导航:首页 > 装置知识 > 俄核聚变实验装置

俄核聚变实验装置

发布时间:2023-08-23 12:45:48

㈠ 世界上首个全超导托卡马克核聚变装置是什么

世界上首个全超导托卡马克核聚变装置是EAST。

全超导托卡马克核聚变实验装置(EAST),有“人造太阳”之称。其运行原理就是在装置的真空室内加入少量氢的同位素氘或氚,通过类似变压器的原理使其产生等离子体。然后提高其密度、温度使其发生聚变反应,反应过程中会产生巨大的能量。

2006年9月28日,世界上首个全超导非圆截面升吵托卡马克核聚变实验装置首轮物理放电实验取得成功,标志着中国站在了世界核聚变研究的前端。2016年2月,中国EAST物理实验获重大突破,实现在国际上电子温度达到5000万度持续时间最长的等离子体放电。2018年11月12日,从中科院合肥物质科学研究院获悉,EAST实现1亿摄氏度等离子体运行等多项重大突破。

基本原理

核能是能源家族的新成员,包括裂变能和聚变能两种主要形式。裂变能是重金属元素的核子通过裂变而释放的巨大能量,受控核裂变技术的发展已使裂变能的应用实现了商用化,如核(裂变)电站。

裂变需要的铀等重金属元素在地球上含量稀少,而且常规裂变反应堆会产生放射性较强的核废料,这些因素限制了裂变能的发展。聚变能是两个慎孝较轻的原子核聚合为一个较重的原子核并释放出的能量,目前开展的受控核聚变研究正是致力于实现聚变能的和平利用。其实,宽笑稿人类已经实现了氘氚核聚变—氢弹爆炸,但那是不可控制的瞬间能量释放,人类更需要受控核聚变。

以上内容参考:网络—全超导托卡马克核聚变实验装置

㈡ 国际热核聚变实验装置将建造于那个国家

是法国
索词条
国际热核聚变实验堆计划

更多图片(11张)
“国际热核聚变实验版堆(ITER)计划”是目前权全球规模最大、影响最深远的国际科研合作项目之一,建造约需10年,耗资50亿美元(1998年值)。ITER装置是一个能产生大规模核聚变反应的超导托克马克,俗称“人造太阳”。2003年1月,国务院批准我国参加ITER计划谈判,2006年5月,经国务院批准,中国ITER谈判联合小组代表我国政府与欧盟、印度、日本、韩国、俄罗斯和美国共同草签了ITER计划协定。

㈢ 国际热核聚变实验堆计划的发展历程

由于聚变能的研究不仅关系到最终解决人类能源问题,而且还涉及众多最先进且非常敏感的技术,因此,ITER计划的形成除与科学技术本身的发展有关外,还始终与主要大国在政治和外交方面的考虑分不开。本文将主要从科学和技术角度作一些分析和说明。
1985年,作为结束冷战的标志性行动之一,前苏联领导人戈尔巴乔夫和美国总统里根在日内瓦峰会上倡议,由美、苏、欧、日共同启动国际热核聚变实验堆(ITER)计划。ITER计划的目标是要建造一个可自持燃烧(即点火)的托可马克核聚变实验堆,以便对未来聚变示范堆及商用聚变堆的物理和工程问题做深入探索。
最初,该计划仅确定由美、俄、欧、日四方参加,独立于联合国原子能委员会(IAEA)之外,总部分设美、日、欧三处。由于当时的科学和技术条件还不成熟,四方科技人员于1996年提出的ITER初步设计很不合理,要求投资上百亿美元。1998年,美国出于政治原因及国内纷争,以加强基础研究为名,宣布退出ITER计划。欧、日、俄三方则继续坚持合作,并基于上世纪90年代核聚变研究及其他高新技术的新发展,大幅度修改实验堆的设计。2001年,欧、日、俄联合工作组完成了ITER装置新的工程设计(EDA)及主要部件的研制,预计建造费用为50亿美元(1998年价),建造期8至10年,运行期20年。其后,三方分别组织了独立的审查,都认为设计合理,基本上可以接受。
2002年,欧、日、俄三方以EDA为基础开始协商ITER计划的国际协议及相应国际组织的建立,并表示欢迎中国与美国参加ITER计划。中国于2003年1月初正式宣布参加协商,其后美国在1月末由布什总统特别宣布重新参加ITER计划,韩国在2005年被接受参加ITER计划协商。以上六方于2005年6月签订协议,一致同意把ITER建在法国核技术研究中心Cadarache,从而结束了激烈的选址大战。印度于2006年加入ITER协商。最终,七个成员国政府于2006年5月25日草签了建设ITER的国际协定。目前国际组织正在组建,总干事和副总干事人选已确定。还有一些国家也正在考虑参加ITER计划。
在ITER建设总投资的50亿美元(1998年值)中,欧盟贡献46%,美、日、俄、中、韩、印各贡献约9%。根据协议,中国贡献中的70%以上由我国制造所约定的ITER部件折算,10%由我国派出所需合格人员折算,需支付国际组织的外汇不到20%。
作为聚变能实验堆,ITER要把上亿度、由氘氚组成的高温等离子体约束在体积达837立方米的磁笼中,产生50万千瓦的聚变功率,持续时间达500秒。50万千瓦热功率已经相当于一个小型热电站的水平。这将是人类第一次在地球上获得持续的、有大量核聚变反应的高温等离子体,产生接近电站规模的受控聚变能。
在ITER上开展的研究工作将揭示这种带有氘氚核聚变反应的高温等离子体的特性,探索它的约束、加热和能量损失机制,等离子体边界的行为以及最佳的控制条件,从而为今后建设商用的核聚变反应堆奠定坚实的科学基础。对ITER装置工程整体及各部件在50万千瓦聚变功率长时间持续过程中产生的变化及可能出现问题的研究,不仅将验证受控热核聚变能的工程可行性,而且还将对今后如何设计和建造聚变反应堆提供必不可少的信息。
ITER的建设、运行和实验研究是人类发展聚变能的必要一步,有可能直接决定真正聚变示范电站(DEMO)的设计和建设,并进而促进商用聚变电站的更快实现。
ITER装置是一个能产生大规模核聚变反应的超导托克马克。其装置中心是高温氘氚等离子体环,其中存在15兆安的等离子体电流,核聚变反应功率达50万千瓦,每秒释放多达1020个高能中子。等离子体环在屏蔽包层的环型包套中,屏蔽包层将吸收50万千瓦热功率及核聚变反应所产生的所有中子。
在包层外是巨大的环形真空室。在下侧有偏虑器与真空室相连,可排出核反应后的废气。真空室穿在16个大型超导环向场线圈(即纵场线圈)中。
环向超导磁体将产生5.3特斯拉的环向强磁场,是装置的关键部件之一,价值超过12亿美元。
穿过环的中心是一个巨大的超导线圈筒(中心螺管),在环向场线圈外侧还布有六个大型环向超导线圈,即极向场线圈。中心螺管和极向场线圈的作用是产生等离子体电流和控制等离子体位形。
上述系统整个被罩于一个大杜瓦中,坐落于底座上,构成实验堆本体。
在本体外分布4个10兆瓦的强流粒子加速器,10兆瓦的稳态毫米电磁波系统,20兆瓦的射频波系统及数十种先进的等离子体诊断测量系统。
整个体系还包括:大型供电系统、大型氚工厂、大型供水(包括去离子水)系统、大型高真空系统、大型液氮、液氦低温系统等。
ITER本体内所有可能的调整和维修都是通过远程控制的机器人或机器手完成。
ITER装置不仅反映了国际聚变能研究的最新成果,而且综合了当今世界各领域的一些顶尖技术,如:大型超导磁体技术,中能高流强加速器技术,连续、大功率毫米波技术,复杂的远程控制技术等等。
2013年9月25日(北京时间)消息,劳伦斯·利弗莫尔国家实验室报告称,世界最大激光器、被称为“人造太阳”的美国国家点火装置(NIF)正距离其目标越来越近,显示了一个可持续核聚变反应装置正在由梦想逐步成为现实。不过在设施达到高度稳定前,目前仍有一个显著障碍有待克服 。

㈣ 如何实现核聚变

可行性较大的可控核聚变反应装置是托卡马克装置。
托卡马克是一种利用磁约束来实现受控核聚变的环性容器。它的名字Tokamak 来源于环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。
托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。
我国也有两座核聚变实验装置。

当四个氢原子在高温下靠得很近时,四个质子会撞到一起时,其中两个会发生衰变,释放出两个反中微子和正电子,变成中子。这两个正电子会与原子核外电子相互湮灭,形成两个光子;剩下的一共有两个中子、两个质子和两个电子,恰好形成一个氦原子。绝大多数恒星都是通过质子的衰变而发出光芒,这在日常生活中用途也很大

㈤ 核聚变要在近亿度高温条件下进行,这时所有物质都被气化,那么怎样产生高热,又用什么装它呢

核聚变反应堆主体是用一种球形磁场来约束的。核聚变的产生条件就需要较小的原子核发生碰撞和融合,但原子核都带正电,原子外层都带负电。

原子核想碰一起需要很高的能量来突破电磁力的排斥,就像让两块小磁铁同极相触一样(但难度不是一个量级)。温度反映了物质内部粒子的运动能量,所以高温下才会有可能让高速的原子核艰难碰撞在一起。

要引发氢弹首先要引发原子弹,用原子弹核裂变产生的极高温度才能使氢核之间剧烈碰撞而发生核聚变反应,所以一般某国家在研究两弹时,都是先研制出原子弹,再研制出氢弹。这也是为何氢弹比原子弹杀伤力强的原因之一。

(5)俄核聚变实验装置扩展阅读:

热核反应,或原子核的聚变反应,是当前很有前途的新能源。参与核反应的轻原子核,如氢(氕)、氘、氚、锂等从热运动获得必要的动能而引起的聚变反应(参见核聚变)。热核反应是氢弹爆炸的基础,可在瞬间产生大量热能,但尚无法加以利用。

如能使热核反应在一定约束区域内,根据人们的意图有控制地产生与进行,即可实现受控热核反应。这正是在进行试验研究的重大课题。受控热核反应是聚变反应堆的基础。聚变反应堆一旦成功,则可能向人类提供最清洁而又是取之不尽的能源。

冷核聚变是指:在相对低温(甚至常温)下进行的核聚变反应,这种情况是针对自然界已知存在的热核聚变(恒星内部热核反应)而提出的一种概念性‘假设’。

这种设想将极大的降低反应要求,只要能够在较低温度下让核外电子摆脱原子核的束缚,或者在较高温度下用高强度、高密度磁场阻挡中子或者让中子定向输出,就可以使用更普通更简单的设备产生可控冷核聚变反应,同时也使聚核反应更安全。

㈥ 中国在可控核聚变技术上的哪两大方向,都能领先世界

核能分为核裂变能与核聚变能,前者已经被人类加以利用用来发电,而裂变堆的核燃料蕴藏极为有限,不仅产生强大的辐射,伤害人体,放射性核废料的处理也一直是让人头疼的难题。

而石油、可燃冰等能源总有穷尽的一天,所以科学家就在思考,有什么方式可以实现无穷无尽的能源。最后,科学家们将目光聚焦在了可控核聚变上。

中国之所以能够在可控核聚变上领先世界,就是靠的先辈们的不懈努力与开拓。如果没有王淦昌这些元勋们的高瞻远瞩,中国就只能跟在其他人后面亦步亦趋,我们应该向这些英雄科学家们致敬。

㈦ 托卡马克详细资料大全

托卡马克,是一种利用磁约束来实现受控核聚变的环形容器。它的名字Tokamak 来源于环形、真空室、磁、线圈。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的电浆加热到很高的温度,以达到核聚变的目的。

基本介绍

装置的主要部件和子系统,核聚变简介,结构原理,各国概况,历史发展,现状及前景,钢铁侠中的“方舟反应堆”,

装置的主要部件和子系统

托卡马克(Tokamak)是一环形装置,通过约束电磁波驱动,创造氘、氚实现聚变的环境和超高温,并实现人类对聚变反应的控制。它的名字Tokamak来源于环形(toroidal)、真空室(kamera)、磁(mag)、线圈(kotushka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。 受控热核聚变在常规托卡马克装置上已经实现。但常规托卡马克装置体积庞大、效率低,突破难度大。上世纪末,科学家们把新兴的超导技术用于托卡马克装置,使基础理论研究和系统运行参数得到很大提高。据科学家估计,可控热核聚变的演示性的聚变堆将于2025年实现,商用聚变堆将于2040年建成。商用堆建成之前,中国科学家还设计把超导托卡马克装置作为中子源,用于环境保护、科学研究及其它途径。这一构想获得国内外专家较高评价。 包括磁体(环向场磁体及极向场磁体)、真空室及其抽气系统、供电系统、控制系统(装置控制和电浆控制)、加热与电流驱动系统(中性束和微波)、喷气及弹丸注入系统、偏滤器及孔阑、诊断和数据采集与处理系统、包层系统、氚系统、辐射防护系统、遥控操作与维修系统等部件(子系统)。虽然强磁场能提高约束性能,但受工程技术和材料限制,环向磁场一般为2~8T;为了获取稳定的核聚变能输出,托卡马克聚变堆最终要采用超导磁体(稳态运行要求),为此要增加杜瓦、冷屏和低温制冷系统。为将电浆加热至需要的温度,大型装置的总加热功率为几十兆瓦,国际热核实验堆装置的加热功率为73~130MW。

核聚变简介

核聚变(nuclear fusion),又称核融合、融合反应或聚变反应[1]核是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),只有在极高的温度和压力下才能让核外电子摆脱原子核的束缚,让两个原子核能够互相吸引而碰撞到一起,发生原子核互相聚合作用,生成新的质量更重的原子核(如氦),中子虽然质量比较大,但是由于中子不带电,因此也能够在这个碰撞过程中逃离原子核的束缚而释放出轿梁巧来,闭键大量电子和中子的释放所表现出来的就是巨大的能量释放。这是一种核反应的形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。核聚变是核裂变相反的核反应形式。科学家正在努力研究可控核聚变,核聚变可能成为未来的能量来源。 核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才能发生核聚变,比如氢的同位素氘(dāo)、氚(chuān)等。核聚变也会放出巨大的能量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的。 相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式。 人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变。

结构原理

在托卡马克装置渣禅中,欧姆线圈的电流变化提 *** 生、建立和维持电浆电流所需要的伏秒数(变压器原理);极向场线圈产生的极向磁场控制电浆截面形状和位置平衡;环向场线圈产生的环向磁场保证电浆的巨观整体稳定性;环向磁场与电浆电流产生的极向磁场一起构成磁力线旋转变换的和磁面结构嵌套的磁场位形来约束电浆。同时,电浆电流还对自身进行欧姆加热。电浆的截面形状可以是圆形,也可以与偏滤器(位于真空室内部的边缘区域,通过产生磁分界面将约束区与边缘区隔离开来,具有排热、控制杂质和排除氦灰等功能的特殊部件)位形结合设计成D形。在托卡马克装置上,已可通过大功率中性束注入加热和微波加热使电浆达到和超过氘一氚有效燃烧所需的温度(>10K),最高已达4.4×10K。加大装置尺寸,约束时间大致按尺寸的平方增大。此外,还可通过提高环向磁场、最佳化约束位形和运行模式来提高 能量约束时间。实验结果表明,托卡马克装置已基本满足建立核聚变反应堆的要求。

各国概况

相比其他方式的受控核聚变,托卡马克拥有不少优势。1968年8月在苏联新西伯利亚召开的第三届电浆物理和受控核聚变研究国际会议上,阿齐莫维齐宣布在苏联的T-3托卡马克上实现了电子温度1keV,质子温度0.5keV,nτ=10的18次方m-3.s,这是受控核聚变研究的重大突破,在国际上掀起了一股托卡马克的热潮,各国相继建造或改建了一批大型托卡马克装置。其中比较著名的有:美国普林斯顿大学由仿星器-C改建成的ST Tokamak,美国橡树岭国家实验室的奥尔马克,法国冯克奈-奥-罗兹研究所的TFR Tokamak,英国卡拉姆实验室的克利奥(Cleo),西德马克斯-普朗克研究所的Pulsator Tokamak。 高1米4,半径0.785米 2006年9月28日,中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的新一代热核聚变装置EAST首次成功完成放电实验,获得电流200千安、时间接近3秒的高温电浆放电。EAST成为世界上第一个建成并真正运行的全超导非圆截面核聚变实验装置。

历史发展

二战末期,前苏联和美、英各国曾出于军事上的考虑,一直在互相保密的情况下开展对核聚变的研究。几千万、几亿摄氏度高温的聚变物质装在什么容器里一直是困扰人们的难题。二十世纪五十年代初期,前苏联科学家提出托卡马克的概念。托卡马克(TOKAMAK)在俄语中是由“环形”、“真空”、“磁”、“线圈”几个词组合而成,这是一种形如面包(多纳)圈的环流器,依靠电浆电流和环形线圈产生的强磁场,将极高温等离子状态的聚变物质约束在环形容器里,以此来实现聚变反应。 托卡马克内部 1954年,第一个托卡马克装置在原苏联库尔恰托夫原子能研究所建成。当人们提出这种磁约束的概念后,磁约束核聚变研究在一些方面的进展顺利,氢弹又迅速试验成功,这曾使不少国家的核科学家一度对受控核聚变抱有过分乐观的态度。但人们很快发现,约束电浆的磁场,虽然不怕高温,却很不稳定。另外,电浆在加热过程中能量也不断损失。 1985年,美国里根总统和前苏联戈巴契夫总统,在一次首脑会议上倡议开展一个核聚变研究的国际合作计画,要求“在核聚变能方面进行最广泛的切实可行的国际合作”。后来戈巴契夫、里根和法国总统密特朗又进行了几次高层会晤,支持在国际原子能机构(IAEA)主持下,进行国际热核实验堆(ITER)概念设计和辅助研究开发方面的合作。这是当时也是当前开展核聚变研究的最重大的国际科学和技术合作工程项目。1987年春,IAEA总干事邀请欧共体、日本、美国和加拿大、前苏联的代表在维也纳开会,讨论加强核聚变研究的国际合作问题,并达成了协定,四方合作设计建造国际热核实验堆。 1990年,中国国家科学院等离子所兴建大型超导托卡马克装置,得到俄、美、欧盟等机构、专家大力的支持。特别是俄罗斯科学家,世界聚变研究最具权威的俄罗斯国家研究中心卡多姆采夫教授,成为装置建设的“经常性技术指导”。 1993年HT-7建成,中国成为世界上俄、法、日(法国的Tore-Supra,俄罗斯的T-15,日本的JT-60U)之后第四个拥有同类大型装置的国家。中国在装置相关的超导、低温制冷、强磁场等研究都登上新的台阶。 1993年12月9日和10日,美国在TFTR装置上使用氘、氚各50%的混合燃料,使温度达到3亿至4亿摄氏度,两次实验释放的聚变能分别为0.3万千瓦和0.56万千瓦,大约为JET输出功率的2倍和4倍,能量增益因子Q值达0.28。与JET相比,Q值又得到很大提高。 1997年9月22日,联合欧洲环JET又创造输出功率为1.29万千瓦的世界纪录,能量增益因子Q值达0.60,持续时间2秒。仅过了39天,输出功率又提高到1.61万千瓦,Q值达到0.65。 1997年12月,日本方面宣布,在JT-60上成功进行了氘-氘反应实验,换算到氘-氚反应,Q值可以达到1.00。后来,Q值又超过了1.25。在JT-60U上,还达到了更高的等效能量增益因子,大于1.3,它也是从氘-氘实验得出的结果外推后算出的。 2000年,HT-7实验放电时间超过10秒,标志中国在这重大基础理论研究领域中进入世界先进行列。 2002年1月28日,在中国成都的核工业西南物理研究院与合肥西郊的中国科学院等离体物理研究所,基于超导托卡马克装置HT-7的可控热核聚变研究再获突破,实现了放电脉冲长度大于100倍能量约束时间、电子温度2000万摄氏度的高约束稳态运行,中心密度大于每立方米1.2×1019,运行参数居世界前两位。本轮实验有来自美、日等14个研究机构的18位外籍专家参与。 2006年,中国新一代“人造太阳”实验装置(EAST)实现了第一次“点火”——激发等离子态与核聚变。很快,它就实现了最高连续1000秒的运行,这在当时是前所未有的成就。 EAST 2012年04月22日,中国新一代“人造太阳”实验装置(EAST)中性束注入系统(NBI)完成了氢离子束功率3兆瓦、脉冲宽度500毫秒的高能量离子束引出实验。本轮实验获得的束能量和功率创下中国国内纪录,并基本达到EAST项目设计目标。这标志著中国自行研制的具有国际先进水平的中性束注入系统基本克服所有重大技术难关。

现状及前景

只有同时达到密度(>10cm)、温度(>10K)及能量约束时间(>1s)三个条件(或聚变三重积>10cm·K·s)时,才能实现氘一氚自持核聚变反应。这三个条件已经在不同的装置上分别达到或超过,但还没有在一个装置上同时达到或超过。JET(见图)和JT-60U装置基本达到能量得失相当条件(Q≈1),JET的氘一氚实验还得到17MW聚变功率输出。 欧洲联合环JET装置结构简图 实验研究还发现多种改善约束的模式,根据这些模式,托卡马克型核聚变反应堆的经济性能还可以进一步提高。基于50多年来在电浆理论、物理实验研究和工程技术上取得的重大进展,由七方共同参与的超大型国际合作项目国际热核实验堆(ITER)计画已经进入工程建造阶段。

钢铁侠中的“方舟反应堆”

电影《钢铁侠》中的方舟反应堆与托卡马克极为相似,有可能是根据托卡马克改编的。

㈧ 全超导托卡马克核聚变实验装置的基本原理

核能是能源家族的新成员,包括裂变能和聚变能两种主要形式。裂变能是重金属元素的核子通过裂变而释放的巨大能量。受控核裂变技术的发展已使裂变能的应用实现了商用化,如核(裂变)电站。裂变需要的铀等重金属元素在地球上含量稀少,而且常规裂变反应堆会产生放射性较强的核废料,这些因素限制了裂变能的发展。聚变能是两个较轻的原子核聚合为一个较重的原子核并释放出的能量。目前开展的受控核聚变研究正是致力于实现聚变能的和平利用。其实,人类已经实现了氘氚核聚变--氢弹爆炸,但那是不可控制的瞬间能量释放,人类更需要受控核聚变。维系聚变的燃料是氢的同位素氘和氚,氘在地球的海水中有极其丰富的蕴藏量。经测算,l升海水所含氘产生的聚变能等同于300升汽油所释放的能量。海水中氘的储量可使人类使用几十亿年。特别的,聚变产生的废料为氦气,是清洁和安全的。因此,聚变能是一种无限的、清洁的、安全的新能源。这就是世界各国尤其是发达国家不遗余力竞相研究、开发聚变能的根本原因。
受控热核聚变能的研究主要有两种--惯性约束核聚变和磁约束核聚变。前者利用超高强度的激光在极短的时间内辐照氘氚靶来实现聚变,后者则利用强磁场可很好地约束带电粒子的特性,将氘氚气体约束在一个特殊的磁容器中并加热至数亿摄氏度高温,实现聚变反应。
托卡马克(Tokamak)是前苏联科学家于20世纪50年代发明的环形磁约束受控核聚变实验装置。经过近半个世纪的努力,在托卡马克上产生聚变能的科学可行性已被证实,但相关结果都是以短脉冲形式产生的,与实际反应堆的连续运行有较大距离。超导技术成功地应用于产生托卡马克强磁场的线圈上,是受控热核聚变能研究的一个重大突破。超导托卡马克使磁约束位形能连续稳态运行,是公认的探索和解决未来聚变反应堆工程及物理问题的最有效的途径。目前建造超导装置开展聚变研究已成为国际热潮。
托克马克从本质上说是一种脉冲装置,因为等离子体电流是通过感应方式驱动的。但是,存在所谓的“先进托克马克”运行的可能性,即它们可以利用非感应外部驱动和发生在等离子体内的自然的压强驱动电流相结合而实现运行。它们需要仔细地调节压强和约束使之最佳化。在理论和实验上正在研究这种先进托克马克,因为连续运行对聚变功率的产生是最有希望的,其相对小的尺寸导致比类ITER设计更经济的电站。先进超导托克马克实验装置是指装置的环向磁场和极向磁场线圈都是超导材料绕制而成的,它可以大大节省供电功率,长时间维持磁体工作,并且可以得到较高的磁场。
等离子体物理研究所主要从事高温等离子体物理、受控热核聚变技术的研究以及相关高技术的开发研究工作,担负着国家核聚变大科学工程的建设和研究任务,先后建成HT-6B、HT-6M等托卡马克实验装置。1994年底,等离子体所成功地建成我国第一台大型超导托卡马克装置HT-7,使我国进入超导托卡马克研究阶段,研究成果引起了国际聚变界的广泛关注。“九五”国家重大科学工程--大型非圆截面全超导托卡马克核聚变实验装置EAST计划的实施,标志着我国进入国际大型聚变装置(近堆芯参数条件)的实验研究阶段,表明中国核聚变研究在国际上已占有重要地位。

阅读全文

与俄核聚变实验装置相关的资料

热点内容
空调为什么制冷量制热量高一些 浏览:817
一套ktv唱歌设备需要多少钱一台 浏览:898
地热没总阀门怎么排气 浏览:20
心脏测试仪器怎么看 浏览:138
义乌最大五金建材市场的地址 浏览:729
宁波17的煤气阀门 浏览:184
电瓶车仪表为什么会闪 浏览:735
怎么给打电脑多装一个机械硬盘 浏览:328
升降装置的食品机械设备 浏览:607
蒸汽管道可丝接铜阀门吗 浏览:530
得美五金制品有限公司 浏览:533
苹果手机工具箱的尺子怎么用 浏览:545
半挂车机械支撑装置 浏览:203
钢结构装置消防设计规范 浏览:411
防爆安检设备都有哪些 浏览:198
小型养殖设备哪里有 浏览:733
怎么设置车启动后仪表盘灯亮 浏览:681
潘成集团五金批发市场 浏览:482
石油化工装置工艺管道设计手册第3 浏览:917
燃气阀门招标 浏览:768