常用於光軸上零件的定位。
(2)減速機軸承孔如何保證圓度擴展閱讀
軸系結構設計常見錯誤整理
1、軸端無倒角,軸上零件不便裝拆。
2、軸肩過高,軸承不便拆卸
3、齒輪無周向固定
4、軸頭段長度等於齒輪輪轂的長度,套筒頂不住齒輪,齒輪固定不可靠。
5、聯軸器沒有軸向定位。
6、聯軸器沒有周向固定。
7、聯軸器沒有軸向固定。
8、無調整墊片,軸承間隙無法調整。
9、無密封裝置,無法防漏油及防塵。
10、精加工面過長而不便裝拆軸承。
11、轉動的軸與靜止軸承端蓋相接觸,軸不能正常運轉。
12、轉動的套筒與靜止的軸承外圈相接觸,軸系不能正常運轉。
13、鑄造箱體的機加工面與非機加工面未區分開。
14、無砂輪越程槽,軸頸處不便磨削加工。
參考資料來源:網路—減速機
參考資料來源:網路—軸系
參考資料來源:網路—軸承
⑶ 軸承座孔怎麼加工好。
一、加工方法:
1.小軸承座在車床用花盤、彎板加工。
2.大軸承座在鏜床上加工。
二、軸承座孔的簡單介紹:
為軸承提供運轉基礎、與軸承精密配合的安裝位為——軸承座孔。軸承的運轉精度高低、壽命的長短的最大影響因素是來自於——軸承座孔的配合精度。軸承座孔要達到軸承的精密配合尺寸要求,並要批量尺寸都具備統一性,在機械加工中很難達到,採用新型加工技術加工是軸承使用者的迫切需求。
三、圖示:
⑷ 以減速器的輸出軸為例,說明軸上零件的定位與固定方法
以減速機的輸出軸為例,其軸承:主要靠與軸承座孔和與軸的配合來完成周向固定,靠套筒,擋油板,軸肩和軸承蓋完成軸向固定;齒輪:主要靠鍵與軸連接完成軸向固定,靠軸肩,套筒,擋油板完成軸向固定。
⑸ 如何測量軸承和軸孔尺寸
(1)軸承孔的測量 軸承孔的測量可以使用內徑量表在外徑千分尺上核對基準尺寸後測量,同時還需測量承孔的圓度和圓柱度。燒壞軸承常使承孔在開口處直徑縮小而圓度超差,對軸承的正常工作極為不利。如果連桿螺栓的定位面的配合松曠,連桿軸承蓋會移位使承孔圓度超差。軸承承孔的圓度誤差應控制在尺寸公差之內,而圓柱度則應嚴格控制 (2)軸承主要尺寸的測量①軸承厚度:將外徑千分尺固定測頭由平面改製成球面,可用來測量軸承厚度。軸承厚度一般應控制在0.005~0.010毫米范圍內,否則會使軸承內徑超差。軸承在近開口處有微量減薄,測量時應予注意。 ②軸承與承孔的配合緊度 :配合緊度是由軸承的自由彈開量和余面高度來保證的。測量余面高度的方法下:按規定裝合軸承,交軸承蓋螺栓緊固到規定扭矩後松開其中一個螺栓,用塞尺測量軸承蓋介面處的間隙,其值應在0.05~0.15毫米范圍之內。③軸承內徑:測量前需將軸承按規定裝合並按規定扭矩擰緊軸承蓋螺栓,用內徑量表,在外徑千分尺上校對基準尺寸後測量,測量時要避開減薄區。軸承內徑和對應軸頸外徑尺寸之差值是配合間隙。 ④主軸承內孔的同軸度 :主軸承內孔的同軸度誤差主要是其承孔同軸度誤差造成的,而承孔同軸度誤差產生的原因則是缸體的變形。當主軸頸徑向圓跳動在規定公差內時,檢查主軸頸和軸承的吃合印痕,如果各道主軸承吃合印痕位置明顯不一致,說明同軸度誤差大,可採用刮削、鏜削軸承或更換缸體等辦法解決,否則難以保證發動機正常工作。 軸承的材料一般測量以下幾點:外徑尺寸,內徑尺寸,高度,這是基本三大尺寸得檢測。一般用卡尺和千分尺,或夾量塊對百分表,能准確點。用儀器可以軸承的內徑跳動和外徑跳動。用儀器主要是檢測軸承的精度等級夠不夠。
⑹ 減速器中哪些部位需要密封如何保證密封
齒輪傳動結構設計
1.齒輪布置應考慮有利於軸和軸承受力
2.人字齒輪的兩方向齒結合點(A)應先進入嚙合
3.齒輪直徑較小時應作成齒輪軸
4.齒輪根圓直徑可以小於軸直徑
5.小齒輪寬度要大於大齒輪寬度
6.齒輪塊要考慮加工齒輪時刀具切出的距離
7.齒輪與軸的聯接要減少裝配時的加工
8.注意保證沿齒寬齒輪剛度一致
9.利用齒輪的不均勻變形補償軸的變形
10.剖分式大齒輪應在無輪輻處分開
11.輪齒表面硬化層不應間斷
12.錐齒輪軸必須雙向固定
13.大小錐齒輪軸都應能作軸向調整
14.組合錐齒輪結構中螺栓要不受拉力
蝸桿傳動結構設計
1.蝸桿自鎖不可靠
2.冷卻用風扇宜裝在蝸桿上
3.蝸桿減速器外面散熱片的方向與冷卻方法有關
4.蝸桿受發熱影響比蝸輪嚴重
5.蝸桿位置與轉速有關
6.蝸桿剛度不僅決定於工作時受力
7.蝸桿傳動受力復雜影響精密機械精度
8.蝸桿傳動的作用力影響轉動靈活性
減速器和變速器結構設計
1.傳動裝置應力求組成一個組件
2.一級傳動的傳動比不可太大或太小
3.傳遞大功率宜採用分流傳動
4.盡量避免採用立式減速器
5.注意減速箱內外壓力平衡
6.箱面不宜用墊片
7.立式箱體應防止剖分面漏油
8.箱中應有足夠的油並及時更換
9.行星齒輪減速箱應有均載裝置
10.變速箱移動齒輪要有空檔位置
11.變速箱齒輪要圓齒
12.摩擦輪和摩擦無級變速器應避免幾何滑動
13.主動摩擦輪用軟材料
14.圓錐摩擦輪傳動,壓緊彈簧應裝在小圓錐摩擦輪上
15.設計應設法增加傳力途徑,並把壓緊力化作內力
16.無級變速器的機械特性應與工作機和原動機相匹配
17.帶無級變速器的帶輪工作錐面的母線不是直線
傳動系統結構設計
1.避免鉸鏈四桿機構的運動不確定現象
2.注意機構的死點
3.避免導軌受側推力
4.限位開關應設置在連桿機構中行程較大的構件上
5.注意傳動角不得過小
6.擺動從動件圓柱凸輪的擺桿不宜太短
7.正確安排偏置從動件盤形凸輪移動從動件的導軌位置
8.平面連桿機構的平衡
9.設計間歇運動機構應考慮運動系數
10.利用瞬停節分析鎖緊裝置的可靠性
11.選擇齒輪傳動類型,首先考慮用圓柱齒輪
12.機械要求反轉時,一般可考慮電動機反轉
13.必須考慮原動機的起動性能
14.起重機的起重機構中不得採用摩擦傳動
15.對於要求慢速移動的機構,螺旋優於齒條
16.採用大傳動比的標准減速箱代替散裝的傳動裝置
17.用減速電動機代替原動機和傳動裝置
18.採用軸裝式減速器
聯軸器離合器結構設計
1.合理選擇聯軸器類型
2.聯軸器的平衡
3.有滑動摩擦的聯軸器要注意保持良好的潤滑條件
4.高速旋轉的聯軸器不能有突出在外的突起物
5.使用有凸肩和凹槽對中的聯軸器,要考慮軸的拆裝
6.軸的兩端傳動件要求同步轉動時,不宜使用有彈性元件的撓性聯軸器
7.中間軸無軸承支承時,兩端不要採用十字滑塊聯軸器
8.單萬向聯軸器不能實現兩軸間的同步轉動
9.不要利用齒輪聯軸器的外套做制動輪
10.注意齒輪聯軸器的潤滑
11.關於尼龍繩聯軸器的注意事項
12.關於剪切銷式安全離合器的注意事項
13.分離迅速的場合不要採用油潤滑的摩擦盤式離合器
14.在高溫工作的情況下不宜採用多盤式摩擦離合器
15.離合器操縱環應安裝在與從動軸相聯的半離合器上
軸結構設計
1.盡量減小軸的截面突變處的應力集中
2.要減小軸在過盈配合處的應力集中
3.要注意軸上鍵槽引起的應力集中的影響
4.要減小過盈配合零件裝拆的困難
5.裝配起點不要成尖角,兩配合表面起點不要同時裝配
6.軸上零件的定位要採用軸肩或軸環
7.盲孔中裝入過盈配合軸應考慮排出空氣
8.合理布置軸上零件和改進結構以減小軸的受力
9.採用載荷分流以提高軸的強度和剛度
10.採用中央等距離驅動防止兩端扭轉變形差
11.改善軸的表面品質,提高軸的疲勞強度
12.軸上多鍵槽位置的設置要合理
13.空心軸的鍵槽下部壁厚不要太薄
14.軸上鍵槽要加工方便
15.在軸上鑽細長孔很困難
16.在旋轉軸上切制螺紋要有利於緊固螺母的防松
17.確保止動墊圈在軸上的正確安裝
18.保證軸與安裝零件的壓緊或預留間隙的尺寸差
19.要避免彈性卡圈承受軸向力
20.空心軸節省材料
21.不要使軸的工作頻率與其固有頻率相一致或接近
22.高速軸的撓性聯軸器要盡量靠近軸承
23.避免軸的支承反力為零
24.不宜在大軸的軸端直接聯接小軸
25.軸頸表面要求有足夠硬度
滑動軸承結構設計
1.要使潤滑油能順利地進入摩擦表面
2.潤滑油應從非承載區引入軸承
3.不要使全環油槽開在軸承中部
4.剖分軸瓦的接縫處宜開油溝
5.要使油環給油充分可靠
6.加油孔不要被堵塞
7.不要形成潤滑油的不流動區
8.防止出現切斷油膜的銳邊或稜角
9.發生階梯磨損
10.不要使軸瓦的止推端面為線接觸
11.止推軸承與軸頸不宜全部接觸
12.重載大型機械的高速旋轉軸的起動需要高壓頂軸系統的軸承
13.承受重載荷或溫升較高的軸承不要把軸承座和軸瓦接觸表面中間挖空
14.不要發生軸瓦或襯套等不能裝拆的情況
15.要減少中間輪和懸臂軸的支承軸承產生的邊緣壓力
16.在軸承座孔不同心或在受載後軸線發生撓曲變形條件下要選擇自動調心滑動軸承
17.軸瓦和軸承座不允許有相對移動
18.要使雙金屬軸承中兩種金屬貼附牢靠
19.確保合理的運轉間隙
20.保證軸工作時熱膨脹所需要的間隙
21.考慮磨損後的間隙調整
22.在高速輕載條件下使用的圓柱形軸瓦要防止失穩
23.高速輕載條件下的軸承要選用抗振性好的軸承
24.含油軸承不宜用於高速或連續旋轉的用途
25.滑動軸承不宜和密封圈組合
26.在軸承蓋或上半箱體提升過程中不要使軸瓦脫落
滾動軸承軸系結構設計
1.考慮軸承拆卸的設計
2.軸承內圈圓角半徑和軸肩圓角半徑
3.一對角接觸軸承的組合
4.角接觸軸承同向串聯組合
5.角接觸軸承不應與非調整間隙軸承成對組合
6.軸承組合要有利於載荷均勻分擔
7.保證由於溫度變化時軸的膨脹或收縮的需要
8.考慮內外圈的溫度變化和熱膨脹時圓錐滾子軸承的組合
9.要求軸向定位精度高的軸宜使用可調軸向間隙的軸承
10.游輪、中間輪不宜用一個滾動軸承支承
11.在兩機座孔不同心或在受載後軸線發生撓曲變形條件下使用的軸上要選擇具有調心性能的軸承
12.設計等徑軸的多支點軸承時要考慮中間軸承安裝的困難
13.不適用於高速旋轉的滾動軸承
14.要求支承剛性高的軸宜使用剛性高的軸承
15.滾動軸承不宜和滑動軸承聯合使用
16.用脂潤滑的滾子軸承和防塵、密封軸承容易發熱
17.避免填入過量的潤滑脂,不要形成潤滑脂流動盡頭
18.用脂潤滑的角接觸軸承安裝在立軸上時,要防止發生脂從下部脫離軸承
19.用脂潤滑時要避免油、脂混合
20.油潤滑時應注意的問題
21.軸承箱體形狀和剛性的影響
22.軸承座受力方向宜指向支承底面
23.機座上安裝軸承的各孔應力求簡化膛孔
24.對於內外圈不可分離的軸承在機座孔中的裝拆應方便
25.不宜採用軸向緊固的方法來防止軸承配合表面的蠕動
密封裝置結構設計
1.靜密封墊片之間不能裝導線
2.靜聯接表面應該有一定的粗糙度
3.高壓容器密封的接觸面寬度應該小
4.用刃口密封時應加墊片
5.O形密封圈用於高壓密封時,要有保護圈
6.避免O形密封圈邊緣凸出被剪斷
7.當與密封接觸的軸中心位置經常變化時,不宜採用接觸式密封
8.正確使用皮圈密封
9.不宜靠螺紋旋轉壓蓋來壓緊密封的填料
10.填料較多時,填料孔深處壓緊不夠
11.要防止填料發
12.密封件的不同部位應分別供油
13.用油潤滑密封裝置時,要保持油麵有一定高度
14.當密封圈有缺口時,多層密封圈的缺口應錯開
油壓系統和管道結構設計
1.管道排列要便於拆裝和檢查
2.大直徑管的Y形接頭強度很差
3.要避免油壓管道中混入空氣
4.管道低處應注意排水
5.排出管道應避免因合流而互相干擾
6.管道要通暢,合流時要避免擾動
7.避免因管道伸縮引起的應力
8.管道系統中要求經常操作、觀察的部位,應容易操作
9.管道的接頭不宜用左右螺紋
10.注意管道支承設計
11.拆裝管道時不宜移動設備
12.注意油壓、氣動設備的滯後現象
13.避免軟管受附加應力
14.軟管內介質壓力為脈沖變化時,軟管應固定
15.要考慮起動和停車時的供油
16.油泵的內裝溢流閥不應常用
17.冷卻水污染會使冷卻能力降低
18.防止冷卻水管表面結露
在自學的同學可以加下老師的微信:HTJYCreo;免費獲取軟體,鈑金,曲面視頻各一套。
(文章來源於網路,僅供學習分享,如侵權,請聯系刪除)
⑺ 減速機間隙如何調整
以下是對選用幾種固定方法的減速機在調整軸承空隙的辦法總結。
1 軸系兩頭固定方法
這種結構常選用端蓋固定軸承外圈,結構簡略,運用便利。在一般的齒輪減速機及軸承支承點跨距<300㎜的蝸桿減速機中較為常見。
1)外裝式端蓋的減速機軸承空隙調整
此種方法結構簡略,運用便利,在減速機中被廣泛選用。
外裝式端蓋固定的齒輪軸系結構:出廠時大多會在兩頭留有適量的軸向空隙,以確保軸承的靈敏運轉及軸系零件的熱伸長。此空隙一般在0.25㎜~0.4㎜范圍內,否則會使翻滾體受載不均勻並引起較為嚴重的軸向竄動。因而要靠調整軸承空隙來確保必定的軸向空隙。在調整此種固定方法的軸系時,首要打開減速機的觀察孔,看準齒輪的嚙合狀況後,再確定軸系是從哪個方向移動空隙。
假如確定高速軸向輸入側調整空隙,就要把高速軸的悶蓋拆下,用深度游標卡尺測出軸承距端蓋平面的深度記下;然後用撬杠類東西把軸系向輸入側移動,再測出悶蓋端軸承距端蓋平面的深度,兩個深度尺度的差值便是軸承移動的量。把軸系移動好後,就在軸承孔上加上與移動量相等的墊片,最終裝上悶蓋。
待一切部件裝配完後,悄悄盤動減速機,查看各軸滾動是否靈敏。若仍有卡阻,則可對加的墊片厚度適量減薄。直到把減速機各軸的滾動調整到靈敏。根據實際狀況,還能夠把裝置於箱體上的軸承端蓋進行切削加工,切削深度為軸承移動量或略大於移動量的0.20㎜。如切削深度大於端蓋平面厚度的1/3,則因為端蓋太薄,強度減弱,需求從頭加工端蓋。
對可調整空隙的向心推力軸承,可通過調整軸承由外圈的相對方位得到需求的軸承游隙。這種游隙一般比較小,以確保軸承剛性和削減雜訊、振盪。對不行調空隙的軸承(如向心球軸承),可在裝配時通過調整,使固定端蓋與軸承外圈端面間留有適量的空隙,以容許軸系的熱伸長。
在圓錐齒輪減速機中,關於懸臂的小錐齒輪的軸系,要求具有良好的剛性,並且能調整軸系的軸向方位,以達到兩齒輪錐頂重合。因而常將整個軸系裝於套環內而形成一個獨立組件。套杯的肩起固定軸承的效果,凸肩不行過高,以利於軸承的拆開套杯凸緣及軸承端蓋處都有墊片用來調整軸承空隙及調理軸系的軸向方位。
圓錐齒輪軸系選用向心推力軸承時,軸承有正裝置和反裝置兩種安置方案。正裝置的結構支點跨距較小,剛度較差,但用墊片完成調整比較便利。反裝置的結構裝置軸承不方便,用圓螺母調整比較麻煩,但支點跨距較大,剛性較好。當要求兩軸承安置緊湊而有需求進步軸系的剛性時,常選用此種結構。
2)嵌入式端蓋的減速機軸承空隙調整
主要是通過減速機自身的調整端蓋來完成軸承空隙的調整,不用拆開減速機的零部件。某礦卷揚機選用的蝸輪蝸桿減速機蝸桿軸承空隙的調整形式。
在生產空隙時停機對減速機軸承空隙進行調整,假如能卸出輸出端的負載,調整將更為准確,利用調整端蓋上的調整螺栓進行調整,調好後,悄悄盤動減速機,查看各軸滾動是否靈敏。若仍有卡阻,則反復調整,直到把減速機各軸的滾動調整到靈敏、無顯著軸向竄動為佳。
因為運用中各零件的彼此效果,使得固定軸承外圈(或內圈)的擋圈和端蓋上壓軸承外圈的台肩會發生必定量的磨損,這些不起眼的磨損,累加起來也會使軸系有很大空隙,也能導致軸系發生竄動。
值得注意的是與調整螺栓配套的嵌入壓蓋,與軸承外圈觸摸的部分,有的減速機上該壓蓋觸摸面過少,經常導致磨損敏捷,大大縮短了軸承空隙調整周期,解決的辦法是:增加內壓蓋與軸承外圈的觸摸面積(從頭製造加工,加寬內壓蓋的軸承外圈壓邊),也能有用的延伸軸承空隙的調整周期,避免軸承的損壞。
當然,內壓蓋磨損還有其它的原因,比如軸承支承孔磨損嚴重,破壞了原有的合作公差,致使軸承走外圓(外圈在摩擦力效果下隨軸承滾動)等。