导航:首页 > 装置知识 > 机器人轮式行走装置的设计

机器人轮式行走装置的设计

发布时间:2023-01-15 00:53:24

1. 我想做一个轮式的机器人,他的功能很简单,能跟着特定的人保持一定距离跟着走,,然后我可以通过手机进行

三、机器人辅助教学(RAI)

(一)机器人辅助教学的定义、特点和作用

1机器人辅助教学的定义

机器人辅助教学是指师生以机器人为主要教学媒体和工具所进行的教与学活动。与机器人辅助教学概念相近的还有机器人辅助学习(Robot-Assisted Learning,简称RAL),机器人辅助训练(Robot-Assisted Training,简称RAT),机器人辅助教育(Robot-Assisted Ecation,简称RAE),以及基于机器人的教育(Robot-Based Ecation,简称RBE)。

RAL强调用机器人帮助“学”的方面甚于“教”的方面。强调以学习者为中心,主动帮助学习者建立良好的学习环境,提供优化的学习策略;强调个别化的学习指导与帮助。

RAT强调用机器人帮助训练学习者的技能,巩固学习成果。包括机器人在学习技能、生活技能、工作技能训练中的各种应用。

RAE强调用机器人帮助教师进行教学活动以提高教学效率,强调用机器人帮助开展政治思想、伦理道德教育。

RBE的涵义丰富,涵盖机器人在教育中的各种应用,包括RSI、RAI、RMI、RRR、RDI。

2机器人辅助教学的特点

(1)智能化。机器人辅助教学系统具有智能识别、自主判断、优化决策等功能,能自主建构学习环境,实施个性化的因材施教。

(2)自动化。机器人辅助教学系统能在外界干预少的情况下全自动运行。

(3)人性化。教学机器人一般具有人性化的图像识别、语音识别与合成、逻辑推理、知识记忆等功能,能与师生进行多种语言符号的对话。

(4)自学习性。机器人辅助教学系统本身具有一定的自学能力,能不断更新学习者特征库,跟踪学习过程,记录学习情况,以便不断调整教学策略,提高教学水平。

(5)可控性。可以对教学机器人的知识库、推理机、决策器、解释器等模块进行预设,通过编程控制与外表装饰,使教学机器人具有温柔型、睿智型、幽默型、活泼型等可供选择的人性化特征类型。

(6)可移动性。教学机器人可以采用轮式、履带式,甚至步行式机械移动装置,改变其在教学中的站位与角度,以获得最佳的传播效果。还可搬运、操作多种实验仪器,代替教师、学生进行一些风险较大的实验演示。

3机器人辅助教学的作用

(1)从社会学角度看,机器人在教学系统这个微型社区中可以扮演教师、学习伙伴、助手等多个角色,承担相应的任务,发挥相应的作用:

·充当教师。教学机器人可以像学识渊博、观察细致、才思敏捷、诲人不倦的教师那样,从事知识传授、答疑解惑、学习指导、训练技能等工作。

·充当学习伙伴。教学机器人可以扮演与学生友好合作、平等竞争、相互启发、共同探索的学习伙伴及竞争对手,使学生在合作与竞争中获得激励与进步。

·充当助手。机器人可以充当教师备课与科研的助手,学生写作、阅读、思考、实验的助手,帮助搜集、整理、传递有关信息,提高教与学的工作效率。

(2)从传播学角度看,机器人辅助教学可以使教学信息的传播产生质的升华:

·极大扩充传者的知识面。教学机器人贮存的知识库以及所连通的因特网,可以集成全人类的智慧,这是任何优秀教师个人都无法媲美的。

·降低受者的学习负担。教学机器人可以成为学习伙伴与助手,替代学生记笔记、整理资料与贮存课堂信息,减轻学习者机械劳动之苦。

·信息编码数字化。教学机器人将所有视、听、触信息数字化编码后,贮存在电脑数据库中,并能非线性迅速提取、传递与使用。

·信息译码自动化。教学机器人可利用模式识别技术对语音、文字、图像自动识别与翻译。

·信道多样化。机器人辅助教学系统的信息传播通道有视通道、听通道、触通道,以及宽带网络信号传输通道等。

·反馈调控智能化。教学机器人具有丰富的人机对话、高速的数据处理、智能化的推理、决策与优化控制功能,使得教学系统的反馈调控智能化。

·自动分析与排除干扰作用。教学机器人具有的信息过滤与净化功能,能自动排除各种干扰因素,提高信息传播质量。

(3)从教育心理学角度看,机器人辅助教学可发挥如下几个方面的作用:

·激发兴趣。机器人辅助教学能激发学生的好奇心、上进心,并产生浓厚的学习兴趣。

·促进感知。机器人辅助教学能突出感知对象,拓展感知通道,促进多感官的协同作用,提高感知效果。

·加深理解。学生通过与机器人的多维度对话,可对知识与技能的掌握情况进行自我检测,查漏补缺,从而提高比较、分析、判断、归纳能力,提高理解的深度与准确性。

·巩固记忆。机器人辅助教学可以增加学生对知识技能的识记、保持、再认、回忆的方式,提高记忆效果。

·综合运用。机器人辅助教学能为学生综合运用所学知识技能提供新的平台与途径。

然而,机器人辅助教学并不是万能的,其局限性与负面影响依然存在。对此,我们必须保持清醒的认识。

(二)机器人辅助教学系统的类型与组成

1机器人辅助教学系统的类型

(1)按形态分,有人形机器人辅助教学系统和非人形机器人辅助教学系统。人形机器人辅助教学系统由人形(或类人形)机器人承担辅助教学任务,有较熟悉的交互界面,师生在与机器人的对话中,心理障碍较少。非人形机器人辅助教学系统可以是动物形,或者器物形,使用较简便、有趣。

(2)按移动性能分,有活动型机器人辅助教学系统与固定型机器人辅助教学系统。前者的活动方式有平移、转动、走动以及其他复杂运动。其优势在于教学中具有较大的灵活性。后者的安装、使用与维护一般较简便,常装备在智能化教室中。例如,可以将机器人的眼睛(摄像机)、耳朵(拾音器)、口(喇叭)装在教室四周甚至课桌上,将机器人的大脑(电脑)装在讲台内,将电子白板挂在讲台前,将预先编制的课程计划、课程内容存在电脑中,从而使整个教室变为一个机器人教学系统。

(3)按智能水平分,有编程控制型机器人辅助教学系统和智能自控型机器人辅助教学系统。前者能感知外界的部分信息,通过人机对话,能按预先编制的教学程序选择教学策略进行教学,是计算机辅助教学(CAI)的一种延伸。后者能主动辨识学习者特征,能与师生进行自然语言的有声对话,能自主确定教学策略,具有较强的推理与决策能力。

(4)按适用范围分,有通用型机器人辅助教学系统与专用型机器人辅助教学系统。前者具有较广泛的适应能力、较大的知识库、较一般的外在形象,多用于学校公共课的教学。后者则具有较强的针对性与专业特色,多用于专业教学或特定对象的个别教学。

(5)按功能分,有主讲型机器人辅助教学系统、辅导机器人辅助教学系统、训练型机器人辅助教学系统、情感型机器人辅助教学系统。主讲型机器人具有较强的语言表达能力,能讲述、讲解、讲读、讲演教学内容。辅导型机器人具有较强的思辨能力,能准确理解师生提出的各种问题,帮助求解,给予正确的提示、启发、诱导乃至给出答案。训练型机器人多用于训练学生的某种技能,训练过程中特别注意及时反馈与强化。情感型教学机器人能理解与表达某些情感,能对师生给予某些关爱,特别适合于对学生的心理疾病进行矫治,以及进行思想道德教育。

2机器人辅助教学系统的组成

机器人辅助教学系统的基本组成可分为以下八个部分。

(1)感觉系统。包括视觉、听觉、触觉、位移觉、接近觉传感器及其附属组件。每种传感器上都配有模数转换部件,以便将采集到的各种模拟量转换成计算机能处理的数字量。其中,视觉系统要求能摄取师生的形象特征;听觉系统要求能拾取师生的声音特征;触觉系统主要用于判断机器人与外界物接触的力度(压觉)、光滑度(滑觉),以便用它来感测物体搬运及各种操作的情况;位移觉主要用于判断机器人的位置移动情况,以便精确定位;接近觉用于判断一定范围内是否有其他物体存在,以便使机器人在移动时能避开障碍物,提高安全性能。

(2)运算、推理、决策系统。这是机器人辅助教学系统的神经中枢。要求能进行数字运算、逻辑运算、模糊运算及神经运算,具有归纳、演绎推理能力,能根据系统目标、环境状况、自身条件等因素进行高级求解与决策。

(3)专家知识库系统。该系统可采用分布式、协同式结构,将与各科课程有关的知识以素材单元或微教学单元的形式积聚成库。该知识库应对知识单元的难度、适用对象、相关知识等加以表征。为了使该库不断更新,应使其具有自主学习与智能搜索能力。

(4)教学策略库系统。该系统应具有下列智能特征:能诊断、评价学生的学习情况与教学目标的达成难易,并根据教学内容特征,自动选择教学策略、模式与方法,自动调整教学进度,自动生成各种问题与练习,自动解决问题生成答案。

(5)学生特征库系统。该系统建有多种学生模型,在运行过程中,能不断将学生的形象特征、知识特征、能力特征、学习过程特征、学习需求特征等特征参数提取、贮存,以便针对学生情况因材施教。在建库时还应注意区分共有特征与个体特征,以免学生特征库过于庞杂。建构学生模型的方法主要有覆盖法、差错法、规划法、学习历史法等。

(6)运动系统。该系统包括动力子系统、机械子系统、定位子系统,能使机器人整体运动与各部件活动,还具有支持自身重量与平衡以及精确定位等功能。

(7)输出系统。该系统包括显示子系统、打印子系统、语音合成(说话)子系统、网络接口子系统乃至表情动作等体态语输出子系统等。蓝牙(Bluetooth)技术在该系统中将发挥重要作用。

(8)协调、控制与安全系统。该系统具有并行处理、整体协调、实时控制、安全保护等功能。其核心职能是解决机器人辅助教学系统内外的各种冲突。

(三)机器人辅助教学的过程与模式

1机器人辅助教学的过程

机器人辅助教学的基本过程可分为三个阶段:准备阶段、实施阶段、总结阶段。教师、学生、机器人在这三个阶段都有着各自的任务和职能,见下表。

2机器人辅助教学的主要模式

(1)机器人模拟教学模式

该模式利用机器人模拟自然科学或社会科学的某些规律,产生各种与现实世界相类似的现象,供学生观察,帮助学生认识(发现)和理解这些规律与现象的本质。其具体应用类型有:演示模拟、操作模拟、过程模拟等。

该模式在有关人体结构、功能与行为的学科教育中有较广泛的应用。例如,英国布里斯托尔医疗模拟中心的医生利用机器人模拟“病人”,进行了诊断治疗操作的辅助教学。该模拟型机器“病人”体内充满电子元件与管路,能模拟脉搏、心跳、呼吸、血液循环、排尿等人体现象,可进行药物注射,并对其他治疗作出反应。

(2)机器人个别辅导模式

现代社会是一个张扬人性的时代。充分尊重学习者的个性是现代教育得以有效实施的前提。批量化的班级教学与大面积的广播教学,也无不以个别化学习为基础。机器人个别辅导模式发挥了机器人的并行处理与多样化设置的优势,使每一位学习者都能得到度身定制的学习指导。

机器人个别辅导模式可用于下面几种情况:

·微型机器人个别辅导。微型机器人以其重量轻、体积小、携带方便等优势,使学习者可以随时随地穿戴或携带它,在任何时候都可以得到学习帮助。

·家庭机器人个别辅导。在婴幼儿教育、中小学生课外教育以及成人自学教育中,家庭机器人可以担负起“家庭教师”的职责。

·软件机器人个别辅导。软件机器人存在于电脑及网络中,可对每个学习者的学习情况进行跟踪记录与分析,实施个别化的学习咨询与指导。

(3)机器人辅助训练模式

在各种技能技巧的教学训练中,教师往往要做大量重复性的操作示范,其人力消耗较大。采用机器人做操作示范,可以使教师从疲劳泛味的劳动中解放出来,可节省教师工资成本。

机器人辅助训练模式在各级各类教育中都有适用领域。例如,体育运动、舞蹈、绘画、唱歌等动作技巧的训练示范与指导中可采用机器人,机器设备使用技能、医疗手术技能的训练中也可采用机器人。

(4)机器人游戏教学模式

机器人游戏教学可以创设一种富有趣味性和竞争性的教学环境,激发学生的学习动机,使学生在富有教育意义而且教学目标明确的游戏活动中学习知识、掌握技能、培养良好的心理素质。

机器人游戏教学中应注意:一是游戏内容必须与教学内容有关,游戏主题思想必须积极、健康。二是游戏规则中应包含所要达到的教学目标。三是可以让机器人扮演竞争者及裁判者角色。四是要提出明确的竞争目标、游戏时间。游戏应在有限的时间内达到目标状态,而不能无休止地持续下去。

(5)机器人远程教学模式

该模式注重发挥机器人的通讯、交互、并行处理与数据库功能,在网上论坛、网上图书馆、网上BBS(电子公告板)的教育应用中,机器人可发挥较大作用。

机器人用于远程教学,一方面可以提高远程教学的智能化水平,另一方面可望通过建立远程学生模型特征库,同时对多名学习者实施个别化教学,从而完成以往教师难以完成或无法完成的许多工作。

此外,还有机器人辅助讲授模式、机器人辅助听课模式、机器人辅助求解模式,等等,不一一赘述

2. 收集的几种连杆机构:机器人行走背后的机械原理(二)

克兰连杆机构是一个六杆机构,相对于四杆的切比雪夫机构有着更好的受力性能。其一般被用作仿生蜘蛛,拥有急回特性。

1、单个克兰连杆

2、四腿行走机构(四个克兰机构)

3、六腿行走机构(六个克兰机构)

使用乐高积木搭建的Trotbot腿机构机器人

在国外网站上搜到的大型Trotbot腿机构的机器人

Make杂志网站 https://makezine.com/2017/01/12/lego-trotbot/

6腿Ghassaei行走机构

是由Jansen发明的,用于模拟平稳行走,Jansen利用这种连杆制造了著名的海滩巨兽,这种连杆兼具美学价值和技术优势,通过简单的旋转输入就可模仿生物行走运动,这种连杆已经用于行走机器人和步态分析。图为单个Jansen 连杆机构。

2腿Jansen行走机构

4腿Jansen行走机构

6腿Jansen行走机构

瑟·严森(Theo Jansen)

出生于1948年,荷兰动能艺术家。瑟·严森求学于代尔夫特理工大学物理系,后转为学习绘画。20世纪80年代因“飞行UFO项目”成名。20世纪90年代开始“海滩野兽”系列动能艺术项目,在世界各地做展。严森上世纪70年代毕业于荷兰的代尔夫特理工大学物理系。那时正值“嬉皮士年代”,深受嬉皮士文化影响的严森开始转行学习艺术。20世纪80年代末,他开始给一家杂志社写专栏,每天都要尝试用不同的眼光来看待世界,寻找看现实的新颖的角度。“海滩怪兽”最初就出现在他的笔下。他构思了这样一个动物,一个能够在海滩上独立生存的简单“生物”。对于“海滩怪兽”,严森最初的想法是建造一些能够采集沙子,搭建沙丘的机器人,这样,当海平面上升时,这些机器人就可以拯救人类不被海水淹没。半年后,他开始利用塑料管建造这些“怪兽”。

杨森采用平凡的PVC等材料,通过精确运算,近30年,几乎以一己之力,在荷兰海边反复实验,创造出自行扑食、运动的新生命体。他的行动呈现出个体的想象力与可能性。科学的艺术性,感性与理性的均衡。引发人们重新反思对恒心,或者说对意义与生命和时间的理解。也对已有的知识和概念提供了革命性的新视角。对于生物学、宗教和艺术都拓展出新的疆域。对于如何作出生活选择、理解自我和自然、衡量追求理想的心态等处世态度,做出了具有启示性的贡献。

荷兰海滩怪兽的Jansen行走机构

这些“怪兽”的“细胞”不过是一些简单的黄色塑料管,顶多就加上一个“脑袋”———一个塑料柠檬汁瓶子。

在它们的身体中央,往往带有一个可转动的“脊椎”。“脊椎”转动能牵动每根脚趾,并引起一系列复杂运动。这其中最关键的就是12根决定脚趾运动方式的塑料管。不同的“怪兽”,这些塑料管的间距也不同,将这些间距标注出来,能得到11个数字。严森将其看成是怪兽的基因。“这些基因符号是11个数字。我将之称为11个神圣的数字。”严森说。

怪兽的“腿”和“脚”如同车轮,它们也由塑料管搭建。“和普通的车轮一样,车轮的轴停留在同一水平线上,髋关节也停在同一水平线上。”

怪兽还有各种“器官”,让它可以躲避天敌和环境的危险。“鼻子”就是这样一个设置。平时,怪兽都走在柔软温湿的海滩上,鼻子对着风的方向,当遇到海水或干的沙子的时候,它便会立刻停下来反方向行走。海滩上最大的危险就是海水,“它们很容易被淹死”,严森笑说。他给“海滩怪兽”们增添了感知海水的能力,所谓的感应器也不过就是一个小瓶。连接小瓶的管道平时触地吸入空气,但一旦吸入水时就会排斥,发出呲呲的声音,这就是遇到危险的警告,怪兽便会立即掉头回去。当暴风雨来临时,大风会驱动鼻子像打桩机一样打桩,将整个身体都固定在沙子里,以防被风暴吹走。

神经组织类似计算机

“怪兽”的大脑是由“神经细胞”———柠檬汁小瓶组成的。这大脑虽然简单,可运作基本原理却和计算机一样。计算机依靠电流的有无进行2进制的运算,对“怪兽”来说,空气扮演了电流的角色。有风吹过时,小瓶感受到压力,无风的时候,则没有压力。

依靠这个因素,“怪兽”的“大脑”也在进行着2进制的运算。严森说,今后这些“怪兽”还可以演化出“测时”机制,与海潮涨落同期进行。这样,它们就可以知道什么时候海潮会来,可以及时躲到沙丘里去。

因为可以进行2进制的计算,“怪兽”的“大脑”中还带有一个步伐计数器,可以计算走了几步,感知自己面对大海的方位,为自己勾画出“世界”的形象。

严森说,人类对世界的认知是十分复杂的,但对于“海滩怪兽”来说,认知却极其简单———一侧是海洋,一侧是沙丘。这么一来,如此简陋的“神经细胞”一样可以运作良好。

在一些怪兽身上,还带有简单的“胃”,可以储存风能。一旦风停了,又正好遇到涨潮,这些剩余的风能足够驱动怪兽逃回沙丘避难。“这些怪兽是按照基因解码演化的族群,有优势的基因就会复制繁衍下来。”严森称,因为这些怪物的设计是按照基因算法而来的。因此,最成功的家族成员们在今后会将基因符号延续下去。

Jansen行走机构的动能艺术

作为学科学出身的严森,他的头脑中先行产生了很多关于生命思考的理论,如对称性、繁殖、进化顺序等等,这背后都有着一系列的机械原理,将其运用到艺术创作中来,就成为了一种特殊的艺术形式:“动能艺术”。严森已经完成了“海滩怪兽”构想中的最基本功能,如独立行走,躲避天敌,繁衍生命,随着演化的进行,这些怪兽越来越得以离开人的帮助,生存技巧越来越强,严森在主页上写道:“我希望有一天这些动物可以在海滩上成群生活,过自己的日子。” 

Theo Jansen发明的海滩怪兽身上最重要的部位,就是它们的“仿生腿”(Jansen 连杆机构)。在经历过无数次对动物的行走姿态观察,与上万次的电脑测算之后,泰奥·杨森终于找到了一个最优的方案,让这些软管构架起来的怪兽腿部,可以以最高效的姿态模仿动物的腿部进行行走。这样的“仿生腿”,最重要的是要确保最下端的足部,在行走的环节保持相当长一段时间的匀速直线。

每一只“仿生腿”,都又是利用了基本的三角桁架结构,还有黄金比例的几何学。

泰奥·扬森把实验后所得的比例称为“13个神圣数字”。而这13这个数值指的就是脚上每个关节骨架的长度,他们之间相对应的比例关系让整体行动起来流畅自如。

Theo Jansen 的工作间

3. 机器人独立行走需要哪些传感器及设计模块包含哪些

感知系统是机器人能够实现自主化的必须部分。这一章,将介绍一下移动机器人中所采用的传感器以及如何从传感器系统中采集所需要的信号。 根据传感器的作用分,一般传感器分为: 内部传感器(体内传感器):主要测量机器人内部系统,比如温度,电机速度,电机载荷,电池电压等。 外部传感器(外界传感器):主要测量外界环境,比如距离测量,声音,光线。 根据传感器的运行方式,可以分为: 被动式传感器:传感器本身不发出能量,比如CCD,CMOS摄像头传感器,靠捕获外界光线来获得信息。 主动式传感器:传感器会发出探测信号。比如超声波,红外,激光。但是此类传感器的反射信号会受到很多物质的影响,从而影响准确的信号获得。同时,信号还狠容易受到干扰,比如相邻两个机器人都发出超声波,这些信号就会产生干扰。 传感器一般有以下几个指标: 动态范围:是指传感器能检测的范围。比如电流传感器能够测量1mA-20A的电流,那么这个传感器的测量范围就是10log(20/0.001)=43dB. 如果传感器的输入超出了传感器的测量范围,那么传感器就不会显示正确的测量值了。比如超声波传感器对近距离的物体无法测量。 分辨率:分辨率是指传感器能测量的最小差异。比如电流传感器,它的分辨率可能是5mA,也就是说小于5mA的电流差异,它没法检测出。当然越高分辨率的传感器价格就越贵。 线性度:这是一个非常重要的指标来衡量传感器输入和输出的关系。 频率:是指传感器的采样速度。比如一个超声波传感器的采样速度为20HZ,也就是说每秒钟能扫描20次。 下面介绍一下常用的传感器: 编码器:主要用于测量电机的旋转角度和速度。任何用电机的地方,都可以用编码器来作为传感器来获得电机的输出。

4. 轮式移动机器人的工作原理

后轮驱动。智能轮式移动机器人嵌入式控制系统设计,该系统设计的轮式移动机器人机械导航结构采用四轮差速转向式的机械机构,前面两个轮是随动轮,起支撑作用,后面两个轮是驱动轮,由两台同步电机驱动,移动机器人以PC机作为上位机,利用摄像头对机器人的自身位置和外部环境进行分析,建立环境地图,进行路径规划。

5. 收集的几种连杆机构:机器人行走背后的机械原理(一)

机器人概念已经红红火火好多年了,目前确实有不少公司已经研制出了性能非常优越的机器人产品,我们比较熟悉的可能就是之前波士顿动力的“大狗”和会空翻的机器人了,还有国产宇树科技的机器狗等,这些机器人动作那么敏捷,背后到底隐藏了什么高科技呢,控制技术太过复杂,一般不太容易了解,不过其中的机械原理倒是相对比较简单,大部分都是一些连杆机构。

连杆机构(Linkage Mechanism)

又称低副机构,是机械的组成部分中的一类,指由若干(两个以上)有确定相对运动的构件用低副(转动副或移动副)联接组成的机构。低副是面接触,耐磨损;加上转动副和移动副的接触表面是圆柱面和平面,制造简便,易于获得较高的制造精度。

由若干刚性构件用低副联接而成的机构称为连杆机构,其特征是有一作平面运动的构件,称为连杆,连杆机构又称为低副机构。其广泛应用于内燃机、搅拌机、输送机、椭圆仪、机械手爪、牛头刨床、开窗、车门、机器人、折叠伞等。

主要特征

连杆机构构件运动形式多样,如可实现转动、摆动、移动和平面或空间复杂运动,从而可用于实现已知运动规律和已知轨迹。

优点:

(1)采用低副:面接触、承载大、便于润滑、不易磨损,形状简单、易加工、容易获得较高的制造精度。

(2)改变杆的相对长度,从动件运动规律不同。

(3)两构件之间的接触是靠本身的几何封闭来维系的,它不像凸轮机构有时需利用弹簧等力封闭来保持接触。

(4)连杆曲线丰富,可满足不同要求。

缺点:

(1)构件和运动副多,累积误差大、运动精度低、效率低。

(2)产生动载荷(惯性力),且不易平衡,不适合高速。

(3)设计复杂,难以实现精确的轨迹。

网络的相关词条图片如下

下面我们就看看一般都有什么连杆机构适于用于行走(或者移动)的。

平面四杆机构是由四个刚性构件用低副链接组成的,各个运动构件均在同一平面内运动的机构。机构类型有曲柄摇杆机构、铰链四杆机构、双摇杆机构等。

1、曲柄摇杆机构(Crank rocker mechanism )

曲柄摇杆机构是指具有一个曲柄和一个摇杆的铰链四杆机构。通常,曲柄为主动件且等速转动,而摇杆为从动件作变速往返摆动,连杆作平面复合运动。曲柄摇杆机构中也有用摇杆作为主动构件,摇杆的往复摆动转换成曲柄的转动。曲柄摇杆机构是四杆机构最基本的形式 。主要应用有:牛头刨床进给机构、雷达调整机构、缝纫机脚踏机构、复摆式颚式破碎机、钢材输送机等。

2、双曲柄机构(Double crank mechanism )

具有两个曲柄的铰链四杆机构称为双曲柄机构。其特点是当主动曲柄连续等速转动时,从动曲柄一般做不等速转动。在双曲柄机构中,如果两对边构件长度相等且平行,则成为平行四边形机构。这种机构的传动特点是主动曲柄和从动曲柄均以相同的角速度转动,而连杆做平动。

双曲柄机构类型分类

【1】不等长双曲柄机构

说明:曲柄长度不等的双曲柄机构。

结构特点:无死点位置,有急回特性。

应用实例:惯性筛

【2】平行双曲柄机构

说明:连杆与机架的长度相等且两曲柄长度相等、曲柄转向相同的双曲柄机构。

结构特点:有2个死点位置,无急回特性。

应用实例:天平

【3】反向双曲柄机构

说明:连杆与机架的长度相等且两曲柄长度相等、曲柄转向相反的双曲柄机构。

结构特点:无死点位置,无急回特性。

运动特点:以长边为机架时,双曲柄的回转方向相反;以短边为机架时,双曲柄回转方向相同,两种情况下曲柄角速度均不等。

应用实例:汽车门启闭系统

3、铰链四杆机构(Hinge four-bar mechanism)

铰链是一种连接两个刚体,并允许它们之间能有相对转动的机械装置,比如门窗用的合页,就是一种常见的铰链。由铰链连接的四连杆就叫铰链四杆机构。所有运动副均为转动副的四杆机构称为铰链四杆机构,它是平面四杆机构的基本形式,其他四杆机构都可以看成是在它的基础上演化而来的。选定其中一个构件作为机架之後,直接与机架链接的构件称为连架杆,不直接与机架连接的构件称为连杆,能够做整周回转的构件被称作曲柄,只能在某一角度范围内往复摆动的构件称为摇杆。如果以转动副连接的两个构件可以做整周相对转动,则称之为整转副,反之称之为摆转副。

铰链四杆机构可以通过以下方法演化成衍生平面四杆机构。

(1)转动副演化成移动副。如引进滑块等构件。以这种方式构成的平面四杆机构有曲柄滑块机构、正弦机构等。

(2)选取不同构件作为机架。以这种方式构成的平面四杆机构有转动导杆机构、摆动导杆机构、移动导杆机构、曲柄摇块机构、正切机构等。

(3)变换构件的形态。

(4)扩大转动副的尺寸,演化成偏心轮机构 。

4、双摇杆机构(Double rocker mechanism)

双摇杆机构就是两连架杆均是摇杆的铰链四杆机构,称为双摇杆机构。 机构中两摇杆可以分别为主动件。当连杆与摇杆共线时,为机构的两个极限位置。双摇杆机构连杆上的转动副都是周转副,故连杆能相对于两连架杆作整周回转。

双摇杆机构的两连架杆都不能作整周转动。三个活动构件均做变速运动,只是用于速度很低的传动机构中 。双摇杆机构在机械中的应用也很广泛,手动冲孔机,就是双摇杆机构的应用实例,比如说吧飞机起落架,鹤式起重机和汽车前轮转向机构都是双摇杆机构。

判别方法

1.最长杆长度+最短杆长度 ≤ 其他两杆长度之和,连杆(机架的对杆)为最短杆时。

2. 如果最长杆长度+最短杆长度 >其他两杆长度之和,此时不论以何杆为机架,均为双摇杆机构。

5、连杆机构的理论应用

动力机的驱动轴一般整周转动,因此机构中被驱动的主动件应是绕机架作整周转动的曲柄在形成铰链四杆机构的运动链中,a、b、c、d既代表各杆长度又是各杆的符号。当满足最短杆和最长杆之和小于或等于其他两杆长度之和时,若将最短杆的邻杆固定其一,则最短杆即为曲柄。若铰链四杆机构中最短杆与最长杆长度之和小于或等于其余两杆长度之和,则

a、 取最短杆的邻杆为机架时,构成曲柄摇杆机构;

b、 取最短杆为机架时,构成双曲柄机构;

c、 取最短杆为连杆时,构成双摇杆机构;

若铰链四杆机构中最短杆与最长杆长度之和大于其余两杆长度之和,则无曲柄存在,不论以哪一杆为机架,只能构成双摇杆机构。

急回系数

在曲柄等速运动、从动件变速运动的连杆机构中,要求从动件能快速返回,以提高效率。即k称为急回系数。曲柄存在条件参考图 

压力角

如图中的曲柄摇杆机构,若不计运动副的摩擦力和构件的惯性力,则曲柄a通过连杆b作用于摇杆c上的力P,与其作用点B的速度vB之间的夹角α称为摇杆的压力角,压力角越大,P在vB方向的有效分力就越小,传动也越困难,压力角的余角γ称为传动角。在机构设计时应限制其最大压力角或最小传动角。

死点

在曲柄摇杆机构中,若以摇杆为主动件,则当曲柄和连杆处于一直线位置时,连杆传给曲柄的力不能产生使曲柄回转的力矩,以致机构不能起动,这个位置称为死点。机构在起动时应避开死点位置,而在运动过程中则常利用惯性来过渡死点。

6、平面四杆机构一些案例

切比雪夫连杆机构其实是和霍肯连杆机构是属于同一种形式的四连杆机构,其轨迹点都是在连杆两端谁在的直线上。霍肯连杆机构的轨迹点是在两端点连线的延伸线上,而切比雪夫连杆机构的轨迹点是在两端点连线的中间。如下:

切比雪夫连杆机构的动态演示

1、切比雪夫(1821~1894)

俄文原名Пафну́тий Льво́вич Чебышёв,俄罗斯数学家、力学家。切比雪夫在概率论、数学分析等领域有重要贡献。在力学方面,他主要从事这些数学问题的应用研究。他在一系列专论中对最佳近似函数进行了解析研究,并把成果用来研究机构理论。他首次解决了直动机构(将旋转运动转化成直线运动的机构)的理论计算方法,并由此创立了机构和机器的理论,提出了有关传动机械的结构公式。他还发明了约40余种机械,制造了有名的步行机(能精确模仿动物走路动作的机器)和计算器,切比雪夫关于机构的两篇著作是发表在1854年的《平行四边形机构的理论》和1869年的 《论平行四边形》。

理论联系实际是切比雪夫科学工作的一个鲜明特点。他自幼就对机械有浓厚的兴趣,在大学时曾选修过机械工程课。就在第一次出访西欧之前,他还担任着彼得堡大学应用知识系(准工程系)的讲师。这次出访归来不久,他就被选为科学院应用数学部主席,这个位置直到他去世后才由李雅普诺夫接任。应用函数逼近论的理论与算法于机器设计,切比雪夫得到了许多有用的结果,它们包括直动机的理论、连续运动变为脉冲运动的理论、最简平行四边形法则、绞链杠杆体系成为机械的条件、三绞链四环节连杆的运动定理、离心控制器原理等等。他还亲自设计与制造机器。据统计,他一生共设计了40余种机器和80余种这些机器的变种,其中有可以模仿动物行走的步行机,有可以自动变换船桨入水和出水角度的划船机,有可以度量大圆弧曲率并实际绘出大圆弧的曲线规,还有压力机、筛分机、选种机、自动椅和不同类型的手摇计算机。他的许多新发明曾在1878年的巴黎博览会和1893年的芝加哥博览会上展出,一些展品至今仍被保存在苏联科学院数学研究所、莫斯科历史博物馆和巴黎艺术学院里。

2、切比雪夫连杆机构经常被用于模拟机器人的行走

根据公式i=3n-2m

(n为活动构件数目,m为低副数目)

可得自由度i=1

3、切比雪夫连杆机构被广泛运用在机器人步态模拟上,从动图上也能看出,它的轨迹底部较为平稳,步态方式非常像四足动物,收腿动作有急回特性。根据下图WORKING MODEL仿真分析可得,在X轴上,也能看出它的急回特点。

4、嵌入汽缸的切比雪夫直线机构的运动

动图 

5、使用切比雪夫连杆机构的行走桌子

常见到有人遛狗溜猫,但你绝对没见过人溜桌子的,拜荷兰设计师Wouter Scheublin的脑洞所赐,荷兰人民倒是有幸见到过这一奇葩景象,有人推着一张桌子在路上行走,而有着八条腿的桌子就运动着自己的腿,走的蹭蹭蹭的,场景怪异中带着搞笑,让人印象深刻。那么桌子是怎么行走的呢?其实并没有用上什么高科技,它只是通过精细的机械传动机构动起来而已。设计师受到俄罗斯数学家切比雪夫的理论启发,并将它应用到桌子中,所以这张160斤重的桌子轻轻推拉就能走,而且走的异常平稳,不比轮子差。

每条桌腿与桌板之间,都采用精细的木质结构打造。当用手推动桌子时,给力的一方会使桌腿不断前进,通过力臂的摇摆和连接处木质结构,会把力传递到对面的桌腿使之向前移动,然后桌子就能满街跑了。

6. 一台移动的小型机器人有哪些结构

到目前为止,地面移动机器人的行驶机构主要分为履带式、腿式和轮式三种。这三种行驶机构各有其特点[2]。

(1)履带

履带最早出现在坦克和装甲车上,后来出现在某些地面行驶的机器人上,它具有良好的稳定性能、越障性能和较长的使用寿命,适合在崎岖的地面上行驶,但是当地面环境恶劣时,履带很快会被磨损甚至磨断,沉重的履带和繁多的驱动轮使得整体机构笨重不堪,消耗的功率也相对较大。此外,履带式机构复杂,运动分析及自主控制设计十分困难。

(2)腿式

腿式机构具有出色的越野能力,曾经得到机器人专家的广泛重视,取得了较大的成果。根据腿的数量分类,有三腿、四腿、五腿和六腿等各种行驶结构。这里我们简单介绍一种典型的六腿机构。

一般六腿机构都采用变换支撑腿的方式,将整体的重心从一部分腿上转移到另一部分腿上,从而达到行走的目的。行走原理为:静止时,由六条腿支撑机器人整体。需要移动时,其中三条腿抬起成为自由腿(腿的端点构成三角形),机器人的重心便以谌条支撑腿上,然后自由腿向前移动,移动的距离和方位由计算机规划,但必须保证着地时自由腿的端点构成三角形。最后支撑腿向前移动,重心逐渐由支撑腿过渡到自由腿,这时自由腿变成支撑腿,支撑腿变成自由腿,从而完成一个行走周期。

腿式机器人特别是六腿机器人,具有较强的越野能力,但结构比较复杂,而且行走速度较慢。

(3)轮式

轮式机器人具有运动速度快的优点,只是越野性能不太强。现在的许多轮式己经不同于传统的轮式结构,随着各种各样的车轮底盘的出现,实现了轮式与腿式结构相结合,具有与腿式结构相媲美的越障能力。如今人们对机器人机构研究的重心也随之转移到轮腿结合式机构上来了。

本文设计的移动机器人不仅要求具有一般轮式机器人移动速度快、控制简单的特点,还要具有较好的越障能力,因此本文选择轮腿式相结合的轮腿机构作为行驶机构。

2.1.2 驱动形式的选择

驱动部分是机器人系统的重要组成部分,机器人常用的驱动形式主要有液压驱动、气压驱动、电气驱动三种基本类型[3]。

(1)液压驱动

液压驱动是以高压油作为介质,体积较气压驱动小,<率质量比大,驱动平稳,且系统的固有效率高,快速性好,同时液压驱动调速比较简单,能在很大范围实现无级调速。但由于压力高,总是存在漏油的危险,这不仅影响工作稳定性和定位精度,而且污染环境,所以需要良好的维护,以保证其可靠性。液压驱动比电动机的优越性就是它本身<安全性,由于电动机存在着电弧和引爆的可能性,要求在易爆区域中所带电压不超过9V,但液压系统不存在电弧问题。

(2)气压驱动

在所有的驱动方式中,气压驱动是最简单的。使用压力通常在0.4~0.6Mpa,最高可达1Mpa。用气压伺服实现高精度是困<的,但在满足精度的场合下,气压驱动在所有的机器人驱动形式中是质量最轻、成本最低的。气压驱动主要优点是气源方便,驱动系统具有缓冲作用,结构简单,成本低,可以在高温、粉尘等恶劣的环境中工作。其缺点是:功率质量比小,装置体积大,同时由于空气的可压缩性使得机器人<任意定位时,位姿精度不高。

(3)电气驱动

电气驱动是利用各种电机产生的力或转矩,直接或经过减速机构去驱动负载,减少了由电能变为压力能的中间环节,直接获得要求的机器人运动。电气驱动是目前机器人是用得最多的一种驱动方式。其特点是易于控制,运动精度高,响应快,使用方便,驱动力较大,信号监测、传递、处理方便,成本低廉,驱动效率高,不污染环境,可以采用多种灵活的控制方案。

7. 中央空调管道清洗机器人行走设计该怎么去设计呢

和速度有关系的部位,你就找相应的马达即所谓的电机,或是有个速度转换器也可以。爬坡的最好用履带一系列的,有一定的粘附力。我曾经研究过这个东西!

8. 腾讯发布第二代四足机器人Max,这款机器人的设计有何亮点

腾讯发布第二代四足机器人Max,这款机器人的设计亮点如下。

一、能完成高难度动作

腾讯 RoboticsX实验室通过深度增强学习等 AI技术推动了机器人的智能研究,使其能够在虚拟环境中进行自主学习,从而更好地适应不断变化的环境。

与工业机器人相比,腾讯 Robotics X实验室更注重的是自主能力的研究,它的目标是让机器人在充满不确定性的情况下,自主决策,自主完成自己的工作。

9. 机器人行走方式有哪些请详细介绍一下

你的行走是值得双足式机器人的行走方式吗?还是广义的?
如果是双足式的,目前是非常难做到的,做的好的只有日本人能做到真正的仿人双足步行。
其难点在于机器人一脚抬起后,身体前倾,其重心的控制非常难,尤其对于真正的仿人形机器人,因其重量大,惯性就打,对电机的控制和性能要求非常高。
还有一种行走方式就相对简单,实际上是一脚迈出去后,后退不是提升后跟进,而是贴地跟进,这就不是绝对的仿人了。
ps。如果你的行走值得是移动。那就可以分为:轮式、腿时、轮腿混合式等等。

10. 如何利用ROS MoveIt快速搭建机器人运动规划平台

最近几年各种移动机器人开始涌现出来,不论是轮式的还是履带式的,如何让移动机器人移动都是最核心的工作。要让机器人实现环境感知、机械臂控制、导航规划等一系列功能,就需要操作系统的支持,而ROS就是最重要的软件平台之一,它在科研领域已经有广泛的应用。不过有关ROS的书籍并不多,国内可供的学习社区就更少了。本期硬创公开课就带大家了解一下如何利用ROS来设计移动机器人。分享嘉宾李金榜:EAI科技创始人兼CEO,毕业于北京理工大学,硕士学位。曾在网易、雪球、腾讯技术部有多年linux底层技术研发经验。2015年联合创立EAI科技,负责SLAM算法研发及相关定位导航软件产品开发。EAI科技,专注机器人移动,提供消费级高性能激光雷达、slam算法和机器人移动平台。移动机器人的三个部分所谓的智能移动,是指机器人能根据周围的环境变化,自主地规划路线、避障,到达目标地。机器人是模拟人的各种行为,想象一下,人走动需要哪些器官的配合?首先用眼睛观察周围环境,然后用脑去分析如何走才能到达目标地,接着用腿走过去,周而复始,直到到达目标地址为至。机器人如果要实现智能移动,也需要眼、脑和腿这三部分的紧密配合。腿“腿”是机器人移动的基础。机器人的“腿”不局限于类人或类动物的腿,也可以是轮子、履带等,能让机器人移动起来的部件,都可以笼统地称为“腿”。类人的腿式优点是:既可以在复杂路况(比如爬楼梯)下移动、也可以更形象地模仿人的动作(比如跳舞),缺点是:结构和控制单元比较复杂、造价高、移动慢等。所以大部分移动的机器人都是轮式机器人,其优势在于轮子设计简单、成本低、移动快。而轮式的也分为多种:两轮平衡车、三轮、四轮和多轮等等。目前最经济实用的是两个主动轮+一个万向轮。眼睛机器人的眼睛其实就是一个传感器。它的作用是观察周围的环境,适合做机器人眼睛的有激光雷达、视觉(深度相机、单双相机)、辅助(超声波测距、红外测距)等。“脑”机器人的大脑就负责接收“眼睛”传输的数据,实时计算出路线,指挥腿去移动。其实就是要把看到的东西转换为数据语言。针对如何描述数据,如何实现处理逻辑等一系列问题。ROS系统给我们提供一个很好的开发框架。ROS简介ROS是建立在linux之上的操作系统。它的前身是斯坦福人工智能实验室为了支持斯坦福智能机器人而建立项目,主要可以提供一些标准操作系统服务,例如硬件抽象,底层设备控制,常用功能实现,进程间消息以及数据包管理。ROS是基于一种图状架构,从而不同节点的进程能接受、发布、聚合各种信息(例如传感,控制,状态,规划等等)。目前ROS主要支持Ubuntu操作系统。有人问ROS能否装到虚拟机里,一般来说是可以的,但是我们建议装个双系统,用Ubuntu专门跑ROS。实际上,ROS可以分成两层,低层是上面描述的操作系统层,高层则是广大用户群贡献的实现不同功能的各种软件包,例如定位绘图,行动规划,感知,模拟等等。ROS(低层)使用BSD许可证,所有是开源软件,并能免费用于研究和商业用途,而高层的用户提供的包则使用很多种不同的许可证。用ROS实现机器人的移动对于二维空间,使用线速度+角速度可以实现轮式机器的随意移动。线速度:描述机器人前后移动的速度大小角速度:描述机器人转动的角速度大小所以控制机器人移动主要是要把线速度角速度转换为左右轮的速度大小,然后,通过轮子直径和轮间距,可以把线速度和角速度转化为左轮和右轮的速度大小。这里有一个关键问题就是编码器的选择和pid的调速。编码器的选择:一般编码器和轮子是在一个轴上,目前来说,速度在0.7m/s以下的话,编码器选600键到1200键之间都ok。不过需要注意的是,编码器最好用双线的,A、B两线输出,A向和B向输出相差90度,这样可以防抖动。防抖动就是可以在之后里程计算时可以更准确。左轮和右轮的速度大小的控制,通过轮子编码器反馈,通过PID实时调整电机的PMW来实现。实时计算出小车的里程计(odom),得到小车移动位置的变化。计算车的位置变化是通过编码器来计算的,如果轮子打滑等情况,那么计算的变化和实际的变化可能不同。要解决这个问题,其实是看那个问题更严重。要走5米只走了4.9米重要,还是要走180度只走了179度重要。其实角度的不精确对小车的影响更大。一般来说,小车的直线距离精确度可以控制在厘米范围内,在角度方面可以控制精准度在1%~2%。因为角度是比较重要的参数,所以很多人就用陀螺仪来进行矫正。所以有时候大家问小车精度有多高?其实现在这样已经精度比较高了,难免打滑等问题,不可能做到百分之百的精准。小车在距离和角度方面做到现在这样对于自建地图导航已经是可以接受的,要提高更高的精度可能就要其他设备辅助,比如激光雷达来进行辅助,激光雷达可以进行二次检测进行纠正。激光雷达数据的存储格式,它首先会有一个大小范围,如果超出范围是无效的。还有就是有几个采样点,这样就可以激光雷达可以告诉你隔多少度有一个采样点。另外最后那个Intensities是告诉大家数据的准确率,因为激光雷达也是取最高点的数据,是有一定的准确率的。上面的ppt其实就是用激光雷达扫了一个墙的形状。激光雷达扫出一个静态形状其实没有意义,雷达建图的意义其实在于建立房间的地图。如何绘制地图?第一步是收集眼睛数据:针对激光雷达,ROS在sensor_msgs包中定义了专用了数据结构来存储激光消息的相关信息,成为LaserScan。它指定了激光的有效范围、扫描点采样的角度及每个角度的测量值。激光雷达360度实时扫描,能实时测出障碍物的距离、形状和实时变化。第二步就是把眼睛看到的数据转化为地图:ROS的gmapping把激光雷达的/scan数据转换为栅格map数据,其中黑色代表障碍物、白色代表空白区域,可以顺利通行、灰色:未知领域。随着机器人的移动,激光雷达可以在多个不同方位观测同一个位置是否有障碍物,如果存在障碍物的阈值超过设置值是,就标定此处是存在障碍物;否则标定不存在障碍物。把障碍物、空白区域和未知领域的尺寸用不同灰度表示出来,就是栅格地图。便于下一步定位和导航。有时候会出现很直的墙,机器人却无法直着行走,这时的问题可能就是机器人的轮子出现打滑等其他问题,而走歪了,这时绘制出的地图也可能是歪的。这种情况可以通过加一个陀螺仪来避免这个情况。因为激光雷达的特性,有时候遇到黑色或镜面会导致测距不准。目前的解决方法就是不用激光雷达,或者用激光雷达和超声波进行辅助处理。ROS的地图是分多层的,我可以在不同高度放多台激光雷达来一起叠加,共同绘制一张地图。地图绘制结束之后,就可以进行定位和导航等工作。如何定位和导航?定位:其实是概率性的定位,而不是100%的精度。根据激光雷达扫描周围障碍物的形状,与地图的形状做匹配,判断机器人所在位置的概率机器人的定位是否成功,与地图特征有很大关系,如果区域特征明显,那么机器人就很容易判断自己的位置。如果出现难以定位的问题,可能需要人给指定初始位置,或者加led来进行位置识别,或者其他的定位设备来协助定位。目前的视觉通过色彩或者光的技术越来越多。导航:全局路径规划+局部调整(动态避障)导航其实就是全局定位,首先根据现有地图进行规划,但是在运行过程中会进行局部的路线规划。但是总体还是根据全局路径来走。导航中工作量还很大,比如扫地机的路径规划和服务机器人的路径规划是不一样的,扫地机器人可能要全覆盖的有墙角的地图,而服务机器人主要围绕指定的路径或者最短路径来进行规划,这部分是ROS工作量最大的一块。路径规划根据不同应用场景变化比较大,但是ROS提供基础的路径规划的开发包,在这个基础上我们会做自己的路径规划。机器人描述和坐标系变换在导航时,哪些区域可以通过,取决于机器人形状等信息,ROS通过URDF(UnifiedRobotDescriptionFormat)就是描述机器人硬件尺寸布局,比如轮子的位置、底盘大小、激光雷达安装位置,这些都会影响到坐标系的转换。坐标系遵循的前提是每个帧只能有一个父帧,再往上进行一些眼神或者关联。激光雷达的安装位置直接影响/scan输出数据。所以激光雷达和机器人的相对位置是需要做坐标变换,才能把激光雷达的数据转化为机器人视角的数据。ROS的坐标系,最终归结为三个标准框架,可以简化许多常见的机器人问题:1)全局准确,但局部不连续的帧(’map”)2)全局不准确,但局部光滑框架(’odom”)3)机器人自身框架(’base_link”)多种传感器(像激光雷达、深度摄像头和陀螺仪加速度计等)都可以计算base_link和odom的坐标关系,但由于“每个帧只能有一个父帧”,所以只能有一个节点(比如robot_pose_ekf融合多传感器)发布base_link和odom的坐标关系。Baselink自身的坐标系,因为不同元件装在机器人上不同位置,都要对应到baselink的坐标系中,因为所有的传感器都是要通过机器人的视角来“看”。有些朋友问我,激光雷达在建地图的时候,小车移动后地图就乱了,这是因为小车的底盘坐标系和激光雷达的坐标系没有标定准确。map和odom之间的关联因为小车移动需要一个局部联系,比如小车在向前走,不停的累加,这是里程计的作用,map起到全局的、不连续的作用,经过激光雷达和map对应。如果要学习ROS的话,坐标系的变化是重要的点。坐标系的变换还有一个点,就是每个帧都只有一个父帧,有时候两个坐标都和它有关联的话,就是A和B关联,B再和C关联,而不是B/C都和A关联。三个坐标帧的父子关系如下:map–>odom–>base_link其实,map和odom都应该和base_link关联,但为了遵守“每个帧只能有一个父帧”的原则,根据map和base_link以及odom->base_link的关系,计算出map与odom的坐标关系并发布。odom->base_link的坐标关系是由里程计节点计算并发布的。map->base_link的坐标关系是由定位节点计算出来,但并不发布,而是利用接收odom->base_link的坐标关系,计算出map->odom的坐标关系,然后发布。只有里程计的时候,没有激光雷达,也可以跑,但是要先根据预设地图进行简单避障。精彩问答Q:还有ROS的实时性有什么改进进展吗?A:实时改进要看ROS2.0的设计,其实ROS2.0的进展网上有公开。但是实际上他的进展离实际应用还有一定距离,至少今年下半年还达不到稳定,不过可以去研究下他的代码,他对内存管理,线程管理,在实时性上有了很大改善。Q:vSLAM对内存和CPU要求颇高。实际工程中,李老师使用的是什么硬件配置?可以做多大的地图呢?A:确实如此,目前来说我们还是使用激光雷达和传感器辅助来进行,这个和地图大小没有太大关系,主要是与地形障碍物复杂程度有关。

阅读全文

与机器人轮式行走装置的设计相关的资料

热点内容
吉楠五金制品有限公司 浏览:723
什么是砖砌卧式阀门井 浏览:631
黄铜铸造用的什么沙 浏览:100
海马s5改装排气阀门 浏览:548
塑胶与五金件连接结构稳定性测试 浏览:663
漏鸟电影有 浏览:990
日本高清片在线观看 浏览:101
日本裂变成小和尚的电影 浏览:194
李采潭互换身体电影 浏览:204
浙江玉环弃权阀门厂招工 浏览:306
宝马740不制冷什么原因 浏览:598
轴承上p6代表什么意思 浏览:757
14部韩国电影床戏 浏览:698
东莞市华之宏机电设备有限公司怎么样 浏览:358
2014女孩闺蜜电影 浏览:913
东方红804离合器轴承怎么打黄油 浏览:402
烟囱子母口用什么设备 浏览:37
轴承有异响怎么解决 浏览:52
塑料阀门粘接是什么意思 浏览:788
某些电影里的黄片段有哪些 浏览:670