1. 如何確定軸承的內外徑尺寸
1)軸承內徑用基本代號右起第一、二位數字表示。
對常用內徑d=20~480mm的軸承內徑一般為5的倍數,這兩位數字表示軸承內徑尺寸被5除得的商數,如04表示d=20mm;12表示d=60mm等等。
對於內徑為10mm、12mm、15mm和17mm的軸承,內徑代號依次為00、01、02和03。對於內徑小於10mm和大於500mm軸承,內徑表示方法另有規定,可參看GB/T272—93。
2)軸承的直徑系列(即結構相同、內徑相同的軸承在外徑和寬度方面的變化系列)用基本代號右起第三位數字表示。例如,對於向心軸承和向心推力軸承,0、1表示特輕系列;2表示輕系列;3表示中系列;4表示重系列;7表示超特輕;8、9表示超特輕。
推力軸承尺寸分直徑系列與向心軸承略有不同。其中0表示超輕系列,1表示特輕系列,2表示輕系列,3表示中系列,4表示重系列,5表示特重系列。
3)軸承的寬度系列(即結構、內徑和直徑系列都相同的軸承寬度方面的變化系列)用基本代號右起第四位數字表示。
當寬度系圖13-4直徑系列的對比列為0系列(正常系列)時,對多數軸承在代號中可不標出寬度系列代號O,但對於調心滾子軸承和圓錐滾子軸承,寬度系列代號0應標出。
直徑系列代號和寬度系列代號統稱為尺寸系列代號。
(1)傳動裝置簡圖中如何判斷軸承數量擴展閱讀:
1、軸承類型編號:
0表示雙列角接觸球軸承
1表示調心球軸承
2表示調心滾子軸承和推力調心滾子軸承
3表示圓錐滾子軸承
4表示雙列深溝球軸承
5表示推力球軸承
6表示深溝球軸承
7表示角接觸軸承
8表示推力圓柱滾子軸承
N表示圓柱滾子軸承和雙列圓柱滾子軸承NN
U表示外球面軸承
QJ表示四點接觸球軸承
2、後置代號:
軸承的後置代號是用字母和數字等表示軸承的結構、公差及材料的特殊要求等等。後置代號的內容很多,下面介紹幾個常用的代號。
1)內部結構代號是表示同一類型軸承的不同內部結構,用字母緊跟著基本代號表示。如:接觸角為15°、25°和40°的角接觸球軸承分別用C、AC和B表示{HotTag}內部結構的不同。
2)軸承的公差等級分為2級、4級、5級、6級、6X級和0級,共6個級別,依次由高級到低級,其代號分別為/PZ、/P4、/PS、/P6、/P6X和/P0。公差等級中,6X級僅適用於圓錐滾子軸承;0級為普通級,在軸承代號中不標出。。
3)常用的軸承徑向游隙系列分為1組、2組、0組、3組、4組和5組,共6個組別,徑向游隙依次由小到大。o組游隙是常用的游隙組別,在軸承代號中不標出,其餘的游隙組別在軸承代號中分別用/C1、/C2、/C3、/C4、/C5表示。
3、前置代號
軸承的前置代號用於表示軸承的分部件,用字母表示。如用L表示可分離軸承的可分離套圈;K表示軸承的滾動體與保持架組件等等。
實際應用的滾動軸承類型是很多的,相應的軸承代號也是比較復雜的。以上介紹的代號是軸承代號中最基本、最常用的部分,熟悉了這部分代號,就可以識別和查選常用的軸承。
4、軸承的安裝和維護
從使用角度,保證軸承能可靠地工作要注意以下幾點:
(1)改善潤滑質量,控制機油的壓力、溫度及流量,加強機油濾清。
(2)採用符合規定的燃油及潤滑油。
(3)控制柴油發電機組的溫度狀態,在過冷過熱的情況下工作都是不利的。冷天,柴油機起動前應先預熱,並用手轉動曲軸使機油進入磨擦表面。
(4)軸承及軸頸表面質量和幾何形狀應嚴格得到保證。
(5)軸承間隙要適當,發電機組過大產生沖擊,過小則潤滑不良,可能燒瓦。
一般說來從使用角度講要注意以下幾點:
1.軸承間隙要適當,過大產生沖擊,過小則潤滑不良,可能燒瓦;
2.軸承及軸頸表面質量和幾何形狀應嚴格得到保證;
3.改善潤滑質量,控制機油的壓力、溫度及流量,加強機油濾清;
4.採用符合規定的燃油及潤滑油。
為使軸承充分發揮並長期保持其應有的性能,必須切實做好定期維護保養(定期檢查)。通過適當的定期檢查,做到早期發現故障,防止事故於未然,對提高生產率和經濟性十分重要。
安裝
軸承的安裝是否正確,影響著精度、壽命、性能。因此,設計及組裝部門對於軸承的安裝要充分研究。希望要按照作業標准進行安裝。作業標準的項目通常如下:
(1)清洗軸承及軸承關連部件
(2)檢查關連部件的尺寸及精加工情況
(3)安裝
(4)安裝好軸承後的檢查
(5)供給潤滑劑
希望在即將安裝前,方才打開軸承包裝。一般潤滑脂潤滑,不清洗,直接填充潤滑脂。潤滑油潤滑,普通也不必清洗,但是,儀器用或高速用軸承等,要用潔凈的油洗凈,除去塗在軸承上的防銹劑。除去了防銹劑的軸承,易生銹,所以不能放置不顧。再者,已封入潤滑脂的軸承,不清洗直接使用。
軸承的安裝方法,因軸承結構、配合、條件而異,一般,由於多為軸旋轉,所以內圈需要過盈配合。圓柱孔軸承,多用壓力機壓入,或多用熱裝方法。錐孔的場合,直接安裝在錐度軸上,或用套筒安裝。
安裝到外殼時,一般游隙配合多,外圈有過盈量,通常用壓力機壓入,或也有冷卻後安裝的冷縮配合方法。用乾冰作冷卻劑,冷縮配合安裝的場合,空氣中的水分會凝結在軸承的表面。所以,需要適當的防銹措施。
維護保養
拆卸
軸承的拆卸是定期維修,軸承更換時進行。拆卸後,如果繼續使用,或還需要檢查軸承之狀態時,其拆卸也要與安裝時同樣仔細進行。注意不損傷軸承各零件,特別是過盈配合軸承的拆卸,操作難度大。
根據需要設計製作拆卸工具也十分重要。在拆卸時,根據圖紙研究拆卸方法、順序、調查軸承的配合條件,以求得拆卸作業的萬無一失。
外圈的拆卸過盈配合的外圈,事先在外殼的圓周上設置幾處外圈擠壓螺桿用螺絲,一面均等地擰緊螺桿,一邊拆卸。這些螺桿孔平常蓋上盲塞,圓錐滾子軸承等的分離型軸承,在外殼擋住肩上設置出幾處切口,使用墊塊,用壓力機拆卸,或輕輕敲打著拆卸。
內圈的拆卸,可以用壓力機拔出最簡單。此時,要注意讓內圈承受其拔力。再者,所示的拔拉卡具也多為使用,無論那種卡具,其都必須牢牢地卡在內圈側面。為此,需要考慮軸擋肩的尺寸,或研究在擋肩處加工上溝,以便使用拉拔卡具。
大型軸承的內圈拆卸採用油壓法。通過設置在軸承的油孔加以油壓,以使易於拉拔。寬度大的軸承則油壓法與拉拔卡具並用,進行拆卸作業。
圓柱滾子軸承的內圈拆卸可以利用感應加熱法。在短時間內加熱局部,使內圈膨脹後拉拔的方法。需要安裝大批這類軸承內圈的場合,也使用感應加熱法。
清洗
將軸承拆下檢查時,先用攝影等方法做好外觀記錄。另外,要確認剩餘潤滑劑的量並對潤滑劑采樣,然後再清洗軸承。
a、軸承的清洗分粗洗和精洗進行,並可在使用的容器底部放上金屬網架。
b、粗洗時,在油中用刷子等清除潤滑脂或粘著物。此時若在油中轉動軸承,注意會因異物等損傷滾動面。
c、精洗時,在油中慢慢轉動軸承,須仔細地進行。
通常使用的清洗劑為中性不含水柴油或煤油,根據需要有時也使用溫性鹼液等。不論用哪種清洗劑,都要經常過濾保持清潔。
清洗後,立即在軸承上塗布防銹油或防銹脂。
檢查與判斷
為了判斷拆下的軸承能否重新使用,要著重檢查其尺寸精度、旋轉精度、內部游隙以及配合面、滾道面、保持架和密封圈等。大型軸承因不能用手旋轉,注意檢查滾動體、滾道面、保持架、擋邊面等外觀,軸承的重要性愈高愈須慎重檢查。
滾動軸承發熱的原因及其排除方法
(1)軸承精度低:選用規定精度等級的軸承。
(2)主軸彎曲或箱體孔不同心:修復主軸或箱體。
(3)潤滑不良:選用規定牌號的潤滑材料並適當清潔。
(4)裝配質量低:提高裝配質量。
(5)軸承內外殼跑圈:更換軸承及相關磨損部件。
(6)軸向力太大:清洗、調正密封口環間隙要求0.2~0.3mm之間,更正葉輪平衡孔直徑及校驗靜平衡值。
(7)軸承損壞:更換軸承。
保管
軸承在出廠時均塗有適量的防銹油並用防銹紙包裝,只要該包裝不被破壞,軸承的質量將得到保證。但長期存放時,擬在濕度低於65%、溫度為20℃左右的條件下,存放在高於地面30cm的架子上為宜。另外,保管場所應避開直射陽光或與寒冷的牆壁觸。
網路-滾動軸承型號代號
網路-軸承
2. 一級直齒圓柱齒輪減速器有幾個軸承,效率是三次方還是兩次房
一級圓柱齒輪減速器需要2對滾動軸承。效率95%~~~98%之間,根據裝配和加工精度不同應該有所差異,如果在裝配要求的范圍內的,可以達到這個值。
工作機效率=聯軸器傳動效率x一軸傳動效率x齒輪傳動效率x二軸傳動效率
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;滾筒直徑D=220mm。
(2)傳動裝置簡圖中如何判斷軸承數量擴展閱讀:
減速機:
1、高速軸轉不大於1500轉/分。
2、齒輪傳動圓周速度不大於20米/秒。
3、工作環境溫度為-40-45℃,如果低於0℃,啟動前潤滑油應預熱至0℃以上。
4、齒輪減速機可用於正反兩個方向運轉。
3. 傳動裝置效率計算中那個幾級什麼的,怎麼去確定呀
你說對了,主要看有幾級傳動,每個都有損耗就看效率高低了,所以最後是各級效率乘積。
比如說滾動軸承,輸入端有個一級傳動,即動力傳給軸承。 軸傳動從這一頭到那一頭第二級,軸輸出第三級。。。
4. 機械設計課程設計---設計盤磨機傳動裝置!!!
我也在做這個題也 老兄
我只能提供樣本給你哈 具體的還是得靠你自己啦
目 錄
一 課程設計書 2
二 設計要求 2
三 設計步驟 2
1. 傳動裝置總體設計方案 3
2. 電動機的選擇 4
3. 確定傳動裝置的總傳動比和分配傳動比 5
4. 計算傳動裝置的運動和動力參數 5
6. 齒輪的設計 8
7. 滾動軸承和傳動軸的設計 19
8. 鍵聯接設計 26
9. 箱體結構的設計 27
10.潤滑密封設計 30
11.聯軸器設計 30
四 設計小結 31
五 參考資料 32
一. 課程設計書
設計課題:
設計一用於帶式運輸機上的兩級齒輪減速器.運輸機連續單向運轉,載荷有輕微沖擊,工作環境多塵,通風良好,空載起動,捲筒效率為0.96(包括其支承軸承效率的損失),減速器小批量生產,使用期限10年(300天/年),三班制工作,滾筒轉速容許速度誤差為5%,車間有三相交流,電壓380/220V。
參數:
皮帶有效拉力F(KN) 3.2
皮帶運行速度V(m/s) 1.4
滾筒直徑D(mm) 400
二. 設計要求
1.減速器裝配圖1張(0號)。
2.零件工作圖2-3張(A2)。
3.設計計算說明書1份。
三. 設計步驟
1. 傳動裝置總體設計方案
2. 電動機的選擇
3. 確定傳動裝置的總傳動比和分配傳動比
4. 計算傳動裝置的運動和動力參數
5. 齒輪的設計
6. 滾動軸承和傳動軸的設計
7. 鍵聯接設計
8. 箱體結構設計
9. 潤滑密封設計
10. 聯軸器設計
1.傳動裝置總體設計方案:
1. 組成:傳動裝置由電機、減速器、工作機組成。
2. 特點:齒輪相對於軸承不對稱分布,故沿軸向載荷分布不均勻,
要求軸有較大的剛度。
3. 確定傳動方案:考慮到電機轉速高,傳動功率大,將V帶設置在高速級。
其傳動方案如下:
圖一:(傳動裝置總體設計圖)
初步確定傳動系統總體方案如:傳動裝置總體設計圖所示。
選擇V帶傳動和二級圓柱斜齒輪減速器。
傳動裝置的總效率
為V帶的傳動效率, 為軸承的效率,
為對齒輪傳動的效率,(齒輪為7級精度,油脂潤滑)
為聯軸器的效率, 為滾筒的效率
因是薄壁防護罩,採用開式效率計算。
取 =0.96 =0.98 =0.95 =0.99 =0.96
=0.96× × ×0.99×0.96=0.760;
2.電動機的選擇
電動機所需工作功率為: P =P/η =3200×1.4/1000×0.760=3.40kW
滾筒軸工作轉速為n= = =66.88r/min,
經查表按推薦的傳動比合理范圍,V帶傳動的傳動比i =2~4,二級圓柱斜齒輪減速器傳動比i =8~40,
則總傳動比合理范圍為i =16~160,電動機轉速的可選范圍為n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。
綜合考慮電動機和傳動裝置的尺寸、重量、價格和帶傳動、減速器的傳動比,
選定型號為Y112M—4的三相非同步電動機,額定功率為4.0
額定電流8.8A,滿載轉速 1440 r/min,同步轉速1500r/min。
方案 電動機型號 額定功 率
P
kw 電動機轉速
電動機重量
N 參考價格
元 傳動裝置的傳動比
同步轉速 滿載轉速 總傳動 比 V帶傳 動 減速器
1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90
3.確定傳動裝置的總傳動比和分配傳動比
(1)總傳動比
由選定的電動機滿載轉速n 和工作機主動軸轉速n,可得傳動裝置總傳動比為 =n /n=1440/66.88=17.05
(2)分配傳動裝置傳動比
= ×
式中 分別為帶傳動和減速器的傳動比。
為使V帶傳動外廓尺寸不致過大,初步取 =2.3(實際的傳動比要在設計V帶傳動時,由所選大、小帶輪的標準直徑之比計算),則減速器傳動比為
= =17.05/2.3=7.41
根據展開式布置,考慮潤滑條件,為使兩級大齒輪直徑相近,查圖得高速級傳動比為 =3.24,則 = =2.29
4.計算傳動裝置的運動和動力參數
(1) 各軸轉速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.29=84.38 r/min
= =84.38 r/min
(2) 各軸輸入功率
= × =3.40×0.96=3.26kW
= ×η2× =3.26×0.98×0.95=3.04kW
= ×η2× =3.04×0.98×0.95=2.83kW
= ×η2×η4=2.83×0.98×0.99=2.75kW
則各軸的輸出功率:
= ×0.98=3.26×0.98=3.19 kW
= ×0.98=3.04×0.98=2.98 kW
= ×0.98=2.83×0.98=2.77kW
= ×0.98=2.75×0.98=2.70 kW
(3) 各軸輸入轉矩
= × × N•m
電動機軸的輸出轉矩 =9550 =9550×3.40/1440=22.55 N•m
所以: = × × =22.55×2.3×0.96=49.79 N•m
= × × × =49.79×3.24×0.96×0.98=151.77 N•m
= × × × =151.77×2.29×0.98×0.95=326.98N•m
= × × =326.98×0.95×0.99=307.52 N•m
輸出轉矩: = ×0.98=49.79×0.98=48.79 N•m
= ×0.98=151.77×0.98=148.73 N•m
= ×0.98=326.98×0.98=320.44N•m
= ×0.98=307.52×0.98=301.37 N•m
運動和動力參數結果如下表
軸名 功率P KW 轉矩T Nm 轉速r/min
輸入 輸出 輸入 輸出
電動機軸 3.40 22.55 1440
1軸 3.26 3.19 49.79 48.79 626.09
2軸 3.04 2.98 151.77 148.73 193.24
3軸 2.83 2.77 326.98 320.44 84.38
4軸 2.75 2.70 307.52 301.37 84.38
5.齒輪的設計
(一)高速級齒輪傳動的設計計算
1. 齒輪材料,熱處理及精度
考慮此減速器的功率及現場安裝的限制,故大小齒輪都選用硬齒面漸開線斜齒輪
(1)齒輪材料及熱處理
① 材料:高速級小齒輪選用45#鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =24
高速級大齒輪選用45#鋼正火,齒面硬度為大齒輪 240HBS Z = ×Z =3.24×24=77.76 取Z =78.
② 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。
2.初步設計齒輪傳動的主要尺寸
按齒面接觸強度設計
確定各參數的值:
①試選 =1.6
查課本 圖10-30 選取區域系數 Z =2.433
由課本 圖10-26
則
②由課本 公式10-13計算應力值環數
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25為齒數比,即3.25= )
③查課本 10-19圖得:K =0.93 K =0.96
④齒輪的疲勞強度極限
取失效概率為1%,安全系數S=1,應用 公式10-12得:
[ ] = =0.93×550=511.5
[ ] = =0.96×450=432
許用接觸應力
⑤查課本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.設計計算
①小齒輪的分度圓直徑d
=
②計算圓周速度
③計算齒寬b和模數
計算齒寬b
b= =49.53mm
計算摸數m
初選螺旋角 =14
=
④計算齒寬與高之比
齒高h=2.25 =2.25×2.00=4.50
= =11.01
⑤計算縱向重合度
=0.318 =1.903
⑥計算載荷系數K
使用系數 =1
根據 ,7級精度, 查課本由 表10-8得
動載系數K =1.07,
查課本由 表10-4得K 的計算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查課本由 表10-13得: K =1.35
查課本由 表10-3 得: K = =1.2
故載荷系數:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按實際載荷系數校正所算得的分度圓直徑
d =d =49.53× =51.73
⑧計算模數
=
4. 齒根彎曲疲勞強度設計
由彎曲強度的設計公式
≥
⑴ 確定公式內各計算數值
① 小齒輪傳遞的轉矩 =48.6kN•m
確定齒數z
因為是硬齒面,故取z =24,z =i z =3.24×24=77.76
傳動比誤差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允許
② 計算當量齒數
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初選齒寬系數
按對稱布置,由表查得 =1
④ 初選螺旋角
初定螺旋角 =14
⑤ 載荷系數K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齒形系數Y 和應力校正系數Y
查課本由 表10-5得:
齒形系數Y =2.592 Y =2.211
應力校正系數Y =1.596 Y =1.774
⑦ 重合度系數Y
端面重合度近似為 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因為 = /cos ,則重合度系數為Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系數Y
軸向重合度 = =1.825,
Y =1- =0.78
⑨ 計算大小齒輪的
安全系數由表查得S =1.25
工作壽命兩班制,8年,每年工作300天
小齒輪應力循環次數N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齒輪應力循環次數N2=N1/u=6.255×10 /3.24=1.9305×10
查課本由 表10-20c得到彎曲疲勞強度極限
小齒輪 大齒輪
查課本由 表10-18得彎曲疲勞壽命系數:
K =0.86 K =0.93
取彎曲疲勞安全系數 S=1.4
[ ] =
[ ] =
大齒輪的數值大.選用.
⑵ 設計計算
① 計算模數
對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =2mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =51.73 來計算應有的齒數.於是由:
z = =25.097 取z =25
那麼z =3.24×25=81
② 幾何尺寸計算
計算中心距 a= = =109.25
將中心距圓整為110
按圓整後的中心距修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正.
計算大.小齒輪的分度圓直徑
d = =51.53
d = =166.97
計算齒輪寬度
B=
圓整的
(二) 低速級齒輪傳動的設計計算
⑴ 材料:低速級小齒輪選用45鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =30
速級大齒輪選用45鋼正火,齒面硬度為大齒輪 240HBS z =2.33×30=69.9 圓整取z =70.
⑵ 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。
⑶ 按齒面接觸強度設計
1. 確定公式內的各計算數值
①試選K =1.6
②查課本由 圖10-30選取區域系數Z =2.45
③試選 ,查課本由 圖10-26查得
=0.83 =0.88 =0.83+0.88=1.71
應力循環次數
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由課本 圖10-19查得接觸疲勞壽命系數
K =0.94 K = 0.97
查課本由 圖10-21d
按齒面硬度查得小齒輪的接觸疲勞強度極限 ,
大齒輪的接觸疲勞強度極限
取失效概率為1%,安全系數S=1,則接觸疲勞許用應力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查課本由 表10-6查材料的彈性影響系數Z =189.8MP
選取齒寬系數
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 計算圓周速度
0.665
3. 計算齒寬
b= d =1×65.71=65.71
4. 計算齒寬與齒高之比
模數 m =
齒高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 計算縱向重合度
6. 計算載荷系數K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系數K =1
同高速齒輪的設計,查表選取各數值
=1.04 K =1.35 K =K =1.2
故載荷系數
K= =1×1.04×1.2×1.4231=1.776
7. 按實際載荷系數校正所算的分度圓直徑
d =d =65.71×
計算模數
3. 按齒根彎曲強度設計
m≥
一確定公式內各計算數值
(1) 計算小齒輪傳遞的轉矩 =143.3kN•m
(2) 確定齒數z
因為是硬齒面,故取z =30,z =i ×z =2.33×30=69.9
傳動比誤差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允許
(3) 初選齒寬系數
按對稱布置,由表查得 =1
(4) 初選螺旋角
初定螺旋角 =12
(5) 載荷系數K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 當量齒數
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由課本 表10-5查得齒形系數Y 和應力修正系數Y
(7) 螺旋角系數Y
軸向重合度 = =2.03
Y =1- =0.797
(8) 計算大小齒輪的
查課本由 圖10-20c得齒輪彎曲疲勞強度極限
查課本由 圖10-18得彎曲疲勞壽命系數
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
計算大小齒輪的 ,並加以比較
大齒輪的數值大,選用大齒輪的尺寸設計計算.
① 計算模數
對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =3mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =72.91 來計算應有的齒數.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
計算中心距 a= = =102.234
將中心距圓整為103
修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正
分度圓直徑
d = =61.34
d = =143.12
計算齒輪寬度
圓整後取
低速級大齒輪如上圖:
齒輪各設計參數附表
1. 各軸轉速n
(r/min)
(r/min)
(r/min)
(r/min)
626.09 193.24 84.38 84.38
2. 各軸輸入功率 P
(kw)
(kw)
(kw)
(kw)
3.26 3.04 2.83 2.75
3. 各軸輸入轉矩 T
(kN•m)
(kN•m)
(kN•m)
(kN•m)
49.79 151.77 326.98 307.52
6.傳動軸承和傳動軸的設計
1. 傳動軸承的設計
⑴. 求輸出軸上的功率P ,轉速 ,轉矩
P =2.83KW =84.38r/min
=326.98N.m
⑵. 求作用在齒輪上的力
已知低速級大齒輪的分度圓直徑為
=143.21
而 F =
F = F
F = F tan =4348.16×0.246734=1072.84N
圓周力F ,徑向力F 及軸向力F 的方向如圖示:
⑶. 初步確定軸的最小直徑
先按課本15-2初步估算軸的最小直徑,選取軸的材料為45鋼,調質處理,根據課本 取
輸出軸的最小直徑顯然是安裝聯軸器處的直徑 ,為了使所選的軸與聯軸器吻合,故需同時選取聯軸器的型號
查課本 ,選取
因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm,半聯軸器的孔徑
⑷. 根據軸向定位的要求確定軸的各段直徑和長度
① 為了滿足半聯軸器的要求的軸向定位要求,Ⅰ-Ⅱ軸段右端需要制出一軸肩,故取Ⅱ-Ⅲ的直徑 ;左端用軸端擋圈定位,按軸端直徑取擋圈直徑 半聯軸器與 為了保證軸端擋圈只壓在半聯軸器上而不壓在軸端上, 故Ⅰ-Ⅱ的長度應比 略短一些,現取
② 初步選擇滾動軸承.因軸承同時受有徑向力和軸向力的作用,故選用單列角接觸球軸承.參照工作要求並根據 ,由軸承產品目錄中初步選取0基本游隙組 標准精度級的單列角接觸球軸承7010C型.
D B
軸承代號
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 從動軸的設計
對於選取的單向角接觸球軸承其尺寸為的 ,故 ;而 .
右端滾動軸承採用軸肩進行軸向定位.由手冊上查得7010C型軸承定位軸肩高度 mm,
③ 取安裝齒輪處的軸段 ;齒輪的右端與左軸承之間採用套筒定位.已知齒輪 的寬度為75mm,為了使套筒端面可靠地壓緊齒輪,此軸段應略短於輪轂寬度,故取 . 齒輪的左端採用軸肩定位,軸肩高3.5,取 .軸環寬度 ,取b=8mm.
④ 軸承端蓋的總寬度為20mm(由減速器及軸承端蓋的結構設計而定) .根據軸承端蓋的裝拆及便於對軸承添加潤滑脂的要求,取端蓋的外端面與半聯軸器右端面間的距離 ,故取 .
⑤ 取齒輪距箱體內壁之距離a=16 ,兩圓柱齒輪間的距離c=20 .考慮到箱體的鑄造誤差,在確定滾動軸承位置時,應距箱體內壁一段距離 s,取s=8 ,已知滾動軸承寬度T=16 ,
高速齒輪輪轂長L=50 ,則
至此,已初步確定了軸的各端直徑和長度.
5. 求軸上的載荷
首先根據結構圖作出軸的計算簡圖, 確定頂軸承的支點位置時,
查《機械設計手冊》20-149表20.6-7.
對於7010C型的角接觸球軸承,a=16.7mm,因此,做為簡支梁的軸的支承跨距.
傳動軸總體設計結構圖:
(從動軸)
(中間軸)
(主動軸)
從動軸的載荷分析圖:
6. 按彎曲扭轉合成應力校核軸的強度
根據
= =
前已選軸材料為45鋼,調質處理。
查表15-1得[ ]=60MP
〈 [ ] 此軸合理安全
7. 精確校核軸的疲勞強度.
⑴. 判斷危險截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B無需校核.從應力集中對軸的疲勞強度的影響來看,截面Ⅵ和Ⅶ處過盈配合引起的應力集中最嚴重,從受載來看,截面C上的應力最大.截面Ⅵ的應力集中的影響和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同時軸徑也較大,故不必做強度校核.截面C上雖然應力最大,但是應力集中不大,而且這里的直徑最大,故C截面也不必做強度校核,截面Ⅳ和Ⅴ顯然更加不必要做強度校核.由第3章的附錄可知,鍵槽的應力集中較系數比過盈配合的小,因而,該軸只需膠合截面Ⅶ左右兩側需驗證即可.
⑵. 截面Ⅶ左側。
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅶ的右側的彎矩M為
截面Ⅳ上的扭矩 為 =311.35
截面上的彎曲應力
截面上的扭轉應力
= =
軸的材料為45鋼。調質處理。
由課本 表15-1查得:
因
經插入後得
2.0 =1.31
軸性系數為
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以
綜合系數為: K =2.8
K =1.62
碳鋼的特性系數 取0.1
取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右側
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅳ左側的彎矩M為 M=133560
截面Ⅳ上的扭矩 為 =295
截面上的彎曲應力
截面上的扭轉應力
= = K =
K =
所以
綜合系數為:
K =2.8 K =1.62
碳鋼的特性系數
取0.1 取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
8.鍵的設計和計算
①選擇鍵聯接的類型和尺寸
一般8級以上精度的尺寸的齒輪有定心精度要求,應用平鍵.
根據 d =55 d =65
查表6-1取: 鍵寬 b =16 h =10 =36
b =20 h =12 =50
②校和鍵聯接的強度
查表6-2得 [ ]=110MP
工作長度 36-16=20
50-20=30
③鍵與輪轂鍵槽的接觸高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
兩者都合適
取鍵標記為:
鍵2:16×36 A GB/T1096-1979
鍵3:20×50 A GB/T1096-1979
9.箱體結構的設計
減速器的箱體採用鑄造(HT200)製成,採用剖分式結構為了保證齒輪佳合質量,
大端蓋分機體採用 配合.
1. 機體有足夠的剛度
在機體為加肋,外輪廓為長方形,增強了軸承座剛度
2. 考慮到機體內零件的潤滑,密封散熱。
因其傳動件速度小於12m/s,故採用侵油潤油,同時為了避免油攪得沉渣濺起,齒頂到油池底面的距離H為40mm
為保證機蓋與機座連接處密封,聯接凸緣應有足夠的寬度,聯接表面應精創,其表面粗糙度為
3. 機體結構有良好的工藝性.
鑄件壁厚為10,圓角半徑為R=3。機體外型簡單,拔模方便.
4. 對附件設計
A 視孔蓋和窺視孔
在機蓋頂部開有窺視孔,能看到 傳動零件齒合區的位置,並有足夠的空間,以便於能伸入進行操作,窺視孔有蓋板,機體上開窺視孔與凸緣一塊,有便於機械加工出支承蓋板的表面並用墊片加強密封,蓋板用鑄鐵製成,用M6緊固
B 油螺塞:
放油孔位於油池最底處,並安排在減速器不與其他部件靠近的一側,以便放油,放油孔用螺塞堵住,因此油孔處的機體外壁應凸起一塊,由機械加工成螺塞頭部的支承面,並加封油圈加以密封。
C 油標:
油標位在便於觀察減速器油麵及油麵穩定之處。
油尺安置的部位不能太低,以防油進入油尺座孔而溢出.
D 通氣孔:
由於減速器運轉時,機體內溫度升高,氣壓增大,為便於排氣,在機蓋頂部的窺視孔改上安裝通氣器,以便達到體內為壓力平衡.
E 蓋螺釘:
啟蓋螺釘上的螺紋長度要大於機蓋聯結凸緣的厚度。
釘桿端部要做成圓柱形,以免破壞螺紋.
F 位銷:
為保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯結凸緣的長度方向各安裝一圓錐定位銷,以提高定位精度.
G 吊鉤:
在機蓋上直接鑄出吊鉤和吊環,用以起吊或搬運較重的物體.
減速器機體結構尺寸如下:
名稱 符號 計算公式 結果
箱座壁厚
10
箱蓋壁厚
9
箱蓋凸緣厚度
12
箱座凸緣厚度
15
箱座底凸緣厚度
25
地腳螺釘直徑
M24
地腳螺釘數目
查手冊 6
軸承旁聯接螺栓直徑
M12
機蓋與機座聯接螺栓直徑
=(0.5~0.6)
M10
軸承端蓋螺釘直徑
=(0.4~0.5)
10
視孔蓋螺釘直徑
=(0.3~0.4)
8
定位銷直徑
=(0.7~0.8)
8
, , 至外機壁距離
查機械課程設計指導書表4 34
22
18
, 至凸緣邊緣距離
查機械課程設計指導書表4 28
16
外機壁至軸承座端面距離
= + +(8~12)
50
大齒輪頂圓與內機壁距離
>1.2
15
齒輪端面與內機壁距離
>
10
機蓋,機座肋厚
9 8.5
軸承端蓋外徑
+(5~5.5)
120(1軸)125(2軸)
150(3軸)
軸承旁聯結螺栓距離
120(1軸)125(2軸)
150(3軸)
10. 潤滑密封設計
對於二級圓柱齒輪減速器,因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度.
油的深度為H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化學合成油,潤滑效果好。
密封性來講為了保證機蓋與機座聯接處密封,聯接
凸緣應有足夠的寬度,聯接表面應精創,其表面粗度應為
密封的表面要經過刮研。而且,凸緣聯接螺柱之間的距離不宜太
大,國150mm。並勻均布置,保證部分面處的密封性。
11.聯軸器設計
1.類型選擇.
為了隔離振動和沖擊,選用彈性套柱銷聯軸器.
2.載荷計算.
公稱轉矩:T=9550 9550 333.5
查課本 ,選取
所以轉矩
因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm
5. 滾動軸承中滾動體個數和直徑怎麼查
取官網查,下載CAD模型圖,比如solidworks三維圖,打開後進行特徵識別,進入草圖,智能尺寸就可以直接看出來了。如果誰知道更方便的方法記得評論哦6. 機械傳動簡圖中如何數軸承個數
了解一下機械制圖就知道怎麼數了。
滾動軸承不必畫零件圖。在裝配圖中,滾動軸承可以用三種畫法來繪制,這三種畫法是通用畫法、特徵畫法和規定畫法。前兩種屬簡化畫法,在同一圖樣中一般只採用這兩種簡化畫法中的一種。
對於這三種畫法,國家標准《機械制圖 滾動軸承表示法》(GB/T 4459.7-1998)作了如下規定:
(1)基本規定
·通用畫法、特徵畫法、規定畫法中的各種符號、矩形線框和輪廓線均用粗實線繪制。
·繪制滾動軸承時,其矩形線框和外框輪廓的大小應與滾動軸承的外形尺寸(由手冊中查出)一致,並與所屬圖樣採用同一比例。
·在剖視圖中,用通用畫法和特徵畫法繪制滾動軸承時,一律不畫剖面符號(剖面線)。採用規定畫法繪制時,軸承的滾動體不畫剖面線,其各套圈可畫成方向和間隔相同的剖面線,如圖a。如軸承帶有其它零件或附件(如偏心套,緊定套,擋圈等)時,其剖面線應與套圈的剖面線呈現不同方向或不同間隔,如圖 b。在不致引起誤解時也允許省略不畫。
(2)通用畫法
在剖視圖種,當不需要確切地表示滾動軸承的外形輪廓、載荷特性、結構特徵時,可用矩形線框及位於線框中央正立的十字形符號表示,十字形符號不應與矩形線框接觸,如圖a。通用畫法在軸的兩側以同樣方式畫出,如圖 b。
7. 機械運動簡圖中如何去數軸承個數
機械運動簡圖中如何去數軸承個數?第一部分 課程性質與目標
一、課程性質與特點
精密機械設計基礎是機電一體化、測控技術與儀器、檢測技術應用等專業的一門技術基礎課。該課程主要介紹機械的組成、機械中的常用機構和通用零部件的工作原理、 結構特點、基本設計理論和計算方法或選用原則。 該課程的主要特點是涉及的知識面較廣且偏重於應用。
二、課程目標與基本要求
本課程的目標是培養學生具有一定的機械設計能力,即通過理論學習和基本技能的訓練,掌握一些分析和解決問題的方法,並能夠應用所學知識解決具體的機構和一般簡單機械及其零部件的設計問題。
通過本課程的學習,應達到的基本要求有:
1) 掌握機構的結構原理、運動特性和機械運動學的基本知識,初步具有分析和設計基本機構的能力,並了解確定機械運動方案的基本過程和方法。
2) 掌握通用機械零件的工作原理、特點、選用和設計計算的基本知識,並初步具有設計一般簡單機械和常用機械傳動裝置的能力。
3) 具有應用相關標准、規范、手冊、圖冊等技術資料的能力。
4) 為機械的創新和技術革新提供必要的基礎知識。
三、與本專業其他課程的關系
本課程是介於基礎課和專業課之間的一門設計性的技術基礎課。它起著承上啟下的橋梁作用。
先修課程有機械制圖、工程力學等,同時又為精密機械製造基礎、精密儀器設計及畢業設計打下良好的基礎。
第二部分 考核內容與考核目標
第0章 機械設計概論
一、學習目的與要求
這一章主要介紹一些基本要求、基本原則和少量的基本概念。學生通過本章的學習要了解課程的內容和要求,了解機械設計的基本要求和程序,了解機械零件的計算準則和材料的選用原則,並在後續章節的學習過程中加以應用。
二、考核知識點和考核目標
識記載荷和應力的概念
第一章 機械繫統的運動簡圖設計
一、學習目的與要求
1、弄清運動副、約束和自由度等基本概念。
2、學會正確繪制平面機構運動簡圖的方法。
3、掌握機構自由度計算的方法,並能判斷機構運動的確定性。
二、考核知識點和考核目標
(一)機構具有確定運動的條件、平面機構自由度的計算(重點)
識記:運動副、約束、自由度
理解:機構具有確定運動的條件
應用:機構自由度的計算,尤其要注意具有復合鉸鏈、局部自由度和虛約束的機構的自由度的計算。
(二)平面機構的運動簡圖設計(次重點)
識記:常用機構運動簡圖的圖示符號、原動件、從動件
應用:平面機構的運動簡圖設計
第二章 平面連桿機構設計
1/8
一、學習目的與要求
1、掌握鉸鏈四桿機構的基本型式及其轉換以及鉸鏈四桿機構的演變。
2、掌握急回運動、壓力角、傳動角及死點等概念。
3、學會用圖解法設計四桿機構。
二、考核知識點和考核目標
(一)鉸鏈四桿機構的基本型式及其特性、圖解法設計四桿機構(重點)
識記:曲柄連桿機構、雙曲柄機構、雙搖桿機構、急回運動、傳動角、死點
理解:曲柄存在的條件及以不同的構件為機架時機構類型的判斷,行程速比系數公式,傳動角對機構運動性能的影響及最小傳動角出現的位置。
應用:圖解法設計四桿機構。
1、按照給定三個(或兩個)連桿位置設計四桿機構。
2、按照給定的行程速比系數設計四桿機構。
(二)鉸鏈四桿機構的演變(一般)
一般了解曲柄滑塊機構及其演變、了解偏心輪機構
第三章 凸輪機構設計
一、學習目的和要求
1、了解凸輪機構從動件常用運動規律及從動件運動與凸輪轉角之間的對應關系曲線。
2、弄清凸輪機構設計中機構壓力角與自鎖的關系、壓力角與基圓半徑的關系以及滾子半徑與凸輪輪廓曲線形狀的關系。
3、掌握反轉法設計凸輪輪廓的原理、步驟和方法。
二、考核知識點和考核目標
(一)盤狀凸輪輪廓的設計(重點)
識記:理論輪廓、實際輪廓
理解:反轉法
應用:對心直動從動件盤狀凸輪輪廓的設計
(二)凸輪機構設計中應注意的問題(次重點)
識記:凸輪機構壓力角、自鎖、基圓半徑
理解:壓力角與自鎖的關系、壓力角與基圓半徑的關系以及滾子半徑與凸輪輪廓曲線形狀的關系。
(三)凸輪機構的類型和特點、從動件的常用運動規律(一般)
識記:凸輪的類型、剛性沖擊、柔性沖擊
第五章 齒輪傳動設計
一、學習目的與要求
1、了解齒輪傳動的特點、應用范圍、齒廓嚙合基本定律、漸開線的形成和性質。
2、掌握直齒圓柱齒輪、斜齒圓柱齒輪的幾何尺寸計算。
3、掌握不同工況下齒輪傳動的失效形式和設計准則。
4、掌握直齒圓柱齒輪、斜齒圓柱齒輪的受力分析和直齒圓柱齒輪強度計算(包括材料及其熱處理方式的選擇及參數的選擇與計算)。
二、考核知識點和考核目標
(一)漸開線標準直齒圓柱齒輪的嚙合傳動、齒輪傳動的正確嚙合條件、圓柱齒輪(包括直齒和斜齒)的受力分析、直齒圓柱齒輪的強度計算(重點)
識記:齒輪的材料及其熱處理的選擇
理解:齒輪傳動的正確嚙合條件和連續傳動的條件、齒輪傳動的主要失效形式(包括各種失效產生的原因及防止失效應採取的措施)和計算準則(弄清閉式軟齒面、閉式硬齒面、開式齒輪傳動的主要失效形式及其設計時應選用的設計公式和校核公式)。
應用:直齒圓柱齒輪和斜齒圓柱齒輪的受力分析(要掌握不同視圖平面上各個分力的表達)、直齒圓柱齒輪強度計算(一般了解各強度公式的導出過程,重點了解輪齒彎曲強度公式和齒面接觸強度公式中各參數的意義及它們是如何影響齒輪的強度的,並且能在實際設計中正確選擇相關
8. 機械圖紙上的軸承是怎麼表示畫法的
1、通用畫法
在垂直於滾動體軸承軸線的投影面的視圖上,無論滾動體的形狀(球、柱、針等)及尺寸如何,均可按圖9-42所示的方法繪制。
基本視圖投影規律及位置關系:
基本視圖之間與三視圖一樣,仍然符合「長
對正、高平齊、寬相等」的投影規律,即:
正、俯、仰、後視圖「長對正」;
正、左、右、後視圖「高平齊」;
俯、左、右、仰視圖「寬相等」。
六個視圖位置關系須注意的是:在俯、左、仰、右視圖中,靠近正視圖的一面是物體的後面,遠離正視圖的一面是物體的前面,此外,正視圖和後視圖左右位置關系相反.
在實際畫圖時,一般物體並不需要全部畫出六個基本視圖,而是根據物體形狀的特點和復雜程度,具體進行分析,選擇其中幾個基本視圖,完整、清晰地表達出該物體的形狀和結構。
9. 怎麼查軸承中的滾動體個數
滾動體的尺寸和數量是工程師設計時計算出來的,沒有標准可以查。
10. 這個圖中的傳動效率計算的時候 軸承是四次方么 是不是每個齒輪有一對軸承 圖中有四個齒輪 所以四次方啊
滾動軸承常常是成對使用的,如你圖中的減速器,每一根軸的兩端各有一套軸承(即一對軸承)。一對(2套)軸承的效率為0.99,則二對(4套)軸承的效率為0.99×0.99,即0.99的平方,有幾根軸就用幾對軸承,你的減速器有三根軸,共用了3對軸承,所以效率為3次方。如果還要把支撐滾筒軸的軸承計算進去的話,就是5次方了。軸承的效率只與軸承的數量有關,而與齒輪數量無關。