1. 下图是米勒关于原始地球的模拟实验装置,根据下图所示,填写出该装置的一些名称,并回答下面的问题。 (
(1)原始地球原始大气
(2)原始大气闪电 (3)氨基酸(有机物) (4)原始地球条件下,能形成构成生物体的有机物 2. 根据米勒的实验性装置图,回答下列问题:(1)实验装置中将水加热成沸水的目的是什么(2)用正负极的用
如图,在米勒的模拟实验,一个盛有水溶液的烧瓶代表原始的海洋,其上部球型空间里含有氢气、氨气、甲烷和水蒸汽等“还原性大气”. 3. 模拟大自然中水循环的实验我的分享是什么
模拟自然界里水的循环 4. 模拟实验 油源对比发现,东营凹陷沙三段砂岩透镜体内的原油并非完全来自沙三段的烃源岩,其油源主要为沙三段和其下部沙四段的混源油。那么在没有明显大断层沟通的情况下,沙四段的油是如何进入到沙三段的烃源岩中的呢?前文提出油气可以通过裂缝和薄层砂作为输导通道运移到砂岩透镜体中成藏,裂缝和薄层砂这两种输导要素在空间上的配置关系和组合样式对油气输导效率及输导过程究竟如何呢?本次实验的目的就是应用细棉线模拟裂缝,将棉线和砂体连接,模拟油气是否能够由细棉线导入砂岩体中并在砂体中聚集成藏的过程。 (一)模型的物理模拟实验 1.模型 图3-15即为油气有机网络简单物理模拟实验装置图。该模型的尺寸为长(50cm)×宽(30cm)×厚(2cm)。左上角和右下两角扇形体分别以粒径0.4~0.45mm的石英砂充填,左上角扇形体半径为11cm,右下角扇形体半径为10cm;模型中央为一近椭圆形体,以粒径0.4~0.45mm的石英砂充填,长宽分别为22.5cm、16cm;与左上及右下砂岩扇体的距离分别为9.5cm、8cm。模型内其余部分以泥岩充填。红色箭头A、B指示注油口,孔a为注水口,孔b为排气口。线1、2、3为细棉线。单股棉线的直径约0.2mm。在常温常压下进行实验。 图3-15 简单模拟实验装置示意图 2.实验结果 首先由示意图中的a孔注水,排出装置中央透镜体中的空气,当b孔有水流出时,排气结束。然后将a、b孔皆关闭。然后由A、B两个注油口开始注油,注油速度皆为0.5mL/min。经过1h后,下扇形体内的油经过棉线运移到透镜体内并在浮力作用下至顶部聚集;同时上扇体的油也开始经过棉线运移到透镜体内(图3-16左)。 距开始注油大约70min后,A口注油的速度减小到0.1mL/min,B注油口的速度维持0.5mL/min不变。约20min后,上扇体内的油继续缓慢通过棉线运移到透镜体内;下扇体内的油也继续通过棉线运移到透镜体内,透镜体上部聚集的油量明显增加(图3-16中)。此时再次改变注油速度,A口注油速度变为0.2mL/min;B口停止注油。3h40min后,上扇体的油进一步通过棉线运移到透镜体内,并上浮至顶部聚集(图3-16右)。A口停止注油,进入静观阶段。 图3-16 实验进行时的油气运移结果图 在经历了18h的静观阶段后,由两边扇体通过棉线进入透镜体内的油量明显增多。油在透镜体上部大量聚集,累积油柱高度为9cm(图3-17)。 图3-17 实验进行23h油气运移结果图 至此实验结束,本次实验共持续23h15min,累积注油量:由A口注油77.5mL,由B口注油43.5mL。 (二)较复杂模型的物理模拟实验 1.实验模型 图3-18即为较复杂物理模拟实验装置图。该模型的尺寸为长(50cm)×宽(30cm)×厚(2cm)。一共分为上下5层,其充填物依次为含油泥、细砂、含油泥、细砂、泥岩,有4个透镜体分别布置在最下层和最上层中,上面两个透镜体由单股棉线(模拟裂缝)与其下端的细砂岩相连。其中细砂岩粒径为0.15~0.2mm(模拟薄砂层),透镜体内的砂砾粒径为0.35~0.4mm,含油泥中油与泥的比例约为1:5.16,a口为注油口,本实验在常温常压下进行。 图3-18 油气有机网络运移复杂模拟实验装置示意图 2.实验过程 实验装置完毕即为开始实验,7h25min后,右下侧透镜体开始进油(图3-19左),无其他现象发生。 26h15min后,左下侧透镜体内的聚集的油进一步增加,从下往上数第二层细砂岩条带有油气渗入(图3-19右)。 到第9天,改变实验措施,由a口开始注油,注油速度为0.15mL/min,53min后(222h33min),下条带细砂层开始进油(图3-20左)。 6h55min后,下细砂条带聚油量增加,左下侧扇体聚油量增加,此时停止注油,进入静观阶段。1天后,下细砂条带内油从右向左运移,且下侧两个透镜体聚油量增加,聚油体积都约占整个透镜体的70%。再过l天(累计进行到约269h),左下侧透镜体聚油体积约占整个透镜体体积的90%,右下侧透镜体的聚油体积约占95%(图3-20右)。 此后再次由a口注油,随着注油量的增加,下面两个透镜体都逐渐完全被油充注,下细砂条带的聚油量也逐渐占满整个条带,随后上细砂条带也开始见油(图3-21左)。 图3-19 复杂模拟实验油气运移图 图3-20 复杂模拟实验油气运移图 随着实验的继续进行,上细砂岩条带的聚油量逐渐增加,最终充满整个条带,且该条带内的油通过棉线导入上面两个透镜体中(图3-21右),至此实验结束,累计进行时间约359h,本次实验累积注油量348.69mL。 图3-21 复杂模拟实验油气运移图 3.实验讨论 本次实验历时共约359h,由以上实验可以发现,常温常压下,由于烃浓度差引起的渗透压差和扩散压差,底层含油泥岩内的油具有运移到与其相邻的砂岩体中的趋势。在毛细管力差和烃浓度差的作用下,底层泥岩中的油首先进入被其包围的孔隙较大的砂岩透镜体中,而不太容易运移到其上部的细砂岩条带中。 随着底层油不断的注入,压力不断增大,最终能够克服底层泥岩与其上层细砂岩的毛细管力时,油就进入到其中,当其浓度足够大时,在烃浓度差的作用下,油运移到层3中。层3中的油在渗透压差的作用下,运移到层4中。联结顶层砂岩透镜体与层4的棉线能起到很好的输导油的作用,因此层4的油能沿着棉线模拟的裂缝运移到顶层的两个砂岩透镜体中。 通过本次实验,可以看出,仅靠底层泥岩中的油自然渗透和扩散,其运移能力有限。但是在油源充足的情况下,底层的油最终能够运移到与之相隔几层的砂岩透镜体中。 5. 哪里能做水下压力模拟实验 水的压力F=水的压强P×装水的容器的底面积S 水的压强P=ρgh 公式为:F=ρghS ρ=1.0×1000 千克/立方米 g=10 牛/千克 h=水的深度
6. 朱家岩隧道涌水物理模拟 4.3.1 物理模拟基本原理 岩溶管道水系统物理模拟是用等效水箱(水能储存单位)与变径管束(水能输送单位)组合的模拟模型来逼近真实的岩溶地下水系统。按水力相似原理,以一定的时空比例来组装模拟模型,通过动态模拟,寻求岩溶管道水系统含水介质体和地下水运动特征,求取水文地质参数,为岩溶地下水系统定量评价和水量预报提供依据。 岩溶管道水系统进行物理模拟要进行一定的概化和时空缩小等多方面的处理。概化与处理必须遵循一定的规律,即满足力学相似条件。力学相似条件是指系统与模型内的水流中同类运动要素(例如某点速度或阻力)之间存在一定的比例关系。力学相似包括几何相似、运动相似、动力相似、边界相似等四个方面。 岩溶地下水系统的物理模拟以力学相似定律为基础,同时结合系统自身的结构与水流运动特征,建立相应的相似准则。 岩溶管道水系统中地下水的运动受控于水力梯度与介质空隙空间体形态及其组合。经分析与总结前人的研究成果表明,在系统中,重力和紊动阻力作用是影响地下水运动状态的关键因素。因此,系统物理模拟需同时建立重力相似准则与紊动阻力相似准则。 据水力学推导,紊动阻力相似要求两个水流沿程阻力系数对应相等。沿程阻力系数仅与管壁粗糙度有关。紊动阻力相似准则是模型中管壁粗糙度与原型中对应点管壁粗糙度之比是模型与原型线性比的1/6次方倍[1]。 4.3.2 岩溶管道水流物理模拟过程 岩溶管道水系统物理模拟,包括了对岩溶储水介质的模拟、对岩溶导水介质的模拟以及对其二者的混合模拟。其中对岩溶导水介质水流的模拟是整个系统模拟的关键,又是一个极其复杂的过程,难度很大,它涉及水能转换、质量守恒及介质对水流的阻力等问题。同时,由于岩溶管道介质的复杂多变性,其模拟技术很值得研究。 在对岩溶管道水流物理模拟中,首先通过对野外资料,特别是水位与水流的关系资料进行分析,然后考虑如何对其进行模拟。在一般情况下,岩溶管道可采用变径管束来对其进行模拟,用阻力元件模拟管道阻力,实现对实际管道的模拟仿真,其模拟过程如图4.4所示[2]。 图4.4 岩溶管道水流物理模拟过程 4.3.2.1 管道流量-水位曲线分析 在整个岩溶管道水系统中,管道断面很不规则,是一个很难测量的量,这给岩溶管道水流流速的研究带来了困难。而水流流量中已经包含了水流断面和流速的信息,它是水流速率与断面面积的乘积。如果已知管道流量和某断面面积,也就等于知道了流速。另外,由于水的不可压缩性,当管道全部充水时,管道内各断面的流量都是相同的。因此,为了简化所研究的问题,在物理模拟时,以水流流量作为基本量。 在岩溶管道系统中,管道的流量与流速一样,它与管道的长度、水力半径、水的密度、水动力黏度系数、管道的粗糙度、水流流态等因素有关。在这众多的影响因素中,大多数因素是难以知道的。因此,在研究岩溶管道的流量与介质的关系时,应先将上述因素用管道的综合流量参数加以表示,然后,有条件时,再逐步深入,研究其他具体的影响因素。 在单一的岩溶管道里,其流量与其驱动水头的关系如下[3]: qv(t)=α[H(t)-H0]1/n(4.8) 式中:H(t)、H0为某瞬时管道进、出口的水位;ΔH=H(t)—H0为某瞬时管道的驱动水头;qv(t)为某瞬时通过管道的流量;α为管道的综合流量参数;n为流态指数,当管道流态为紊流时n=1.75~2,当管道流态是层流时n=1。 ΔH-Q的特征曲线见图4.5。从图中知道,当流量参数α较大时,其流量较大,曲线远离ΔH轴,说明管道的阻力小、导水能力强;反之当流量参数α较小时,其流量较小,曲线靠近ΔH轴,说明其管道阻力大、导水能力弱。依据单一管道流量特征曲线,很容易采用单一管道来模拟单一的岩溶管道。在模拟时,可采用模拟管道中的阻力元件来模拟实际管道阻力。在多数情况下,其模拟结果能达到异构同功的效果。 图4.5 单一岩溶管道流量与驱动水头关系曲线 4.3.2.2 岩溶管道的等效箱-管组合模拟 在自然界里,岩溶管道往往都不是以孤立、单一的形式存在,而是以组合交叉或网络等形式存在,这时就要用管道组合来模拟,或者说等效箱-管组合模拟。这是因为岩溶管道还是一个灰箱或黑箱系统,因而只能在过水能力和过水方式上进行等效模拟。模拟时,根据实际资料所提供的信息,包括管道的空间状态、流量动态、通道条数及过水能力等作为模拟初值。在对岩溶管道水流模拟中,以机控水箱来模拟储水空间,以玻璃管来模拟管道。而模拟结果则是要确定管道系统是单一(主)通道或是多通道(包括管束或有差异的导水介质)以及管道(或导水介质)间的组合方式,求出综合流量参数。因此,首先要对管道的qv=f(ΔH)特征曲线作分析,绘出其流量与驱动水头的特征曲线,如果该管道是单一管道,则其流量与驱动水头的关系满足于式(4.8);反之则实测曲线与模拟曲线相差甚大,此时要考虑用等效箱-管来组合模拟。经过反复切换管道组合模式,最终确定一种模拟结果较理想的组合模式。 4.3.3 物理模拟的应用 郭纯青等[1]对广西北山铅锌黄铁矿区岩溶管道水系统进行了物理模拟,选取1983年6月百年一遇的双洪峰(21日、22日),以及S2、S18、903、10A2四个观测孔水位资料及1号、2号、3号、4号泉溢洪洞四个观测资料,将北山矿区岩溶管道水系统概化为4个等效水箱,经多次反复模拟实验,实现了对8个主要水文点水位及流量的最佳拟合,拟合精度较高。对桂林岩溶水文地质试验场S31泉子系统进行了物理模拟,将该子系统概化为3个等效水箱,选取1989年4月13日8时至4月15日12时共60 h为模拟时段,模拟了降雨退水段,求取了管道水动力参数。 4.3.4 物理模拟装置 采用的模拟装置是由郭纯青教授设计的“岩溶管道水系统模拟装置”。该装置是目前国内外唯一一个岩溶管道水系统物理模拟装置。本套模拟装置依托传统的物理模拟方法,采取微电子技术与计算结合的方式,建立岩溶管道水系统物理模拟模型,是一套全自动水流控制系统。主要由液位检测传感器、液位压力传感器、流量传感器、A/D变换器、CPU监控中心和流量控制器等器件组成。实验装置简图如图4.6。岩溶管道水系统物理模拟装置主要包括两大部分——等效实体模型部分和数据采集监控部分。 图4.6 “岩溶管道水系统模拟装置”简图 4.3.4.1 等效实体模型 根据物理模拟建模要求,概化岩溶管道水系统多重含水介质体及水流特征为水能储存单元和输送单元的组合,采用等效水箱与变径管束的模拟装置建立等效实体模型,实现对岩溶管道水系统的水动力特征及系统转换功能的模拟目的。 系统被概化为水能贮存单元的亚系统,必须取得该单元出口端附近上游水位及流量的动态信息: Q(t)=fi[h(T)](4.9) 岩溶地区地下水与环境的特殊性研究 h(t)=fz(t)(4.11) 单元的水位与流量必须是同步的,流量可能是多端同时输出,包括季节性的分级溢洪泉。一般情况下,水能贮存和输送两单元总是配套组合模拟,等效水箱的容积也是将两者统一概化在内。对于水箱贮存量的计算,有如下两种方法。 用圈定岩溶体积几何空间的方式计算: 岩溶地区地下水与环境的特殊性研究 式中:V为岩溶管道水某子系统在h1与h2两标高范围内的贮存总体积;A(h)为不同标高等效水箱面积;h为水箱出口端有代表性的水位。 由于A(h)面积函数在实际中是不易求得,它不仅包括含水体所圈定的范围,也包括岩溶率在内的空间变量函数。 采用系统动态信息反求贮存体积: 岩溶地区地下水与环境的特殊性研究 当子系统的水位和流量动态处于无入渗状态单调下降情况下,可以选取适合的时段将流量动态做分段(时段和相应的标高段)积分求和,可求得总体积和分段体积: 岩溶地区地下水与环境的特殊性研究 式中:ti、ti+1为针对水位变化比较一致的相邻时段。 岩溶地区地下水与环境的特殊性研究 式中: 式(4.8)是式(4.7)的离散式。等效水箱的建立,由于经过上述动态分析,已经可以求出分段的ΔVi的体积,由此可以通过式(4.5)的变换求得等效水箱分段的底面积: Ai(h)=ΔVi/(hi-hi+1)(4.16) 面积函数Ai(h)的下标i与标高段hi是相应的。据此,等效水箱的空间容积就被完全确定,可以按照既定的模拟比值缩制模型。 4.3.4.2 数据采集监控系统 (1)数据采集子系统 数据采集子系统主要用于对岩溶管道水系统物理模拟模型运转过程的检测及运行情况的显示;同时对采集到的输入和输出数据,与野外实测数据对比并作预测分析。 测试元件主要通过微压差传感器对水箱测压管即文杜里流量计以及孔口流量计等进行水头压力(或压差)测量;以求得等效水箱水位与管间流量的测试,数据采集主要通过A/D板将传感器采集到的物理信号转换为数字信号与计算机共同完成(图4.7)。 图4.7 数据采集子系统示意 通过多通道的信号输入,计算机可以按照规定的间隔时间,对全部被测试点的压力(或压差)数据做瞬时同步采集。 (2)数据监控子系统 物理模拟装置中的数据监控子系统,包括带控制程序的微机,以及执行微机指令的可控水箱的进水装置。监控子系统的功能是通过对各测试元件所采集模拟模型的信息,反馈控制水箱进水量,实现对岩溶管道子系统的水能储存和释放的模拟。 可控水箱进水装置由电磁阀构成,根据微机指令的数字信号通过D/A板转换为电讯号,经放大控制电磁阀开关。 物理模拟过程的微机控制程序包括以下两个方面: 1)识别模拟阶段:根据模拟模型中对储能单元在空间变化(水位的函数)规律,编制出不同标高段相应的进水量的控制程序。 2)预报模拟阶段:控制程序编制根据预报期内的降水有效入渗,转化为水能储存单元在规定的模拟时段接受随机滞后输入量的控制。 通过微机将数据采集与监控两子系统耦合构成模拟模型的重要组成部分。 4.3.5 朱家岩隧道涌水物理模拟 4.3.5.1 研究区隧道涌水物理模型概化 根据水动力相似原理,按朱家岩隧道实际水文地质条件,选取线性相似比例系数1/103,从而面积相似系数为1/106,体积相似系数为1/109,时间相似系数为1/10,流速相似系数为1/10,流量相似系数为1/107。 研究区补给面积取8×10-2km2,范围为硐身及其两侧附近地带,其中包括可能与隧道沟通的汇水洼地、落水洞等地带,由1/10000岩溶水文地质图上量取。根据资料综合分析,隧道硐身均在饱气带,枯水期为表层岩溶带、垂直下渗带和季节交替带,厚度为230~355m,丰水期为表层岩溶带和垂直下渗带,厚度为210~305m。因此,水箱(储水介质)概化为面积为800cm2,枯水期高度为35cm,丰水期高度为30cm的垂向变体积水箱。由于研究区以管道流为主,对各子系统之间以裂隙方式的面状水量变换,可以等效到管道连接部分合并处理。对岩溶管道(包括箱间连接管道及排泄通道)的模拟,先根据地质、水文地质及岩溶发育条件的分析给出初值(包括管道空间状态、流量分配及阻力状况等),然后根据动态模拟结果反复调整。初值的给出,遵循下列约束条件:第一,管道条数,根据流量衰减分析的结果,初步确定管道条数为3条,如果模拟结果跟实际相差很大,则重新选择管道条数。第二,管道位置高度。第三,管道流量约束,水箱补给管道水量应近似于降水补给研究区的水量,管道总排泄量应近似于隧道涌水量。经多次反复模拟试验,实现对朱家岩隧道涌水过程的最佳模拟,拟合程度最好的即为该区管道组合结构。 研究区补给面积为8×10-2km2,远小于红岩泉地下河系统的汇水面积(10.5km2),而实测隧道最大涌水量为3400m3/d,即39.4L/s,也远小于红岩泉洪水期的流量(1000~2000L/s),隧道涌水虽然对红岩泉地下河系统造成了一定的影响,但是影响不大,又由于缺乏长观资料,因此不考虑红岩泉流量,只是对隧道涌水系统进行了研究。 4.3.5.2 朱家岩隧道岩溶管道涌水的物理模型研究 根据8月15日的降水量、涌水量资料(因4月30日和6月15日的涌水衰减量不大,有些管道可能没有参与衰减过程,故采用8月15日的数据进行物理模拟),建立朱家岩隧道包气带岩溶管道水系统物理模拟模型,用等效箱-管模型来组合模拟,经过反复使用1条、2条、3条切换管道的组合模拟,最终确定采用3 条切换管道,模拟结果才较为理想,模型见图4.8。这一结果跟流量衰减分析的结果“该区管道发育程度有三个级别”相一致,验证了衰减分析的可靠性。 图4.8 朱家岩隧道物理模型装置示意 应用该模型来模拟朱家岩隧道8月15日涌水的时间-流量过程线如图4.9,图4.10所示。8月16日至9月4日的结果见表4.4。 图4.9 时间—流量曲线 图4.10 时间—流量曲线 表4.4 模拟最接近实测数据的一次实验数据 表中8月19日和8月20日1号、2号流量的大小关系与别的时段的大小关系不一致,可能是由于模型概化时水箱边界条件的选取不是很精确而造成的,在以后的工作中会予以重视。 据文字记载,湖北宜昌市最大日降水量为385.5mm(1935年7月5日),将此降水量值输入该模型,经过反复实验,求得最大涌水量为9800m3/d。 7. 物理模拟实验仪器选用 根据煤粉产出物理模拟实验的原理及目的,需要设计可以满足该实验要求的仪器装置。这些要求包括: (1)满足模拟地层流体在煤储层裂隙之间的流动要求; (2)满足模拟煤储层经储层改造后的裂隙展布效果要求; (3)满足模拟煤储层在含煤地层中的赋存状态要求; (4)满足模拟煤层气井排水→降压→采气的生产模式要求。 通过一系列的摸索与尝试,确定了该物理模拟实验仪器装置的主体系统结构,其中包括计算机监控系统、样品制备系统、泵送驱替系统、物理模拟系统、煤粉储集系统、煤粉分析系统、电力动力系统等。 (1)计算机监控系统:主要由计算机操控平台和驱替导流监测平台等组成。计算机操控平台提供半自动半人工化功能服务,通过计算机实现对驱替导流监测平台的操控,可以满足不同条件下物理模拟实验的要求。同时,驱替导流监测平台实现流体相态驱替模式、自动调控驱替流速及压力、实时监测导流状况及实时记录排出产物状况等。 表5-3 煤体结构差异对煤粉产出的影响研究实验方案 (2)样品制备系统:主要由制样模具、升降施压油缸、平台支架等组成。制备样品的前期准备工作需要碎样机、标准样品筛、电子天平等辅助设备。首先使用碎样机将煤岩样品破碎,经过标准样品筛的筛选,选用一定粒度的煤粉颗粒,依据制样模具的尺寸形状,在升降施压油缸的挤压作用下,制作煤砖样,用于煤粉产出物理模拟实验。该系统需要通过计算机监控系统控制升降施压油缸,为制样提供稳定的压力。 (3)泵送驱替系统:主要由平流泵、储液容器、驱替液、导流室、无缝钢导管、法兰等组成。该系统的工作原理是通过调整平流泵的泵送功率,使其提供一定流速的稳定流体,该流体将储液容器内的驱替液以同等速率注入导流室内,对导流室中的煤砖进行驱替作用,同时,需要导流室的左右两侧分别安装进出液孔道,并在进出口端部安装测压孔道及相应法兰。在此过程中,通过驱替导流监测平台调控平流泵的泵送功率、设置驱替作用的周期及数据记录频率等参数。 (4)物理模拟系统:主要由煤砖样、石英砂、导流室、金属垫片、塑料密封圈、差压传感器、升降施压油缸、平台支架等组成。该系统的工作原理是通过在两块煤砖中夹持石英砂颗粒进行人工造缝,模拟煤储层经过储层改造后的裂隙延展状态;由泵送驱替系统向导流室内提供一定流速的驱替液,模拟地层流体在煤储层裂隙之间的流动过程;由计算机监控系统调控升降施压油缸,使其对导流室内的煤砖产生稳定围压,模拟煤储层在含煤地层中的赋存状态。该系统是在计算机监控系统、泵送驱替系统及物理模拟系统的相互配合下进行的,由平流泵提供驱替流体,由升降施压油缸提供挤压力,由驱替导流监测平台调控记录驱替液流速、油缸压力等参数,由金属垫片和塑料密封圈来保证导流室中煤砖处于密封状态。 (5)煤粉储集系统:主要由电子天平、无缝钢导管、烧杯等组成。该系统的工作原理是收集由物理模拟系统排出的液体及其中煤粉,同时通过驱替导流监测平台对排出液进行实时称重并储存数据结果。 (6)煤粉分析系统:主要由激光粒度仪、滤纸、过滤器、恒温烘干机、电子天平、显微镜、扫描电镜、X射线衍射仪等组成。该系统的工作原理是采用激光粒度仪对不同实验条件中产出的煤粉进行粒度分布测试;采用过滤器及恒温烘干机将排出液中的煤粉进行过滤烘干;采用电子天平对干燥的煤粉颗粒进行精密称重;采用显微镜、扫描电镜、X射线衍射仪分析煤粉的显微形态及物质成分。从煤粉的粒度、质量、显微状态和物质成分等角度研究煤粉的产出物性特征。 (7)电力动力系统:主要由配电箱和电动机等组成。该系统为物理模拟实验设备装置的其他系统提供电力及动力保障。 图5-1 煤粉产出物理模拟实验仪器设计示意图 根据上述物理模拟实验仪器装置功能要求,实验仪器设计如图5-1所示。通过调研,在综合考虑物理模拟实验的可行性情况下,采用HXDL-Ⅱ型酸蚀裂隙导流仪作为测试仪器。该仪器可以在标准实验条件下模拟地层压力及温度状态,可以实现气、液两相驱替过程,并能评价裂缝的导流能力。其装置流程如图5-2所示。根据上述物理模拟实验装置的说明,选用的酸蚀裂隙导流仪的主体系统均达到开展实验的要求,各个装置部件可以满足实验的需求。该仪器的各项参数是参照《SY-T 6302—1997 压裂支撑剂充填层短期导流能力评价推荐方法》标准而设定的。 图5-2 酸蚀裂缝导流仪流程示意图 8. 实验方案设计 一、 实验内容 考虑不同库水升降条件下,“浸泡—风干”循环作用对岩石试样实验, 对每一期试样进行单轴或三轴实验, 得出在不同水位升降条件下对岩体力学参数的影响规律, 及在不同“浸泡—风干”循环期次作用下力学参数劣化规律。 二、 试验岩样 试验所用砂岩取自三峡库区秭归沙镇溪镇白水河滑坡, 为侏罗系上沙溪庙组砂岩。在同一个岩层开出较大片的岩块, 并在现场切割成小块运回试验室钻心取样。 根据《工程岩体试验方法标准》(GB/T50266—99)、 《水利水电工程岩石试验规程》(SL264—2001)以及国际岩石力学学会推荐标准, 同时满足RMT-150C岩石力学试验系统三轴试验岩样规格要求, 经过细心切磨制成尺寸为Φ50mm×100mm圆柱形试件。 试样的精度严格满足规范要求: 高度、 直径偏差≤±0.3mm, 试件两端面不平整度≤±0.05mm(图5-1)。 岩石矿物鉴定结果为绢云母中粒石英砂岩(图5-2), 孔隙式钙质胶结结构, 基质具微细鳞片变晶结构的中粒砂状结构。 岩石由石英、 长石、 岩屑、 云母等组成。 碎屑组分有燧石岩屑, 次角-次圆状, 粒径0.3mm, 占10%; 石英碎屑, 次角-次圆状, 均匀分布,粒径0.3~0.5mm, 占80%; 基质组分为绢云母, 占10%。 图5-9 有压岩石溶解仪的结构图 图5-10 水压力室俯视图 图5-11 控制箱 YRK-1岩石溶解试验仪为本试验开发的一种模拟库水压及库水升降条件下岩石溶解试验仪, 下面将对该仪器进行详细的介绍。 (1)一种模拟库水压力条件的仪器的研制 本实验仪器为一种模拟库水压力状态下水-岩作用的实验装置, 模拟蓄水后库岸岩(土)体所受水压力环境, 通过考虑不同水压力及水位升降条件下的岩石-水作用的浸泡实验, 研究库水条件下的水-岩作用及力学损伤特征。 为了达到上述目的, 本仪器制作由岩石溶解室(压力室), 动、 静水模拟控制系统, 压力控制系统, 压力传感带等组成。 水压力室: 主要由底座、 圆柱形水压力室和盖板组成, 底板与盖板之间分布有八根加固螺栓, 通过密封垫圈将圆柱形水压力室固定在底座和盖板之间。水压力室采用不锈钢和有机玻璃制作, 以便承受较大压力。 压力控制系统: 由内部压力传导系统和外部压力控制系统组成。在水压力室底部安装一个压力传感带与外部压力控制系统相接, 该压力传感带与外部压力控制系统相连; 外部压力控制系统由供压装置和高精度压力表以及压力传导管道组成, 通过高精度压力表将15MP压力转变为0~1.4MP(量程范围)的压力传递到压力传感带(稳压状态), 通过压力传感带将压力传递给水, 进而控制水压力室中的水压, 满足实验要求达到的压力状态。 动、 静水模拟控制系统: 该系统由稳压电源、 直流电机、 叶轮组成。 直流电机安装在水压力室的底板下部, 通过转轴与水压力室内部的叶轮相连。 可以模拟在动水状态下岩石的溶解特征, 也可以模拟在静水状态下岩石的溶解特征; 同时, 通过控制直流电机转速进一步模拟在不同动水状态下岩石的溶解特征。 与压力控制系统组合可以进一步模拟在水库库水压力状态下(具有一定的流速情况下)的水-岩作用。 同时在水压力室下部设置水样采集口, 通过水样分析研究岩石溶解特征。 (2)岩石溶解仪操作步骤 a. 压力室放置试样。 首先将制备好的岩样放入水压力室内, 分层直立或横卧摆放;盖上盖板并将加固螺栓拧紧, 固定好。 b. 压力室充水。 通过进水管向水压力室内注水, 注水期间将放气螺丝打开, 将水压力室内空气排除, 直至水漫出注水管后, 封闭进水管, 拧紧放气螺丝。 c. 控制压力室水压力。 连接外部压力控制系统与内部压力控制系统, 确认连接完成后, 将总控箱中的气源压力调节阀全部放开(拧至最松位置), 放气阀放到“开”的位置。 缓慢旋转气源压力调节阀, 按照实验要求调节压力, 并通过外部压力系统通过压力传到装置将压力传递给水, 保证水-岩作用是在一定库水条件下进行。 d. 取出试样。 完成一个实验周期之后(实验流程要求), 获取试样之前, 首先关闭总气源(氮气瓶), 按照试验流程调节阀慢慢将气源压力减小, 打开放气阀以及放气螺丝,使残余气体放出。 开放水样采集口, 获取足够水样供分析。 取出岩样做相应分析。 (3)岩石溶解试验仪的特点 该仪器制作的优点是: 结构简单、 易操作、安全可靠, 可以模拟库区岩体所处不同水压力环境, 根据需要保持或调节水压力状态模拟库水位升降; 设置动、 静水模拟控制系统, 以模拟库水扰动; 设置取水管道, 以便分析离子浓度的变化。 该仪器可以模拟在库水升降条件及水压力状态下岩石所处的水环境, 为研究库水条件下水-岩作用机理及力学特性而提供一套室内实验平台。 与rh水模模拟实验装置相关的资料
热点内容
防爆安检设备都有哪些
浏览:198
小型养殖设备哪里有
浏览:733
怎么设置车启动后仪表盘灯亮
浏览:681
潘成集团五金批发市场
浏览:482
石油化工装置工艺管道设计手册第3
浏览:917
燃气阀门招标
浏览:768
科三上车后怎么看仪表盘判断熄火
浏览:748
消防沟槽阀门套什么定额
浏览:761
铸造厂需要什么手续
浏览:808
仪表盘线头标志是什么原因
浏览:853
橱柜燃气阀门装修
浏览:997
供暖管道阀门用不用关
浏览:352
旋转接头轴承处漏气怎么能解决
浏览:43
机械加压要装什么阀门
浏览:148
转炉氧枪提升装置设计
浏览:943
机械硬盘如何转固态硬盘
浏览:377
西安进口品牌轴承需要多少钱
浏览:781
设计串联校正装置的工程方法
浏览:901
垫圈内径检测装置b方便
浏览:267
设计一个楼梯灯控制装置用一个按钮
浏览:380
|