A. 小电流接地选线装置原理
小电流接地选线装置原理是利用接地瞬时的暂态信号进行选线,暂态信号具有幅值大、不受消弧补偿影响的优点,选线可靠性很高。
由于各种干扰的影响,特别是当系统较小或是加装自动调谐的消弧线圈后,电容电流数值较小,接地点电弧电阻不稳定时,零序电流(或谐波电流)数值很小,可能被干扰淹没,其相位不一定正确,从而造成误判。工程上所采用的零序电流互感器精度太低。
当原方零序电流在5A以下时,许多厂家生产的零序电流互感器,带上规定的二次负荷后,变比误差达20%以上,角误差达20'以上,当一次零序电流小于1A时二次侧基本无电流输出,无法保证接地检测的准确度,且选线检测装置用的电流变换器线性性能差,变电站自动化系统的选线检测元件大多按保护级选择。
保护级互感器在所测电流远小于额定电流值时,综合误差难以满足要求,两级电流变换元件的总误差是造成现场误判的主要原因。工程实际中使用的零序滤序器的线性测量范围超出了实际可能的接地电容电流。
(1)排线检测装置扩展阅读
测量环节的综合误差是各种微机选线装置误判的主要原因,工程应用中尽量使参数配合适当,减小测量环节的综合误差,有效提高小电流接地选线系统的选线准确率。工程中一般采取的有效措施包括:
1)尽量选择准确度高的专用零序电流互感器,额定原方电流的选择应保证系统出现最大接地电容电流时能处在零序电流互感器的线性范围内(准确限值),原方电流的线性测量范围应向下延伸到0.2A左右,用以适应经消弧线圈接地的小电流接地系统。
2)零序滤序器应尽量使用变比较小的计量级(最好为S级)电流互感器组合而成,较小的变比可使电容电流的二次值较大,有利于检测装置的电流变换器采集电流值,S级使电流互感器的测量精确线性范围更宽,有利于测量较小的电容电流。工程实践中不宜与计量系统合用同一电流互感器线圈。
3)微机检测装置的电流变换器的线性测量范围应与互感器的二次输出值配套,工程实践计算经验表明:零序电流互感器的二次侧电流一般为mA级,电流变换器的线性测量范围应以mA级起步,例如:普通型保护零序最小检测电流为6mA。XC-LJK最小检测电流为5mA.。
B. 6排线短路检测电路图
你这是爬都还没学会就想学跑。想要学好首先是简单实验电路要会连接,比如理论上谁都知道短路是怎么回事,但是实际接线的时候并一定就知道。电压表,电流表使用时一个并联,一个串联,这个在理论上都知道,但是实际操作的时候不动手的人还是不知道怎么用。继电接触器控制系统的线路一般都比较负载,要想很顺利的接线,脑袋里一定要有这个图,而不是看着图来连线,那样很容易遗漏某条线路。总之就是平时从简单电路动手练习,后面才能做好,谁都不可能一步登天的。
C. 怎样检测接地装置接地是否良好
测量接地电阻的方法有仪表测量法、摇表测量法和万用表测量法。
大电流接地系统版,接地装置的接地电阻值在一年内权任何时候都不应超过0.5Ω;
小电流接地系统,接地装置的接地电阻值一般不宜超过10Ω;
独立避雷针的接地电阻值一般不大于25Ω;
安装在架构上的避雷针其接地电阻值一般不大于10Ω。
采用不同的接地的形式,选择不同的接地材料都会影响接地电阻的大小。影响接地电阻的还有土壤电阻率ρ,钢材等效直径d,地网面积S,埋设深度H,接地极长度L,形状系数A。
在电力系统中,为了降低接地电阻,加速接地电流的扩散,减少地电位的升高,获取精确的接地电流以提高继电保护的灵敏度,广泛采用接地装置。接地装置是接地体(埋入地中并与大地直接接触的一组金属导体)和接地引下线(电气设备接地部分与接地体连接的金属导体)的总称。接地电阻是指电流经过接地体进入大地并向周围扩散时所遇到的电阻,接地电阻值的大小直接反应接地装置的工况,它不仅关系到检修和运行人员的人身安全,还直接影响有关保护动作情况,所以接地电阻的测量非常重要。
D. 接地故障检测原理是什么
接地故障检测原理:
一.被动式检测法
通过检测和捕捉接地故障瞬间,配网系统各项数值变化,来判断故障发生和故障位置、故障相。
主要包括:
1)5次谐波法:检测线路电流的5 次谐波的变化情况,当5 次谐波突然增大,同时系统电压下降,则判断为发生接地。
缺陷:可靠性低。
2)电容电流脉冲幅值法:
1、在接地故障的瞬间,接地点出现一个频率很高幅值很大的暂态电流,暂态电流分量的幅值比流过同一点的电容电流的稳态值大几倍到几十倍;
2、在接地瞬间故障相电容电荷通过故障相线路向故障点放电,而故障线路分布电容、分布电感和电阻对高频率的暂态分量具有衰减性;
3、由于所有非故障线路的暂态电流均流向故障线路,经故障点回到大地,导致故障线路从变电站到故障点之间的暂态电流幅值最大。
缺陷:可靠性低。
3)首半波法:
在发生单相接地的瞬间,故障相的对地电容会对接地点放电,从而产生一个放电的电流脉冲,电容电流脉冲幅值法不同的是,该方法不是比较幅值大小,而是采样接地瞬间的电容电流首半波与电压波形,比较其相位。当采样接地瞬间的电容电流首半波与接地瞬间的电压同相,同时导线对地电压降低,则判断线路发生接地。缺陷:可靠性60%~70%,主要在于雷击故障会造成误判断。
二.主动检测法:
不对称电流法:
不对称电流法检测单接地故障的原理就是按照小电流接地系统单相接地故障的特点,通过检测使故障线路上产生的不对称电流信号的特征来实现故障选线和故障点定位的。当线路上任何一点发生单相接地故障时,装在变电站内或线路上的不对称电流源检测到故障信息后,首先判断出故障相,然后对故障相施加特定信号,安装在线路上的故障检测装置检测流过本线路的特定信号,若满足故障特征则故障检测装置给出报警,从而指示出故障位置。
故障发生瞬间,不对称电流源检测到开口三角电压升高,准电子pt检测到故障发生,并确认故障特征持续事件大于5秒,即控制内部高压交流接触器,发出脉动信号。
优点:
1.安全性高 :不对称电流源产生的信号不影响 变电站主变、接地变、消弧线圈及线路的正常运行(相当于一个 阻性负荷投入和退出),不对称电流源在系统正常运行时与一次线路完全隔离。同时由于不对称电流源产生的信号是低频纯阻性的 , 还可以消除谐振 ,抑制过电压 ,降低过电压对系统的危害。
2.准确性高:不对称电流源使故障线路上流过具有明显特征的电流信号 ,挂在线路上的指示器检测到该特殊信号后才会给出故障指示 ,因此该检测方法不受系统运行方式、拓扑结构、中性点接地方式的影响 ,准确性极高。
E. 拉丝机都有哪些结构装置
直接无捻拉丝机和无捻粗纱拉丝机分别由卷绕机头、排线装置、排线离行装置、换筒装置、油雾润滑装置、气动装置、喷雾装置、机头制动装置组成:
1、卷绕机头结构
机头主轴和机头本体的接合部分采用锥面体啮合定位,保持机头旋转精度。机头结构为离心涨块式,由机头本体、涨块、涨块键、压力弹簧、机头前盖、机头后盖组成。整个机头的材质均采用铝合金和不锈钢材料。机头高速旋转时在离心力的作用下涨块将绕丝筒支撑起来,纤维则缠绕在绕丝筒表面。当缠绕结束机头停止转动时,离心力消失涨块自由落下即可卸筒。
2、排线装置
螺旋钢丝排线轴的运动分为旋转运动和往复运动:旋转运动由排线电机通过同步皮带传动来实现,往复运动由伺服电机通过同步皮带、滚动丝杠组件、直线轴承传动来实现。往复移动的行程在50~200mm之间,改变两个限位传感器的位置就可以调整往复移动的行程。
3、排线器离行装置
无捻粗纱拉丝机排线器离行装置的作用一是使排线器在卷绕开始时向机头方向移动,二是在卷绕过程中随着时间的延长和丝饼厚度的增加,使排线器逐渐向右移动(也称之为横移)。使排线钢丝与丝饼表面层的间距保持不变,从而保证丝饼内外层张力一致。
4、换筒装置
换筒装置由换筒电机和气缸联合驱动,以便转位于适当的卷拉位置。电机经减速齿轮和链条驱动转动架转子,直至机头位置检测传感器检测到止挡为止;然后转动架定位气缸动作,使转动架转子转位于指定位置并将止动挡块牢固的夹持住。以保证拉丝作业的正常进行。
5、油雾润滑装置
油雾是指在高速空气喷射气流中悬浮的油颗粒。油雾润滑装置是将压缩空气管线引来的干燥压缩空气引入油雾发生器,借助压缩空气载体利用文氏管、涡流效应将润滑油雾化成悬浮在高速空气喷射流中的微细油颗粒并将油雾输送到各润滑点。
6、气动装置
直接无捻拉丝机和无捻粗纱拉丝机的气动装置由空气压力开关、空气压力调节阀、电磁阀、执行气缸和气动管件组成。
7、机头制动装置
电磁能耗制动是非接触无摩损制动。制动力矩大,工作可靠。它将径降压整流后的直流电输入到电机的定子绕组,从而产生与回转方向相反的电磁力矩,以实现电磁能耗制动。
8、喷雾装置
拉丝机中的喷雾装置有排线喷雾和换头喷雾。
排线喷雾是将去离子水雾化成直径5~10μm的雾滴,然后沿喷嘴近似切线方向喷出。喷雾装置的作用是清洁排线钢丝,防止浸润剂在排线钢丝处结膜。
换头喷雾是换筒时防止毛丝落在卷绕好的丝筒上面。