⑴ 軸承鋼過熱組織和欠熱組織分別是什麼
軸承鋼正常淬火組織的特點是有高碳區和低碳區,高碳區為細針狀馬氏體+少量殘余奧氏體,低碳區為隱晶馬氏體+未溶碳化物。如果過熱,未溶碳化物幾乎沒有,馬氏體為粗針狀,並有大量殘余奧氏體。如果欠熱,會有大量未溶碳化物,高碳區極少。過熱和欠熱都會造成硬度偏低。碳化物的形態與球化退火質量有關,當然是均勻的細粒狀最好。球化退火有評級標准。
⑵ 屈氏體是什麼,有什麼組織結構
通過奧氏體等溫轉變所得到的由鐵素體與滲碳體組成的極彌散的混合物。是一種最細的珠光體類型組織,其組織比索氏體組織還細。鋼經淬火後在300~450℃回火所得到的屈氏體稱為回火屈氏體。
屈氏體也稱托氏體。是600-550℃范圍內奧氏體等溫轉變形成,片層間距平均小於0.1μm,即使在高倍光學顯微鏡下也無法分辨出片層,只有在電子顯微鏡下才能分辨出層片,與珠光體、索氏體只有粗細之分,並無本質之分。
在一般光學顯微鏡下,只能看到如墨菊狀的黑色形態。當其少量析出時,沿晶界分布,呈黑色網狀;當其大量析出時,成大塊黑狀。屈氏體的耐蝕性較差。
屈氏體形態和組織結構:
屈氏體是鐵素體與滲碳體組成的極細混合物,極易被硝酸酒精腐蝕。為了便於觀察屈氏體,採用2%的硝酸酒精對試樣進行淺腐蝕後,放置在1000倍顯微鏡下觀察,可清楚地看到距工件表面0~0.070mm有較多的細針狀屈氏體,含量大於1%,而工藝要求表面屈氏體含量≤1%。根據其形態判斷,該類屈氏體屬冷卻不良所致。
同時,在顯微鏡下還觀察到網狀的黑色組織,其上分布著剩餘碳化物顆粒。仔細觀察還發現黑色的網路狀是沿奧氏體晶界形成的,距試樣表面深度約為0.020mm,採用2%的硝酸酒精進行淺腐蝕處理即可將其清晰地顯示出來。
屈氏體黑色組織的硬度:
採用HVS-1000型顯微硬度計(試驗力為3N)對不同區域進行硬度檢測,結果表明,表面黑色組織區域硬度明顯低於馬氏體區域的硬度。
從組織結構和硬度對比來看,黑色組織是100Cr6鋼在淬火時發生的擴散型相變產物,其也是珠光體類型中的屈氏體。
⑶ 中、高頻淬火時出現屈氏體或貝氏體什麼原因
依據你的描述。應是冷卻不良造成的。 基於金相檢查出現貝氏體,排除加熱溫度不足的可能性。所以功率不用去考慮它。附帶說明:頻率與你的零件淬火得到的理想組織無關聯。 改進方法: 1:觀察噴水圈兩排孔在冷態下工作時,在工件表面所形成的兩股噴射水是否水交匯在一起。當然,如果你的兩排孔加工精度好,可採用電腦繪圖模擬工件冷卻是否良好。 2:檢查冷卻的水壓,流量是否足夠並改進。可通過觀察零件淬火後顏色,檢測表面硬度來作出判斷。注意水壓太大反而導致冷卻不好,所以強調水壓水量配合好。 3:採用通常的調整工件下降速度來適應淬火過程。
⑷ 軸承的失效原因和失效的形態是什麼
軸承的失效原因: 一,軸承往往因安裝不合適而導致整套軸承各零件之間的受力狀態發生變化,軸承在不正常的狀態下運轉並過早失效。根據軸承安裝、使用、維護、保養的技術要求,對運轉中的軸承所承受的載荷、轉速、工作溫度、振動、雜訊和潤滑條件進行監控和檢查,發現異常立即查找原因,進行調整,使其恢復正常。此外,對潤滑脂質量和周圍介質、氣氛進行分析檢驗也很重要。 首先,結構設計合理的同時具備有先進性,才會有較長的軸承壽命。軸承的製造一般要經過鍛造、熱處理、車削、磨削和裝配等多道加工工序。各加工工藝的合理性、先進性、穩定性也會影響到軸承的壽命。其中影響成品軸承質量的熱處理和磨削加工工序,往往與軸承的失效有著更直接的關系。近年來對軸承工作表面變質層的研究表明,磨削工藝與軸承表面質量的關系密切。 軸承材料的冶金質量曾經是影響滾動軸承早期失效的主要因素。隨著冶金技術(例如軸承鋼的真空脫氣等)的進步,原材料質量得到改善。原材料質量因素在軸承失效分析中所佔的比重已經明顯下降,但它仍然是軸承失效的主要影響因素之一。選材是否得當仍然是軸承失效分析必須考慮的因素。 軸承失效分析的主要任務,就是根據大量的背景材料、分析數據和失效形式,找出造成軸承失效的主要因素,以便有針對性地提出改進措施,延長軸承的服役期,避免軸承發生突發性的早期失效。 軸承失效基本形態: 1.粘附和磨粒磨損失效 是各類軸承表面最常見的失效模式之一。軸承零件之間相對滑動摩擦導致其表面金屬不斷損失稱為滑動摩損。持續的磨損將使零件尺寸和形狀變化,軸承配合間隙增大,工作表面形貌變壞,從而喪失旋轉精度,使軸承不能正常工作。滑動磨損形式可分為磨粒磨損、粘附磨損、腐蝕磨損、微動磨損等,其中最常見的為磨粒磨損和粘附磨損。 軸承零件的摩擦面之間由外來硬顆粒或金屬磨削引起摩擦面磨損的現象屬於磨粒磨損。它常在軸承表面造成鑿削式或犁溝式的擦傷。外來硬顆粒常常來自於空氣中的塵埃或潤滑劑中的雜質。粘附磨損主要是由於摩擦表面的輪廓峰使摩擦面受力不均,局部摩擦熱使摩擦表面溫度升高,造成潤滑油膜破裂,嚴重時表面層金屬將會局部溶化,接觸點產生粘著、撕脫、再粘著的循環的過程,嚴重時造成摩擦面的焊合和卡死。 2.接觸疲勞(疲勞磨損)失效 接觸疲勞失效是各類軸承最常見的失效模式之一,是軸承表面受到循環接觸應力的反復作用而產生的失效。軸承零件表面的接觸疲勞剝落是一個疲勞裂紋從萌生、擴展到裂紋的過程。初始的接觸疲勞裂紋首先從接觸表面以下最大正交切應力處產生,然後擴展到表面形成麻點狀剝落或小片狀剝落,前者被稱為點蝕或麻點剝落;後者被稱為淺層剝落。如初始裂紋在硬化層與心部交界區產生,造成硬化層的早期剝落,則稱為硬化層剝落。 參考資料: http://www.ttzcw.com/college/coll_info/tp1/2010102915210020504.html
⑸ 軸承鋼表面的屈氏體是怎樣產生的
表面有屈氏體而心部組織正常,也就是說心部溫度正常而表面溫度低於正常淬火溫度了;加熱過程中是表面溫度大於或等於心部,不可能出現心部溫度高於表面,出現這樣的問題應該是冷卻中形成.
⑹ 軸承損害的原因有哪些
一、軸承安裝不當(約佔16%)
1、安裝軸承時使用不當,用錘子直接敲擊軸承,靠滾動體傳遞力,是造成損壞的主要原因。
2、安裝調整不到位,安裝有偏差或未裝到軸承位,造成軸承游隙過大或小。內外圈不處於同一旋轉中心,造成不同心。
3、對於帶密封的,很多客戶在安裝前,喜歡先把密粉拆掉,再填充一些潤滑脂,這種方法都是錯誤的,密封的直接使用即可,因為在生產時已經填充好了潤滑脂,不建議拆封再加油,如有必要,建議把軸承內原裝的潤滑脂全部清洗後,再換新的潤滑脂,避免潤滑脂型號不一致,造成軸承過早損壞。
建議:選擇適當的或專業的軸承安裝工具,安裝完畢要用專用儀器檢測軸的徑向跳動和軸向竄動是否滿足工藝要求。
二、軸承潤滑不良(約佔50%)
據調查,潤滑不良是造成軸承過早損壞的主要原因之一。主要原因包括:未及時加註潤滑脂或潤滑油;潤滑脂或潤滑油未加註到位;潤滑脂或潤滑油選型不當;潤滑方式不正確等等。一般轉速低於3000轉的,建議採用脂潤滑,比如電機上使用的,一般都採用脂潤滑。
建議:選擇正確的潤滑脂或潤滑油,使用正確的潤滑方式和合理的加註周期。
三、軸承污染(約佔14%)
污染也會導致軸承過早損壞,污染是指有沙塵、金屬屑等進入軸承內部。主要原因包括:安裝前過早打開軸承包裝,造成軸承工作表面侵入污染物;安裝時工作環境不清潔,造成軸承工作表面侵入污染物;軸承的工作環境不清潔,工作介質污染等。
建議:在使用前最好不要拆開軸承的包裝;安裝時保持安裝環境的清潔,對要使用的軸承進行清洗;增強軸承的密封裝置。
四、軸承疲勞(約佔34%)
疲勞破壞是軸承常見的損壞方式。常見的疲勞破壞的原因可能是:軸承長期超負荷運行;未及時維修;維修不當;設備老化等。
建議:合理的選擇軸承的額定負荷,延長軸承的使用壽命。
軸承是當代機械設備中一種重要零部件。它的主要功能是支撐機械旋轉體,降低其運動過程中的摩擦系數,並保證其回轉精度。
按運動元件摩擦性質的不同,軸承可分為滾動軸承和滑動軸承兩大類。其中滾動軸承已經標准化、系列化,但與滑動軸承相比它的徑向尺寸、振動和雜訊較大,價格也較高。
滾動軸承一般由外圈、內圈、滾動體和保持架四部分組成。按滾動體的形狀,滾動軸承分為球軸承和滾子軸承兩大類。
中國是世界上較早發明滾動軸承的國家之一,在中國古籍中,關於車軸軸承的構造早有記載。從考古文物與資料中看,中國最古老的具有現代滾動軸承結構雛形的軸承,出現於公元前221~207年 (秦朝)的今山西省永濟縣薛家崖村。新中國成立後,特別是上世紀七十年代以來,在改革開放的強大推動下,軸承工業進入了一個嶄新的高質快速發展時期。
軸承是各類機械裝備的重要基礎零部件,它的精度、性能、壽命和可靠性對主機的精度、性能、壽命和可靠性起著決定性的作用。在機械產品中,軸承屬於高精度產品,不僅需要數學、物理等諸多學科理論的綜合支持,而且需要材料科學、熱處理技術、精密加工和測量技術、數控技術和有效的數值方法及功能強大的計算機技術等諸多學科為之服務,因此軸承又是一個代表國家科技實力的產品。
滾動軸承的潤滑目的是減少軸承內部摩擦及磨損,防止燒粘、其潤滑效用如下。
減少摩擦及磨損在構成軸承的套圈、滾動體及保持器的相互接觸部分,防止金屬接觸,減少摩擦、磨損。
延長疲勞壽命軸承的滾動疲勞壽命,
在旋轉中,滾動接觸面潤滑良好,則延長。相反地,油粘度低,潤滑油膜厚度不好,則縮短。排出摩擦熱、冷卻循環給油法等可以用油排出由摩擦發生的熱,或由外部傳來的熱,冷卻。防止軸承過熱,防止潤滑油自身老化。
其他
也有防止異物侵入軸承內部,或防止生銹、腐蝕之效果。
⑺ 軸承鋼油淬火平面有屈氏體怎麼解決謝謝!
表面有屈氏體而心部組織正常,也就是說心部溫度正常而表面溫度低於正常淬火溫度了;加熱過程中是表面溫度大於或等於心部,不可能出現心部溫度高於表面,出現這樣的問題應該是冷卻中形成。一般是介質中含有水造成的。
⑻ 為什麼軸承套圈淬火後冷卻有屈氏體
回2樓,我們現在新爐子用的是南京科潤的466最大冷速110度每秒,我想我的軸承套圈有效壁厚不到6mm,加上我油槽有串動以及攪拌裝置應該不至於是冷卻速度的問題吧! 我初步分析可能是一下幾點原因導致1樓所述現象: 1、軸承毛坯在熱處理前表面粘附污垢在加熱過程中進入油中淬火,表面污垢繼續粘附工件表面,造成表面局部冷卻不良! 2、淬火油問題!淬火油的基礎油差!因淬火油廠家因節省成本!他們在製造淬火由時用的基礎油差!基礎油裡面雜質比較多!導致軸承零件在落如油槽瞬間表面粘附一定量的雜質!引起冷卻不良出現表面冷卻屈氏體! 以上是本人一點見解!還望專業老前輩指教!
⑼ 滾動軸承損壞的原因是什麼損壞後產生的現象
滾動軸承的故障現象一般表現為兩種,一是軸承安裝部位溫度過高,二是軸承運轉中有噪音。損壞的原因是金屬退讓性差(變形後無法復原)、抗沖擊性能差、抗疲勞性能差、負荷過大等等,具體如下:
1、軸承溫度過高。
在機構運轉時,安裝軸承的部位允許有一定的溫度,當用手撫摸機構外殼時,應以不感覺燙手為正常,反之則表明軸承溫度過高。
軸承溫度過高的原因有:潤滑油質量不符合要求或變質,潤滑油粘度過高;機構裝配過緊(間隙不足);軸承裝配過緊;軸承座圈在軸上或殼內轉動;負荷過大;軸承保持架或滾動體碎裂等。
2、軸承噪音。
滾動軸承在工作中允許有輕微的運轉響聲,如果響聲過大或有不正常的噪音或撞擊聲,則表明軸承有故障。
滾動軸承產生噪音的原因比較復雜,軸承內、外圈配合表面磨損。由於這種磨損,破壞了軸承與殼體、軸承與軸的配合關系,導致軸線偏離了正確的位置,在軸在高速運動時產生異響。
當軸承疲勞時,其表面金屬剝落,也會使軸承徑向間隙增大產生異響。此外,軸承潤滑不足,形成干摩擦,以及軸承破碎等都會產生異常的聲響。軸承磨損松曠後,保持架松動損壞,也會產生異響。
(9)軸承表面屈氏體是什麼原因擴展閱讀
軸承生產的專業化為其生產自動化提供了條件。在生產中大量採用全自動、半自動化專用和非專用機床,且生產自動線逐步推廣應用。如熱處理自動線及裝配自動線等。
基本特點好處:
(1)、節能顯著。由於滾動軸承自身運動的特點,使其摩擦力遠遠小於滑動軸承,可減少消耗在摩擦阻力的功耗,因此節能效果顯著。
主軸承採用滾動軸承的一般小型球磨機節電達30%~35%,中型球磨機節電達15%~20%,大型球磨機節電可達10%~20%。由於球磨機本身是生產中的耗能大戶,這將意味著可節約一筆及其可觀的費用。
(2)、維修方便,質量可靠。採用滾動軸承可以省去巴氏合金材料的熔煉、澆鑄及刮瓦等一系列復雜其技術要求甚高的維修工藝過程以及供油、供水冷卻系統,因此維修量大大減少。而且滾動軸承由於是由專業生產廠家製造,質量往往得到保證。
⑽ 軸承發生故障的原因有哪些
據有關統計顯示,在旋轉機械故障率中有近30%的故障是由於滾動軸承發生故障而引起的,所以對其的狀態監測和故障診斷進行研究勢在必行。陌貝網為您提供更多軸承知識,軸承故障診斷剛開始主要是依靠人工聽覺來診斷,再有就是利用探聽棒這種方法在許多企業中仍在使用,一些工具已經被改進到電子聽診器。例如,當使用電子聽診器檢測軸承故障時,具有經驗豐富的人員可以憑經驗診斷軸承疲勞剝落,有時還可以診斷出損傷發生的位置,但是其它的外部原因,可靠性有時會無法得到保證。隨著科技的發展,越來越多的振動儀器被運用到在滾動軸承的狀態監測工作中。這些儀器利用振動位移、速度和加速度的均方根值或峰值來判斷軸承是否有故障。這些儀器減少我們對經驗的依賴,使得監測和診斷的准 確性有了很大的提高,但是在故障發生的初始階段仍然很難及時做出准確的診斷。瑞典SKF公司在多年研究軸承故障機理的基礎上,於1966年發明了脈沖計檢測軸承損傷的方法,很大程度上的提高了滾動軸承的故障診斷工作的准確性和及時性。滾動體共振頻率、滾動軸承振動與缺陷、非均勻尺寸與磨損的關系最具代表性。