❶ (2013東營)1821年,德國物理學家塞貝克發現了一種奇怪的現象:把兩根銅絲和一根鐵絲與靈敏電流計串聯
(1)由題意可知,組成「熱電偶電路」的是兩種不同的金屬絲形成閉合電路,且通過表中的數據可以看出,只有兩接點間有溫度差時,電路中才有熱電流,而且溫度差越大,電流也越大.據此可得出,產生熱電流的條件是:用不同金屬絲組成閉合迴路;兩連接點之間有溫度差;
(2)根據熱電流的特點及產生條件可知,電流的大小直接反映了兩接點間溫度差的大小,因此,我們可以從中得到啟示:可將電流表改裝成溫度計,控制兩接點中的一個點的溫度不變,將另一個點的溫度作為被測溫度,即可通過電表反映出其溫度值的大小.即其可行的應用為:可製成溫度計.
故答案為:
(1)用不同金屬絲組成閉合迴路;兩連接點之間有溫度差;
(2)製成溫度計.(將圖中的G端焊接在一起作為熱電偶的測量端放到被測溫度t處保持D端接點溫度t0穩定.並將靈敏電流表盤按溫度刻度.即可用來測溫度.)
❷ 探究電流與電壓的關系這個實驗需要哪些器材它們的作用各是什麼怎樣才能改變電
1.電壓表,電流表,滑動變阻器,開關,電源等。
2.需要一隻10歐電阻,保持電阻不變,電流強度與電壓成正比。
❸ 溫差電池的塞貝克效應
塞貝克(Seeback)效應,又稱作第一熱電效應,它是指由於溫差而產生的熱電現象。
在兩種金屬A和B組成的迴路中,如果使兩個接觸點的溫度不同,則在迴路中將出現電流,稱為熱電流。
塞貝克效應的實質在於兩種金屬接觸時會產生接觸電勢差,該電勢差取決於金屬的電子逸出功和有效電子密度這兩個基本因素。
半導體的溫差電動勢較大,可用作溫差發電器。 由於不同的金屬材料所具有的自由電子密度不同,當兩種不同的金屬導體接觸時,在接觸面上就會發生電子擴散。電子的擴散速率與兩導體的電子密度有關並和接觸區的溫度成正比。
設導體A和B的自由電子密度為NA和NB,且有NA>NB,電子擴散的結果使導體A失去電子而帶正電,導體B則因獲得電子而帶負電,在接觸面形成電場。這個電場阻礙了電子繼續擴散,達到動態平衡時,在接觸區形成一個穩定的電位差,即接觸電勢。
美國科學家發現,鯊魚鼻子里的一種膠體能把海水溫度的變化轉換成電信號,傳送給神經細胞,使鯊魚能夠感知細微的溫度變化,從而准確地找到食物____科學家猜測,其他動物體內也可能存在類似的膠體.這種因溫差而產生電流的性質與半導體材料的熱電效應類似,人工合成這種膠體,有望在微電子工業領域獲得應用。
美國舊金山大學的一位科學家在1月30日出版的英國《自然》雜志上報告說,他從鯊魚鼻子的皮膚小孔里提取了一種與普通明膠相似的膠體,發現它對溫度非常敏感,0.1℃的溫度變化都會使它產生明顯的電壓變化。
鯊魚鼻子的皮膚小孔布滿了對電流非常敏感的神經細胞.海水的溫度變化使膠體內產生電流,刺激神經,使鯊魚感知到溫度差異.科學家認為,藉助這種膠體,鯊魚能感知到0.001℃的溫度變化,這有利於它們在海水中覓食。
哺乳動物靠細胞表面的離子通道感知溫度:外界溫度變化導致帶電的離子進出通道,產生電流,刺激神經,從而使動物感知冷暖.與哺乳動物的這種方式不同,鯊魚利用膠體,不需要離子通道也能感知溫度變化。 1834年法國物理學家帕爾帖在銅絲的兩頭各接一根鉍絲,在將兩根鉍絲分別接到直流電源的正負極上,通電後,發現一個接頭變熱,另一個接頭變冷。這說明兩種不同材料組成的電迴路在有直流電通過時,兩個接頭處分別發生了吸放熱現象。這就是熱電製冷的依據。
半導體材料具有較高的熱電勢可以成功地用來做成小型熱電製冷器。圖1示出N型半導體和P型半導體構成的熱電偶製冷元件。用銅板和銅導線將N型半導體和P型半導體連接成一個迴路,銅板和銅導線只起導電的作用。此時,一個接點變熱,一個接點變冷。如果電流方向反向,那麼結點處的冷熱作用互易。熱電製冷器的產冷量一般很小,所以不宜大規模和大製冷量使用。但由於它的靈活性強,簡單方便冷熱切換容易,非常適宜於微型製冷領域或有特殊要求的用冷場所。
熱電製冷的理論基礎是固體的熱電效應,在無外磁場存在時,它包括五個效應,導熱、焦耳熱損失、西伯克(Seebeck)效應、帕爾帖(Peltire)效應和湯姆遜(Thomson)效應。一般的冷氣與冰箱運用氟氯化物當冷媒,造成臭氧層的被破壞.無冷媒冰箱(冷氣)因而是環境保護的重要因素.利用半導體之熱電效應,可製造一個無冷媒的冰箱。這種發電方法是將熱能直接轉變成電能,其轉變效率受熱力學第二定律即卡諾效率(Carnot efficiency)的限制.早在1822年西伯即已發現,因而熱電效應又叫西伯效應(Seebeck effect)。

❹ 塞貝克現象的產生必須是在2種金屬的結點處加熱才可以,產生電流嗎
只要兩個接觸點溫度不同即可,不一定非得放到裡面。放到裡面當然是為了測量更加准確。你放在外面靠導線的熱傳遞進熱量也可以觀察到反應的。
其他地方溫度不同不會有反應,這是因為材料相同的時候電動勢一樣。
如果溫度相同,那麼電動勢一樣,這就是在其中加入第三根導線不影響測量結果的原因。因為第三根導線首尾的兩個節點電動勢相同。自然,加N根也是一樣。
❺ 請問塞貝克(seeback)效應是怎麼回事,它的微觀理論是什麼為什麼會產生這樣的效應
即溫差電效應,塞貝克 (Seebeck) 於 1821 發現在兩種不同金屬的連線,若將連線的一結點置於高溫狀態 T2(熱端),而另一端處於開路且處於低溫狀態 T1 冷端,則在冷端存在開路電壓 ΔV,此種現象被稱為塞貝克效應,Seebeck 電壓 ΔV 與熱冷兩端的溫度差 ΔT 成正比,即
ΔV = kΔT = k(T2 - T1)
其中 k 是塞貝克參數,由材料本身的電子能帶結構決定的。
微觀解釋大致是:所有可導電的材質皆會因內部當存在不同的溫度分布層次(溫度梯度)而產生相對不同的熱電動勢。
半導體由於具備優異的熱電性能,成為製作賽貝爾效應模塊的首選材料。從應用的角度講,決定一種半導體熱電材料的優劣不能僅憑其塞貝克參數的大小,還必須綜合考慮其電導率,熱導率等諸多因素。
❻ 研究電流產生的熱量與哪些因素有關實驗時,有什麼器材
我來回答,《電功率》復習提綱
一、電功
1.定義:電流通過某段電路所做的功叫電功。
2.實質:電流做功的過程,實際就是電能轉化為其他形式的能(消耗電能)的過程;電流做多少功,就有多少電能轉化為其他形式的能,就消耗了多少電能。
電流做功的形式:電流通過各種用電器使其轉動、發熱、發光、發聲等都是電流做功的表現。
3.規定:電流在某段電路上所做的功,等於這段電路兩端的電壓,電路中的電流和通電時間的乘積。
4.計算公式:W=UIt=Pt(適用於所有電路)
對於純電阻電路可推導出:W=I2Rt=U2t/R
①串聯電路中常用公式:W=I2Rt W1:W2:W3:…Wn=R1:R2:R3:…:Rn
②並聯電路中常用公式:W=U2t/R W1:W2=R2:R1
③無論用電器串聯或並聯。計算在一定時間所做的總功 常用公式W=W1+W2+…Wn
5.單位:國際單位是焦耳(J)常用單位:度(kwh) 1度=1千瓦時=1kwh=3.6×106J
6.測量電功:
⑴電能表:是測量用戶用電器在某一段時間內所做電功(某一段時間內消耗電能)的儀器。
⑵電能表上「220V」「5A」「3000R/kwh」等字樣,分別表示:電電能表額定電壓220V;允許通過的最大電流是5A;每消耗一度電電能表轉盤轉3000轉。
⑶讀數:A、測量較大電功時用刻度盤讀數。
①最後一位有紅色標記的數字表示小數點後一位。
②電能表前後兩次讀數之差,就是這段時間內用電的度數。
如:電能表月初讀數
3
2
4
6
8
月底讀數是
3
2
6
5
4
這個月用電 度合 J。
B、測量較小電功時,用表盤轉數讀數。如:某用電器單獨工作電能表(3000R/kwh)在10分鍾內轉36轉則10分鍾內電器消耗的電能是 J。
二、電功率
1.定義:電流在單位時間內所做的功。
2.物理意義:表示電流做功快慢的物理量。燈泡的亮度取決於燈泡的實際功率大小。
3.電功率計算公式:P=UI=W/t(適用於所有電路)
對於純電阻電路可推導出:P=I2R=U2/R
①串聯電路中常用公式:P=I2R P1:P2:P3:…Pn=R1:R2:R3:…:Rn
②並聯電路中常用公式:P=U2/R P1:P2=R2:R1
③無論用電器串聯或並聯。計算總功率 常用公式P=P1+P2+…Pn
4.單位:國際單位 瓦特(W) 常用單位:千瓦(kw)
5.額定功率和實際功率:
⑴額定電壓:用電器正常工作時的電壓。
額定功率:用電器在額定電壓下的功率。P額=U額I額=U2額/R某燈泡上標有「PZ22OV-25」字樣分別表示:普通照明,額定電壓220V,額定功率25W的燈泡。若知該燈「正常發光」可知:該燈額定電壓為220V,額定功率25W,額定電流I=P/U=0.11A 燈絲阻值R=U2額/P=2936Ω。
⑵當U實=U額時,P實=P額 用電器正常工作(燈正常發光)
當U實<U額 時,P實<P額 用電器不能正常工作(燈光暗淡),有時會損壞用電器
①實際功率隨電壓變化而變化根據P=U2/R得。
②根據P=U2/R 如果U 減小為原來的1/n
則P′= 如:U實 = 1 2U額 P實 = 1 4P額
當U實 > U額時P實 >P額 長期使用影響用電器壽命(燈發光強烈)
P實= 0 用電器燒壞(燈絲燒斷)
⑶燈L1「220V 100W」,燈L2「220V 25W」相比較而言,L1燈絲粗短,L2燈絲細長。
判斷燈絲電阻口訣:「大(功率)粗短,小細長」(U額 相同)
兩燈串聯時,燈L2亮,兩燈並聯時,燈L1亮。
判斷哪個燈亮的口訣「串小(功率)並大」 (U額 相同)
⑷「1度」的規定:1kw的用電器工作1h消耗的電能。
P=W/t 可使用兩套單位:「W、J、s」、「kw、kwh、h」
6.測量:
Ⅰ、伏安法測燈泡的額定功率:①原理:P=UI;②電路圖:。
③選擇和連接實物時須注意:
電源:其電壓高於燈泡的額定電壓
滑動變阻器:接入電路時要變阻,且調到最大值。根據能否調到燈泡的額定電壓選擇滑動變阻器。
電壓表:並聯在燈泡的兩端「+」接線柱流入,「-」接線柱流出。根據額定電壓選擇電壓表量程。
電流表:串聯在電路里「「+」接線柱流入,「-」接線柱流出。根據I額=P額/U額 或I額=U額/R 選擇量程。
Ⅱ 測量家用電器的電功率:器材:電能表 秒錶 原理:P=W/t
三、電熱
1.實驗:目的:研究電流通過導體產生的熱量跟那些因素有關?
原理:根據煤油在玻璃管里上升的高度來判斷電流通過電阻絲通電產生電熱的多少。
實驗採用煤油的目的:煤油比熱容小,在相同條件下吸熱溫度升高的快:是絕緣體。
2.焦耳定律:電流通過導體產生的熱量跟電流的平方成正比,跟導體的電阻成正比,跟通電時間成正比。
3.計算公式:Q=I2Rt(適用於所有電路)對於純電阻電路可推導出:Q=UIt= U2t/R=W=Pt
①串聯電路中常用公式:Q=I2Rt。Q1:Q2:Q3:…Qn=R1:R2:R3:…:Rn
並聯電路中常用公式:Q= U2t/R Q1:Q2= R2:R1
②無論用電器串聯或並聯。計算在一定時間所產生的總熱量 常用公式Q= Q1+Q2+…Qn
③分析電燈、電爐等電熱器問題時往往使用:Q=U2t/R=Pt
4.應用——電熱器:
①定義:利用電流的熱效應而製成的發熱設備。
②原理:焦耳定律。
③組成:電熱器的主要組成部分是發熱體,發熱體是由電阻率大、熔點高的合金製成。
④優點:清潔衛生沒有污染、熱效率高、方便控制和調節溫度。
練習:☆家庭電路中有一隻標有名牌的燈泡正常發光,現給的器材有電能表、電流表、電壓表、鍾表,請用三種方法測出這只燈泡的此時功率,說明道理並寫出表達式。
四、生活用電
(一)家庭電路
1.家庭電路的組成部分:低壓供電線(火線零線)、電能表、閘刀開關、保險絲、用電器、插座、燈座、開關。
2.家庭電路的連接:各種用電器是並聯接入電路的,插座與燈座是並聯的,控制各用電器工作的開關與電器是串聯的。
3.家庭電路的各部分的作用:
⑴低壓供電線:
①給用戶提供家庭電壓的線路,分為火線和零線。火線和零線之間有220V的電壓,火線和地線之間也有220V的電壓,正常情況下,零線和地線之間電壓為0V。
②測電筆:用途:用來辨別火線和零線。
種類:鋼筆式,螺絲刀式。
使用方法:手接觸筆尾金屬體,筆尖金屬體接觸火線,觀察氖管是否發光。
舉例:☆測電筆接觸火線時,如果觀察不到氖管發光,你認為產生這種現象的原因是:(至少填兩種可能原因)測電筆氖管已壞;手沒有接觸筆尾金屬體;火線斷路。
☆某次檢修電路時,發現燈泡不亮,火線零線都能使測電筆發光,可能的原因是:火線完好,零線處有斷路,被測段零線通過用電器和火線構成通路。
⑵電能表:
①用途:測量用戶消耗的電能(電功)的儀表。
②安裝:安裝在家庭電路的幹路上,原因:這樣才能測出全部家用電器消耗的電能。
③銘牌:所標的電壓U是:額定電壓所標的電流;I是:允許通過的最大電流;UI是:電能表後能接用電器的最大功率,如果同時使用的家用電器的總瓦數超過這個數值,電能表的計數會不準確甚至燒壞。
⑶閘刀(空氣開關):
①作用:控制整個電路的通斷,以便檢測電路更換設備。
②安裝:家庭電路的幹路上,空氣開關的靜觸點接電源線。
⑷保險盒:
①材料:保險絲是由電阻率大、熔點較低的鉛銻合金製成。
②保險原理:當過大的電流通過時,保險絲產生較多的熱量使它的溫度達到熔點,於是保險絲熔斷,自動切斷電路,起到保險作用。
③電路符號:。
④連接:與所保護的電路串聯,且一般只接在火線上。
⑤選擇:保險絲的額定電流等於或稍大於家庭電路的最大工作電流。
⑥規格:越粗額定電流越大。
注意:不能用較粗的保險絲或鐵絲、銅絲、鋁絲等代替。因為銅絲的電阻小,產生的熱量少,銅的熔點高,不易熔斷。
應用舉例:☆某家庭需要使用10A保險絲,可只有5A和15A保險絲。如何分別來代替使用:①可用兩根5A保險絲並起來代用;②可將15A保險絲用刀輕切一小口使剩餘部分截面積和10A保險絲截面積相同。
⑸插座:
①作用:連接家用電器,給可移動家用電器供電。
②種類:固定插座、
③安裝:並聯在家庭電路中,具體接線情況:
可移動插座、二孔插座、三孔插座。
1接火線 2接零線 3接地線 4接用電器的金屬外殼 5接用電部分的線路
把三腳插頭插在三孔插座里,在把用電部分連入電路的同時,也把用電器的金屬外殼與大地連接起來,防止了外殼帶電引起的觸電事故。
⑹用電器(電燈)、開關:
①白熾燈是利用電流的熱效應進行工作的,小功率的燈泡燈絲細而長,裡面抽成真空。大功率的燈泡燈絲粗而短,裡面抽成真空後,還要充入氮氣、氬氣等惰性氣體,且氣壓為0.1Pa,目的是平衡大氣壓對玻璃殼的壓力,並阻止燈絲升華。燈泡長期使用會變暗,原因是:燈絲升華變細電阻變小,實際功率變小;升華後的金屬鎢凝華在玻璃內壁上降低了燈泡的透明度。
②燈泡的種類:螺絲口 卡口。
螺絲口燈泡的螺旋接燈頭的螺旋套,進而接零線;燈泡尾部的金屬柱接燈頭的彈簧片,再通過開關接火線:原因:防止維修觸電
③開關和用電器串聯,控制用電器,如果開關短路用電器會一直工作開關不能控制,但不會燒幹路上的保險絲。
④根據安全用電原則連接電路,每個開關都可以單獨控制燈。
(二)家庭電路電流過大的原因
1.原因:發生短路、用電器總功率過大。
2.家庭電路保險絲燒斷的原因:發生短路、用電器功率過大、選擇了額定電流過小的保險絲。
(三)安全用電
1.觸電事故:
①定義:一定強度的電流通過人體所引起的傷害。
②危險性:與電流的大小、通電時間的長短等因素有關。
③安全電壓:不高於36V,動力電路電壓380V,家庭電路電壓220V都超出了安全電壓。
2.觸電形式:
家庭電路(低壓觸電):單線觸電、雙線觸電。
家庭電路觸電的事故:都是由於人體直接或間接跟火線接觸造成的並與地線或零線構成通路。
要分清零線和地線,雖然地線和零線正常情況下之間沒有電壓,但絕不能將地線和零線接通,否則易造成觸電事故。
高壓觸電:高壓電弧觸電、跨步電壓觸電。
3.安全用電原則:不接觸低壓帶電體 不靠近高壓帶電體。 24065希望對你有幫助!
❼ 熱電偶的工作原理
熱電偶測溫的基本原理是:
兩種不同成份的材質導體組成閉合迴路,當兩端存在溫度梯度時,迴路中就會有電流通過,此時兩端之間就存在電動勢——熱電動勢,這就是所謂的塞貝克效應(Seebeck effect)。
兩種不同成份的均質導體為熱電極,溫度較高的一端為工作端,溫度較低的一端為自由端,自由端通常處於某個恆定的溫度下。根據熱電動勢與溫度的函數關系,製成熱電偶分度表;
分度表是自由端溫度在0℃時的條件下得到的,不同的熱電偶具有不同的分度表。在熱電偶迴路中接入第三種金屬材料時,只要該材料兩個接點的溫度相同,熱電偶所產生的熱電勢將保持不變,即不受第三種金屬接入迴路中的影響。
因此,在熱電偶測溫時,可接入測量儀表,測得熱電動勢後,即可知道被測介質的溫度。熱電偶測量溫度時要求其冷端(測量端為熱端,通過引線與測量電路連接的端稱為冷端)的溫度保持不變,其熱電勢大小才與測量溫度呈一定的比例關系。
若測量時,冷端的(環境)溫度變化,將嚴重影響測量的准確性。在冷端採取一定措施補償由於冷端溫度變化造成的影響稱為熱電偶的冷端補償正常。與測量儀表連接用專用補償導線。
熱電偶冷端補償計算方法:
從毫伏到溫度:測量冷端溫度,換算為對應毫伏值,與熱電偶的毫伏值相加,換算出溫度;
從溫度到毫伏:測量出實際溫度與冷端溫度,分別換算為毫伏值,相減後得出毫伏值,即得溫度。

(7)塞貝克熱電流實驗需要什麼器材擴展閱讀:
主要特點
1、裝配簡單,更換方便;
2、壓簧式感溫元件,抗震性能好;
3、測量精度高;
4、測量范圍大(-200℃~1300℃,特殊情況下-270℃~2800℃);
5、熱響應時間快;
6、機械強度高,耐壓性能好;
7、耐高溫可達2800度;
8、使用壽命長。
結構要求
1、組成熱電偶的兩個熱電極的焊接必須牢固;
2、兩個熱電極彼此之間應很好地絕緣,以防短路;
3、補償導線與熱電偶自由端的連接要方便可靠;
4、保護套管應能保證熱電極與有害介質充分隔離。
參考資料:網路-熱電偶
❽ 1821年,德國物理學家塞貝克發現了一種奇怪的現象:把兩根銅絲和一根鐵絲與靈敏電流計串聯成閉合
| (1)用不同金屬絲組成閉合迴路;兩連接點之間有溫度差; (2)製成溫度計。(將圖中的G端焊接在一起作為熱電偶的測量端放到被測溫度t處,保持D端接點溫度t0穩定。並將靈敏電流表盤按溫度刻度。即可用來測溫度。)(合理即可) |
❾ 1821年,德國物理學家塞貝克發現了一種奇怪的現象:如圖1所示,把兩根銅絲和一根鐵絲與靈敏電流計串聯成
(1)先根據表中數據進行描點,然後用平滑曲線連接起來;如下圖所示:
(2)根據上圖可知,兩接點間的溫度差越大,電路中的電流越大;根據這個道理科學家造出了熱電偶溫度計.
(3)由閱讀材料研究小組猜想:熱電流的大小可能還與導體的材料有關,在實驗探究時應注意控制溫度不變.
故答案為:(2)越大;(3)導體的材料;溫度.
❿ 塞貝克效應的熱電現象
溫差電效應是由於不同種類固體的相互接觸而發生的熱電現象。它主要有三種效應:塞貝克(Seebeck)效應、帕爾貼(Peltier)效應與湯姆遜(Thomson)效應。
⑴塞貝克效應 若將導體(或半導體)A和B的兩端相互緊密接觸組成環路,若在兩聯接處保持不同溫度T1與T2,則在環路中將由於溫度差而產生溫差電動勢。在環路中流過的電流稱為溫差電流,這種由兩種物理性質均勻的導體(或半導體)組成的上述裝置稱為溫差電偶(或熱電偶),這是法國科學家塞貝克1821年發現的。後來發現,溫差電動勢還有如下兩個基本性質:①中間溫度規律,即溫差電動勢僅與兩結點溫度有關,與兩結點之間導線的溫度無關。②中間金屬規律,即由A、B導體接觸形成的溫差電動勢與兩結點間是否接入第三種金屬C無關。只要兩結點溫度T1、T2相等,則兩結點間的溫差電動勢也相等。正是由於①、②這兩點性質,溫差電現象如今才會被廣泛應用。
⑵帕爾貼(Peltier)效應 1834年帕爾貼發現,電流通過不同金屬的結點時,在結點處有吸放熱量Qp的現象。吸熱還是放熱由電流方向確定,Qp稱為帕爾貼熱。其產生的速率與所通過的電流強度成正比,即
其中Π12稱帕爾貼系數,其大小等於在結點上每通過單位電流時所吸放的熱量。電流通過兩種不同金屬構成的結點時會吸放熱的原因是在結點處集結了一個帕爾貼電動熱,帕爾貼熱正是這電動勢對電流做正功或負功時所吸放的熱量。考慮到不同的金屬具有不同的電子濃度和費米能EF,兩金屬接觸後在結點處要引起不等量的電子擴散,致使在結點處兩金屬間建立了電場,因而建立了電勢差(當然,上述解釋僅考慮了產生溫差電現象的某一方面因素,實際情況要復雜得多)。由此可見,帕爾貼電動勢應是溫度的函數,不同結的帕爾貼電動勢對溫度的依賴關系也可不同。上述觀點也能用來解釋當電流反向時,兩結對帕爾貼熱的吸放應倒過來,因而是可逆的。一般金屬結的帕爾貼電勢為μV量級,而半導體結可比它大數個量級。
⑶湯姆孫效應 1856年W·湯姆孫(即開爾文)用熱力學分析了塞貝克效應和佩爾捷效應後預言還應有第三種溫差電現象存在。後來有人從實驗上發現,如果在存在有溫度梯度的均勻導體中通過電流時,導體中除了產生不可逆的焦耳熱外,還要吸收或放出一定的熱量,這一現象定名為湯姆孫效應,所吸放的熱量稱為湯姆孫熱。湯姆孫熱與佩爾捷熱的區別是,前者是沿導體(或半導體)作分布式吸放熱,後者在結點上吸放熱。湯姆孫熱也是可逆的,但測量湯姆孫熱比測量佩爾捷熱困難得多,因為要把湯姆孫熱與焦耳熱區分開來較為困難。
⑷溫差發電器 溫差電現象主要應用在溫度測量、溫差發電器與溫差電製冷三方面。
溫差發電是利用塞貝克效應把熱能轉化為電能。當一對溫差電偶的兩結處於不同溫度時,熱電偶兩端的溫差電動勢就可作為電源。常用的是半導體溫差熱電偶;這是一個由一組半導體溫差電偶經串聯和並聯製成的直流發電裝置。每個熱電偶由一N型半導體和一P型半導體串聯而成,兩者聯接著的一端和高溫熱源接觸,而N型和P型半導體的非結端通過導線均與低溫熱源接觸,由於熱端與冷端間有溫度差存在,使P的冷端有負電荷積累而成為發電器的陰極;N的冷端有正電荷積累而成為陽極。若與外電路相聯就有電流流過。這種發電器效率不大,為了能得到較大的功率輸出,實用上常把很多對溫差電偶串、並聯成溫差電堆。
⑸溫差電製冷器 根據佩爾捷效應,若在溫差電材料組成的電路中接入一電源,則一個結點會放出熱量,另一結點會吸收熱量。若放熱結點保持一定溫度,另一結點會開始冷卻,從而產生製冷效果。半導體溫差電製冷器也是由一系列半導體溫差電偶串、並聯而成。溫差電製冷由於體積十分小,沒有可動部分(因而沒有噪音),運行安全故障少,並且可以調節電流來正確控制溫度。它可應用於潛艇、精密儀器的恆溫槽、小型儀器的降溫、血漿的儲存和運輸等場合。
