⑴ 某工厂变配电所防雷保护与接地装置设计
1,屋面顶沿四周一圈,屋面中间再来两根横的,离面200,中间再来一根直的,回与两横交错部位要焊接,再在答对称角引两接地线到地下,与接地网连接,以上可用直径10MM镀锌圆钢。
2,变压器室,低压室内,在所在地面400MM高处用40*4贬钢焊一圈,所有带电设备都要与接地圈焊接,变压器底座至少要有两个以上接地点连接。
3,接地网,在变配电所四周,离地基不少于3米远,每五米远打一接地桩,桩两米五,打下后顶面要低于地面对300MM,不少于15个桩,都要用40*4镀锌连接,焊面不少于3个,如用接地模块,不得少于10个,模块顶面要低于地面800MM以上。
4,接地网到变配电所引入点每处不少于二个,配电房要三个
⑵ 500kV变电站防雷接地有什么设计规范或者行业、国家标准
500kV变电站防雷接地可参照的规范或标准有:
DL/T620-1997《交流电气装置的过电压保护和绝缘内配容合》;
DL/T621-1997《交流电气装置的接地》;
GB50169-2006《电气装置安装工程接地装置施工及验收规范》;
GB50057-2010《建筑物防雷设计规范》;
DLT 381-2010 《电子设备防雷技术导则》;
GB 50065-2011 《交流电气装置的接地设计规范》。
⑶ 电力变电站怎样防雷
1 提出问题
沿海地区的年雷暴日高,发生雷击事故的概率大。因此,在变电站的设计过程中,为保护变电站的设备安全,提高其供电可靠性,优化防雷设计方案,加强变电站的防雷安全措施,最大程度的减少雷击事故的发生,有着极其重要的意义。
本文仅对变电站内的电气设备、控制保护系统的防雷保护、防静电和防干扰屏蔽措施进行探讨。
2 接地装置
保护和屏蔽措施都要求有科学可靠的接地装置。
2.1接地体
接地体可分为自然接地体和人工接地体,设计中通常采用人工接地体,以便达到所规定的接地电阻,并避免外界其他因素的影响。人工接地体又可分为水平接地体和垂直接地体。
接地体的接地电阻值取决于接地体与大地的接触面积、接触状态和土壤性质。
垂直接地体之间的距离为5m左右,顶部埋深0.5~0.8m。接地体与道路或通道出入口的距离不小于3m,当小于3m时,接地体的顶部处应埋深1m以上,或采用沥青砂石铺路面,宽度超过2m。埋在土壤中的接地装置连接部位应按规范规定的搭接长度焊接以达到电气连接。焊接部位应作防腐处理。
2.2接地线
接地线即接地体的外引线,连接被保护或屏蔽设施的连线,可设主接地线、等电位连接板和分接地线。
防雷接地装置的接地线即防雷接闪装置的引下线,可采用圆钢或扁钢,两端按规定的搭接长度焊接达到电连接。
防静电保护和防干扰屏蔽装置的主接地线一般采用多股铜芯电缆,分接地线采用多股铜芯软线。
3 防雷保护措施
防雷措施总体概括为2种:①避免雷电波的进入;②利用保护装置将雷电波引入接地网。防雷保护措施应根据现场常见的雷击形式、频率、强度以及被保护设施的重要性、特点安装适宜的保护装置。
3.1避雷针或避雷线
雷击只能通过拦截导引措施改变其入地路径。接闪器有避雷针、避雷线。小变电所大多采用独立避雷针,大变电所大多在变电所架构上采用避雷针或避雷线,或两者结合,对引流线和接地装置都有严格的要求。
3.2避雷器
避雷器能将侵入变电所的雷电波降低到电气装置绝缘强度允许值以内。我国主要是采用金属氧化物避雷器(MOA),西方国家除用MOA外,还在所有电气装置上安装空气间隙,作为MOA失效后的后备保护。
3.3浪涌抑制器
采用过压保护器(电涌保护)、防雷端子等提高电气设备自身的防护能力,防止电气设备、电子元件被击坏。在重要设备的电源配入、配出口均应加装电源防雷器,选用的电源防雷器具有远传通讯接点,接入后台管理机。当发生雷击事故时,如电源防雷模块遭到损坏,在后台监控机上就能显示其状态。在控制、通讯接口处加装浪涌抑制器。
3.4接地装置
独立避雷针要求单独设置接地装置;建筑物避雷网的引下线应与建筑物的通长主筋(不少于2根)及建筑物的环状基础钢筋焊接,并与室外的人工接地体相连,与工作接地共地,形成等电位效应。为了保证防雷装置的安全可靠,引下线应不少于2根,在高土壤电阻系数地区,可采用多根引下线以降低冲击接地电阻,引下线要求机械连接牢固,电气接触良好。变电站的防雷接地电阻值要求不大于1Ω。
4 防雷电感应
现代变电站都有较完善的直击雷防护系统,户外设备直接遭雷击损坏的概率较小。但雷击防雷系统时所产生的雷电放电及电磁脉冲,以及雷电过压通过金属管道、电缆会对变电站控制室内各种弱电设备产生严重的电磁干扰,从而影响整个系统的正常运行。
变电站防雷系统落雷时,会产生2个方面的影响:①雷电流要通过站内接地网(主要靠集中接地装置)泄入大地,在地网上产生一定的冲击电位,严重时会在一些部位产生反击,甚至产生局部放电现象,危及电气设备绝缘;②雷电流通过避雷针的接地引下线入地时,会在周围空间产生强大的暂态电磁场,从而在各种通讯、测量、保护、控制电缆、电线,甚至户内弱电设备的部件上产生暂态电压,影响这些设备的正常运行。
4.1雷击时暂态感应电压分析
雷击厂站有2种情况:①雷击站内的构架或独立避雷针;②雷击站内所在建筑物的防雷系统。雷电放电会对周围空间,包括控制室内造成传导或幅射的电磁干扰。在雷电波等值频率范围内,这些干扰主要是电感耦合型的。从户外设备引入控制室的各种电缆、电线,在户外绝大部分是走地下电缆沟的,雷电放电形成的空间电磁场对其影响不大,这主要是因为线的走向与避雷针是垂直的。但在建筑物内走线时就容易产生感应回路,而且这些回路的一端接入输入阻抗大的电子设备,相当于开路,穿透建筑物钢筋水泥墙壁的电磁脉;中会在这些回路中感应出幅值较高的暂态电压。
(1)雷击变电站内靠近控制室的避雷针时,情况相当复杂,因为整个建筑物的各个导电构件,包括防雷系统、水泥墙及地板中的钢筋、金属横粱等的影响都需要考虑。
(2)建筑物防雷系统除避雷针外还包括由接地引下线、水平连接母线及引下线下的接地装置构成的泄流系统。雷击时,雷电流经过离室内务回路相当近的各接地引下线泄入地网,在各回路周围空间产生很强的暂态电磁场。因接地引下线紧贴墙壁,故此时墙中的钢筋甚至墙上专门设置的屏蔽网已基本不起屏蔽作用。因为只有处于非磁饱和状态的屏蔽材料才能具备预期的屏蔽效果,而由于强辐射源离屏蔽层很近,若屏蔽层又不是用饱和电平较高的磁性材料做成,则其屏蔽效果是很差的。另外磁通也可以穿过较大的孔眼直接与较近处的回路耦合。
4.2防护措施
为保证弱电设备的正常运行,可从以下几方面采取措施:(1)采用多分支接地引下线,使通过接地引下线的雷电流大大减小。(2)改善屏蔽,如采用特殊的屏蔽材料甚至采用磁特性适当配合的双层屏蔽。(3)改进泄流系统的结构,减小引下线对弱电设备的感应并使原有的屏蔽网能较好地发挥作用。(4)除电源入口处装设压敏电阻等限制过压的装置外,在信号线接入处应使用光电耦合元件或设置具有适当参数的限压装置。(5)所有进出控制室的电缆均采用屏蔽电缆,屏蔽层公用一个接地网。(6)在控制室及通讯室内敷设等电位,所有电气设备的外壳均与等电位汇流排连接。
5 微机保护防干扰屏蔽措施
变电站的微机保护设备容易受到电磁干扰,由于受到电磁感应,在被测信号上产生叠加的串模干扰e。;由于受到静电感应、地电位差异的影响,在信号线任一输入端与地之间产生叠加的共模干扰ec。防干扰措施通常采取屏蔽和接地相结合,将所有屏蔽电缆分屏屏蔽,用截面积>2.5mm2多股铜芯软线作为接地线,分别与汇流接地母排电连接,汇流接地母排与屏体绝缘,并采用单芯屏蔽电缆(>95mm2)与室外接地体做一点连接。
6 结束语
根据防雷设计的整体性、结构性、层次性、目的性,及整个变电站的周围环境、地理位置、土质条件以及设备性能和用途,采取相应雷电防护措施。对处在不同区域的设备系统进行等电位连接和安装电源防雷装置及浪涌电压保护装置,使得处在不同层次的设备系统达到统一的防雷效果。
变电站设计时应尽可能使象微波塔这样有引雷作用的建筑物远离控制室和通讯室,特别是当其周围没有更高的屏蔽物时。建筑物防雷系统,尤其是泄流系统的设计对感应电压的幅值有明显的影响。在设计时应根据实际情况采用最优方案,尽量减少感应,同时也要采取其他措施以保护敏感的弱电设备。
⑷ 求浅谈变电所的接地设计中应注意的几个问题
变电所的接地形式按其用途可分为工作接地、保护接地、防雷接地及防静电接地四种接地方式。每种接地方式布置是否规范、合理,不仅对站内人身和设备的安全造 成影响,同时也可能对整个电网安全运行带来危害,因此变电所的接地设计显得非常重要。笔者从事变电所设计工作多年,认为在变电所接地设计中应注意以下几个 方面:
一、 工作接地设计方面
变电所的工作接地主要指主变压器中性点和站用变低压侧中性点的接地。1、对于主变压器,为防止在有效接地系统中出现孤立不接地系统并产生较高的工频过电压的异常运行工况,根据《防止电力生产重大事故的二十五项重点要求》中17.7、17.9条规定要求,110kV~220kV变压器中性点应有两根与主接地网不同地点连接的接地引下线,主变中性点应加装间隙并联氧化锌避雷器进行保护。且当主变中性点绝缘的冲击耐受电压≤185kV时,还应在间隙旁并联金属氧 化物避雷器,间隙距离及避雷器参数配合要进行校核。2、变电所站用变通常选用△/yn,d11接线组别的变压器,为保证站用变低压出线漏电保护能正确动 作,从而避免设备漏电对人身造成伤害,因此站用变低压系统的接地系统应结合站用变低压侧出线断路器漏电保护原理进行选择,由于目前站用变低压侧出线通常采用带四极漏电保护的断路器,即漏电保护动作电流取三相火线和中性线(零)线产生的不平衡电流,为此低压接地系统中性线和保护线应分开,故站用变低压接地只可采用TN-S、TT系统。
二、 保护接地方面
保护接地按被保护对象性质可分为一次设备保护接地和二次设备保护接地。一次设备保护接地指变压器、高压配电装置金属外壳及高压电力电缆外皮进行接地; 二次设备保护接地指互感器二次绕组、低压配电、保护、控制屏(柜、箱)、二次端子箱及低压配电箱外壳等进行接地。这里应注意的问题:
1、为保证一次设备保护接地的可靠性,对变压器及高压配电装置金属部分均采用双接地引下与不同的主网接地点进行连接,对可移动的配电装置高压配电柜门采用25mm2多股软铜线进行接地。若电抗器置于户内楼面布置时,为避免沿楼面钢筋形成电磁环流,对影响范围内的楼面钢筋间搭接点应用橡皮隔开。
2、二次设备保护接地除二次装置金属外壳需可靠接地外,为避免由于连接在接地网不同接地点间出现的电位差造成保护的误动作故障发生,所有互感器的二次回路只能采用一点接地:(1)对于电流互感器的二次回路一般在配电装置附近经端子排接地,但对于有几组电流互感器连接在一起的保护装置(如母差保护),则应在保护屏上经端子排接地;(2)电压互感器的二次回路,则利用控制室的零相小母线的一点接入地网。同理,控制保护屏上的保护接地也应先全部连接后再经一点接入主接地网。
三、 雷电保护接地方面
雷电保护接地指为雷电保护装置(避雷针、避雷线和避雷器等)向大地泄放雷电流而设的接地。为此变电所构架避雷针(带)和避雷器不仅应采用双引下接地方式,并敷设2~3根放射状水平接地极与主网相连,以达到加强对雷电流的分流作用。
四、 防静电接地方面
现有微机保护的抗静电干扰能力较差,外界的干扰可能使微机保护发生误动,因此变电所防静电接地设计就显得犹为重要。防静电接地目的主要对保护室进行屏蔽处理,并使所有保护装置的接地处于同一等电位接地网上。实施途径: (1)在控制室四周墙壁内加装钢板网,并连接在一起与地网相连,从而对室内的保护设备进行屏蔽;(2)控制室内地网采用—22*4铜排敷设成网格,各保护屏的专用接地采用25mm2的多股软铜线与铜网相连,铜网最终以一点主接地网相连。同时为方便继电保护试验,往往在控制室墙角预留1-2个铜排接地端子。