㈠ 有没有能自动伸缩的机械装置类似液压杆的装置,能
多了,螺母-丝杠,电动推杆,电液推杆,油缸,气缸等等,要看行程和推力来选择。
㈡ 千斤顶的原理图 及构造
如图所示:千斤顶原理及构造图
㈢ 机械运动中的杆杠原理具体怎么解释
简单机械
凡能够改变力的大小和方向的装置,统称“机械”。利用机械既可减轻体力劳动,又能提高工作效率。机械的种类繁多,而且比较复杂。根据伽利略的提示,人们曾尝试将一切机械都分解为几种简单机械,实际上这是很困难的,通常是把以下几种机械作为基础来研究。例如,杠杆、滑轮、轮轴、齿轮、斜面、螺旋、劈等。前四种简单机械是杠杆的变形,所以称为“杠杆类简单机械”。后三种是斜面的变形,故称为“斜面类简单机械”。不论使用哪一类简单机械都必须遵循机械的一般规律——功的原理。
杠杆
用刚性材料制成的形状是直的或弯曲的杆,在外力作用下能绕固定点或一定的轴线转动的一种简单机械。其上有支点(用O表示),动力(F)作用点,阻力(W)作用点,杠杆的固定转轴就是通常所说的“支点”,从转轴到动力作用线的垂直距离叫“动力臂”,从转轴到阻力作用线的垂直距离叫“阻力臂”。上述就是通常所讲的三点两臂。由于杠杆上三点的位置不同,即产生不同的受力效果。
杠杆原理
亦称“杠杆平衡条件[1]”。要使杠杆平衡,作用在杠杆上的两个力(动力和阻力)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为 F1· L1=F2·L2 简单机械
式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
动力
任何机械,不论是简单的还是复杂的,在工作时,总要受到两种力的作用:一种是推动机械的力叫作“动力”动力是使杠杆转动的力。另一种是阻碍机械运动的力叫作“阻力”阻力是阻碍杠杆转动的力。动力可以是人力,也可以是畜力、风力、电力、水力、蒸汽压力等,阻力除了我们要克服的有用阻力之外,还有一些是不可避免的无用阻力。
作用线
通过力的作用点沿力的方向所引的直线,叫作“力的作用线”。
动力臂
从支点到力的作用线的垂直距离叫“力臂”。从支点到动力的作用线的垂直距离L1叫作“动力臂”;从支点到阻力的作用线的垂直距离L2叫作“阻力臂”。如果把从动力点到支点的棒长距离作为动力臂,或把从阻力点到支点的棒长距离作为阻力臂,这种认识是错误的。这是因为对动力臂和阻力臂的概念认识不清所致。
阻力臂
见动力臂条。
转动轴
转动是常见的一种运动。当物体转动时,它的各点都做圆周运动,这些圆周的中心在同一直线上,这条直线叫做“转动轴”。门、窗、砂轮、电动机的转子等都有固定转轴,只能发生转动,而不能平动。几个力作用在物体上,它们对物体的转动作用决定于它们的力矩的代数和。若力矩的代数和等于零,物体将用原来的角速度做匀速转动或保持静止。
三类杠杆
对杠杆的分类一般是两种方法。第一种是以支点、阻力点和动力点所处的位置来分的;另一种是按省力或费力来区分的。无论怎样来划分,总离不开省力、费力、不省力也不费力这几种情况。 简单机械
机械利益
表示机械省力程度的物理量。机械虽然绝对不能省功,但可以省力。使机械作功的力称为“动力”(F),阻碍机械作功的力称为“阻力”(P)。使用机械的目的,在于使用很小的动力而与阻力平衡。所谓机械利益(A),就是机械的有用阻力(P)跟动力(F) 小于1。 机械利益>1时,省力费时,凡省力的机械,其机械利益必大于1。例如,独轮车、钳子、起子、省力的杠杆等都是省力的机械。机械利益=1时,不省力,也不费力。例如物理天乎。机械利益<1时,费力省时,例如竹夹、火钳等。机械利益是由实际测得的有用阻力和动力的大小所决定。由于机械润滑情况的不同,在克服同样的有用阻力时,亦有所不同。机械润滑得不好,无用阻力大,需要动力也大,机械利益就小些;机械润滑得好,无用阻力小,需要的动力也小,机械利益就大些。新生产出的机器需要磨合,汽车出厂要用上一段时间,目的是使其摩擦阻力减小。但机器陈旧,机件磨损,又会增加阻力。
杠杆的应用
不同类型杠杆各具有不同的特点和用途。掌握了杠杆原理,就可根据需要有意识地选用不同类型的杠杆来使用。应明确:省力杠杆省力但要多移动距离,费力杠杆费力但省距离,等臂杠杆不省力也不省距离,又省力又省距离的杠杆是没有的。有的杠杆是否省力或省距离,不是永恒不变的。根据使用情况的不同,会由省力变为省距离。例如,用铁锹铲土,往车上装土的过程都会有所改变。铲土时支点在动力点及阻力点之间,在装土时动力点在支点与阻力点之间。为此,在使用杠杆时应注意几点: 1.解答杠杆问题时,必须根据题意画出示意图,在图上标出杠杆的支点、动力作用线和阻力作用线。同时用线段标明动力臂和阻力臂的大小,再根据杠杆平衡条件,列出方程,进行计算。 2.力臂是一个重要的概念。力臂是从支点到力的作用线的垂直距离,不要理解为力臂是从支点到力的作用点的长度。动力和阻力都是指作用在同一杠杆上的力,而不是作用在重物或其他物体上的力。 3.画杠杆示意图的方法: (1)画出杠杆:用粗直线表示直杠杆,用变曲的粗线表示曲杠杆。 (2)在杠杆转动时找出支点,并在支点旁用箭头表示杠杆转动的方向。 (3)根据转动方向判断动力、阻力的方向。动力、阻力的作用点应画在杠杆上,可用力的示意图表示。 (4)用虚线表示力的作用线的延长线和力臂。 4.杠杆的平衡条件,适用于任意一个平衡位置上,所谓杠杆的平衡是指杠杆静止不转动或匀速转动。
杆秤
它是测量物体质量的量度工具,是以提纽为转动轴,根据杠杆平衡原理制造的。杆秤主要由秤杆、秤砣、秤钩(或秤盘)等构成。如图1-23所示。G表示杆秤的重力,B点是它的重点,未挂重物时若将 A点即为杆秤的“定盘星”。在秤钩上加物W后,将秤砣从A点移到A' 力G相对应的刻度A'的位置。杆秤是我国劳动人民所发明并使用已久的测量工具,旧秤以斤,两为单位计量,目前以千克计量。
力矩
又叫“转矩”,是表示力对物体作用时,使物体发生转动或改变转动状态的物理量。力矩是矢量。力矩的大小等于力与从转轴到力的作用线的垂直距离之乘积。如果物体所受的力不在垂直于转轴O的平面内,就必须把力分解成两个分力:一个分力与转轴平行;另一个分力是在转动的平面内。只有转动平面内的分力才可能改变物体的转动状态。因此,在力矩等于力跟力臂乘积的计算中,应理解力是在它的作用点的转动平面内的分力。如这一点在力的作用线上,则力矩为零。如果若干个力同时作用在一个物体上,则合力矩是所有分力矩的代数和。一个处于平衡的物体,顺时针方向力矩的和等于逆时针方向力矩的和,在国际单位制中,力矩的单位是米·牛顿。其方向用右手螺旋法则决定。在中学阶段,因为只研究有固定转轴的物体的平衡,力矩就只有两种转向。规定物体逆时针转动的力矩为正,使物体顺时针转动的力矩为负。力矩愈大,使物体转动状态发生改变的效果就愈明显。用大小相同的力推门时,力的作用点离转轴愈远,且方向垂直于门,力臂愈大,则推门愈省力。
力偶
大小相等、方向相反,但作用线不在同一直线上的两个力叫作“力偶”。用双手攻螺纹或用手旋钥匙、水龙头时,所施加的作用常是力偶。它能使物体发生转动,或改变其转动状态。汽车驾驶员双手转动转向盘时所施加的一对力就是一个力偶。力偶的转动效果决定于力偶矩的大小。力偶矩等于其中任何一个力的大小和两力作用线之间的垂直距离(力偶臂)的乘积。如图1-24所示。如果作用力F的方向跟AB垂直,AB的长度等于d,那么这个力偶的力偶矩(M)为: M=±Fd。 式中Fd为力偶矩的大小,符号用来表示力偶的转向。规定力偶逆时针转向取“+”,反之取“-”(也可规定,力偶顺时针转向取“+”,那么力偶逆时针转向就取“-”)。应注意:力偶中力的方向不跟AB垂直时,应像力矩那样分解成垂直分量,再进行计算。力偶的转矩(即力偶矩)和所绕着转动的点无关。由于力偶的合力为零,它不能使物体产生位移,只能使物体发生转动或改变物体的转动状态。
力偶矩
简称为“力偶的力矩”,亦称“力偶的转矩”。力偶是两个相等的平行力,它们的合力矩等于平行力中的一个力与平行力之间距离(称力偶臂)的乘积,称作“力偶矩”,力偶矩与转动轴的位置无关。力偶矩是矢量,其方向和组成力偶的两个力的方向间的关系,遵从右手螺旋法则。对于有固定轴的物体,在力偶的作用下,物体将绕固定轴转动;没有固定轴的物体,在力偶的作用下物体将绕通过质心的轴转动。
力偶臂
力偶之两个力之间的垂直距离。见力偶条图1-24所示。
轮轴
是固定在同一根轴上的两个半径不同的轮子构成的杠杆类简单机械。半径较大者是轮,半径较小的是轴。从形式上看是圆盘,但从实质上看起来只有它们的直径或半径起力学作用。用R表示轮半径,也就是动力臂;r表示轴半径,也就是阻力臂;O表示支点。当轮轴在作匀速转动时,动力×轮半径=阻力×轴半径,所以轮和轴的半径相差越大则越省力。上式动力用F表示,阻力用W表示,则可写成FR=Wr。 即利用轮轴可以省力。若将重物挂在轮上则变成费力的轮轴,但它可省距离。轮轴的原理也可用机械功的原理来分析。轮轴每转一周,动力功等于F×2πR,阻力功等于W×2πr。在不计无用阻力时,机械的 日常生活中常见的辘轳、绞盘、石磨、汽车的驾驶盘、手摇卷扬机等都是轮轴类机械。
滑轮
滑轮是属于杠杆变形的一种简单机械,是可以绕中心轴转动的,周围有槽的轮子。使用时,根据需要选择。滑轮可分为定滑轮、动滑轮、滑轮组、差动滑轮等。有的省力,有的可以改变作用力的方向,但是都不能省功。
定滑轮
滑轮的轴固定不动,它实质上是一个等臂杠杆。动力臂和阻力臂都是滑轮的半径r,根据杠杆原理Fr1=Wr2。它的机械利益为 变了动力的方向,如要把物体提到高处,本应用向上的力,如利用定滑轮,就可以改用向下的力,因而便于工作。
动滑轮
滑轮的轴和重物一起移动的滑轮。它实质上是一个动力臂二倍于阻力臂的杠杆。根据杠杆平衡的原理Wr=F·2r,它的机械利 改变用力的方向。其方向是与物体移动的方向一致。
滑轮组
动滑轮和定滑轮组合在一起叫“滑轮组”。因为动滑轮能够省力,定滑轮能改变力的方向,若将几个动滑轮和定滑轮搭配合并而成滑轮组,既可以改变力的大小,又能改变力的方向。普通的滑轮组是由数目相等的定滑轮和动滑轮组成的。而这些滑轮或者是上下相间地坐落在同一个轮架(或叫“轮辕”),或者是左右相邻地装在同一根轴心上。绳子的一端固定在上轮架上,即相当于系在一个固定的吊挂设备上,然后依次将绳子绕过每一个下面的动滑轮和上面的定滑轮。在绳子不受拘束的一端以F力拉之,被拉重物挂在活动的轮架上。对所有各段绳子可视为是互相平行的,当拉力与重物平衡时,则重物W必平均由每段绳子所承担。若有n个定滑轮和n个动滑轮时, 且为匀速运动时,则所需之F力的大小仍和上面一样。因此,在提升重物时才能省力。其传动比乃为F∶W=1∶2n。注意,在使用滑轮组时,不能省功,只能省力,但省力是以多耗距离(即行程)为前题的。 前边所分析的定滑轮、动滑轮以及滑轮组,都是在不计滑轮重力,滑轮与轴之间的摩擦阻力的情况下得出的结论。但在使用时,实际存在轮重和摩擦阻力,所以实际用的力要大些。
差动滑轮
即链式升降机,是一种用于起重的滑轮组。上面是由两个直径不同装在同一个轴上的圆盘A、B组成的定滑轮。下面是一个动滑轮,用铁索与上面的定滑轮联结起来而成滑轮组。若大轮A的半径是R,小轮B的半径是r,如图1-25所示。当动力F拉链条使大轮转一周,动力F拉链条向下移动了2πR,大轮卷起链条2πR,此时小轮也转动一周,并放下链条长2πr于是动滑轮和重物W上升的高度为 由于2R大于(R-r),差动滑轮的机械利益大于1,若提高机械利益,可加大两轮的半径同时缩小两轮间的半径差。这种机械,亦称“葫芦”,有手动,也有用电来驱动的。链条是闭合的,为防止滑轮和链条间的滑动,滑轮上有齿牙与链条配合运动。
斜面
简单机械的一种,可用于克服垂直提升重物之困难。距离比和力比都取决于 简单机械
倾角。如摩擦力很小,则可达到很高的效率。用F表示力,L表示斜面长,h表示斜面高,物重为G。不计无用阻力时,根据功的原理。得 FL=Gh。实验证明,沿着光滑斜面向上拉重物数学要的拉力F小于重物的所受的重力G,即利用斜面可以省力,当斜面高度一定时,长度L不同的斜面所需的拉力也不同:L越长,F越小,越省力 倾角越小,斜面越长则越省力,但费距离。
螺旋
属于斜面一类的简单机械。例如螺旋千斤顶可将重物顶起,它是省力的机械。千斤顶是由一个阳螺旋杆在阴螺旋管里转动上升而将重物顶起。根据功的原理,在动力F作用下将螺杆旋转一周,F对螺旋做的功为F2πL。螺旋转一周,重物被举高一个螺距(即两螺纹间竖直距离),螺旋对重物做的功是Gh。依据功的原理得 很小的力,就能将重物举起。螺旋因摩擦力的缘故,效率很低。即使如此,其力比G/F仍很高,距离比由2πL/h确定。螺旋的用途一般可分紧固、传力及传动三类。
齿轮和齿轮组
两个相互咬合的齿轮,在它们处于平衡状态时,不省力,因为齿轮的实质是两个等臂杠杆,所以咬合的齿轮不省力,只省圈数。
劈
亦称“尖劈”,俗称“楔子”。它是简单机械之一,其截面是一个三角形(等腰三角形或直角三角形)。三角形的底称作劈背,其他两边叫劈刃。施力F于劈背,则作用于被劈物体上的力由劈刃分解为两部分,如图1-26所示。P是加在劈上的阻力,如果忽略劈和物体之间的摩擦力,利用力的分解法,知P与劈的斜面垂直,P的作用可分成两个分力:一个是与劈的运动方向垂直,它的大小等于P·cosα,对运动并无影响;另一个是与劈的运动方向相反的,它的大小等于P·sinα,对运动起阻碍作用。所以,当F=2P·sinα时劈才能前进,因而P与F大小之比等于劈面的长度和劈背的厚度之比,因此劈背愈薄,劈面愈长,就愈省力。劈的用途很多,可用来做切削工具,如刀、斧、刨、凿、铲等;可用它紧固物体,如鞋楦榫头,斧柄等加楔子使之涨紧;还可用来起重,如修房时换柱起梁等。
功
是描述物体状态改变过程的物理量,能量变化的量度。功的概念来源于日常生活中的“工作”一词。在物理学中,它有特殊的含义。当物体在恒力F的作用下,力的作用点的位移是S时,这个功就等于力跟距离的乘积。对初中学生来说,只要明确“在力的作用下,物体沿力的方向通过了一段距离,那么这个力就对物体做了功”,这是指物体在恒力作用下,沿力的方向作单向直线运动的情况,所以对功的计算可用公式W=FS。当物体在恒力作用下,作非单向直线运动,如竖直上抛运动、平抛运动、斜抛运动等等,物体受力方向和运动方向不一定是一致时,对功的理解应加深为“力对物体所做的功,等于力的大小、力的作用点的位移大小,力和位移间夹角的余弦三者之乘积”即W=FScosα。式中W表示外力F对物体所做的功,S表示物体移动的路程,α表示F与S之间的夹角。根据公式研究力对物体做功的一些情况: 1.当α=0°时,W=FS,力对物体做正功; 2.当0°<α<90°时,1>cosα>0,则力F的有效分力Fcosα和物体的运动方向一致,力F对物体做正功; 3.当α=90°时,cosα=0,则W=0,此时力F对物体不做功; 4.当180°>α>90°时,-1<cosα<0,则W<0,即W为负值。在这种情况下F对物体做负功,也可说成物体克服阻力F做功; 5.当α=180°时,则W=-FS,这时力F对物体做负功,或者说成物体克服阻力F做功。 必须注意:在研究有关“功”的问题时,应分清有没有做功,谁在做功。功是一个只有大小而没有方向的物理量,它是标量而不是矢量。至于正功和负功,不过是区别外力对物体做功还是物体克服阻力做功,或用来表示力与路程同向还是反向,并不是功有方向性。 功是力对空间的累积效应。力对物体做功,使物体发生位置或运动状态的改变,因而也就发生了机械能的改变。功即是反映在这一过程中,物体机械能改变多少的物理量。在力学中功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。功的单位和能量单位一样,在国际单位制中,都是焦耳。 计算变力做功是把运动的轨迹分成许许多多无限小的小段,在每个小段内,可以把力看作为恒力,按恒力做功的定义来计算在各个小段内所做的功,最后把各个小段的功加起来,就是变力做的功,即A=ΣFi·ΔSi,如果力和位移都是连续的,则可用积分法计算,
功的原理
亦称“机械功的原理”。即动力对机械所做的功等于机械克服阻力所做的功。也就是说利用任何机械都不能省功。动力功W动,又称输入功或总功。阻力功W阻,包括克服有用阻力所做的W有用(又称输出功)和克服无用阻力所做的W无用(又称损失功),即W动=W阻=W有用+W无用。也可写成W输入=W输出+W损失。功的原理是机械的基本原理。要省力就要多移动距离,要少移动距离就要多用力,使用任何机械都不能省功。在机械做功过程中,只有在不存在无用阻力,机械本身作匀速运动的理想情况下,有用功才等于总功,效率为100%。事实上,必然存在无用阻力,效率一定小于100%,也就是说使用任何机械,在实际情况下总是费功的。应明确,只有在理想情况下,有用功才等于总功。
正功
作用力的方向和力的作用点的位移方向之夹角小于90°且大于或等于0°时(即α为锐角),根据公式作用力A做正功。当力F与位移S夹角α=0°时,W=FScos0°=FS,F做最大正功;0°<α<
负功
当作用力方向与力的作用点位移方向夹角大于90°且小于或等于180°时,这时cosα<0,根据公式功为负。力对物体作负功-A就代表受力作用的物体克服阻力作了正功A。这两种说法描述的是同一物理过程。例如,空气压缩机中空气对活塞作负功,也可以说成是活塞克服空气的压力作正功。又如,汽车紧急制动,车轮停止转动,轮胎在地面上滑动,这时摩擦力对汽车作负功,反过来也可以说汽车克服摩擦力作正功。
功率
功跟完成这些功所用时间的比值叫做“功率”。最初定义功率为“单位时间里完成的功”,它是指做功快慢不变的情况,初中学生易于掌握。“功跟完成这些功所用时间的比值”这一定义功率,对于做功快慢不变的情况,既表示平均功率,又表示即时功率。对于做功快慢不均匀的情况,如时间取得长些,则为平均功率;时间趋于零,这一 率,只能表示机器在一段时间t内的平均功率。而由公式P=Fv计算出来的功率就有了不同的含义。若速度v代表平均速度,那么P代表平均功率,如果v代表即时速度,那么P就代表机器在某瞬时的即时功率。 公式中力是一个矢量,速度也是一个矢量,而功率却是一个标量。 方法,一为“标积”;一为“矢积”。两矢量的“标积”为一标量,其大小(к)为两矢量的大小和两矢量夹角的余弦的乘积,用公式表示为 式P=Fv中,实际上P应为 矢量和 矢量的标积,即 所以得到的功率P应为一标量。 关于公式P=Fv,中F与v成反比的关系,应明确,不能脱离具体条件,防止得出谬误的结果。因为机器的牵引力要受速度的限制,又受机器的构造、运转条件等限制,任何机器在设计制造时,已规定了它的正常功率和最大作用力。超过最大作用力范围,牵引力和速度成反比这一关系就不能适用。另一方面也不能使机器的牵引力趋近于零,而使机器的速度无限制地增加。因为任何机器在工作时要受到阻力作用,阻力还与机器运转的速度有关。即使在没有负载的情况下,机件间的摩擦阻力仍然存在。为维持机器的运转,发动机的牵引力不能小于它所受的阻力。因而它的速度也不能无限增加。因此,任何机械在有一定的最大输出功率的同时,还具有一定的最大速度和最大作用力。 功率的常用单位是瓦特(焦耳/秒),简称瓦,单位符号W。瓦特这个单位较小,技术上常用千瓦做功率的单位。过去还有尔格/秒、牛顿·米/秒、千克力·米/秒。 间t内的平均功率。当物体受恒力作用时也可表示为P=F 。式中 表示某段时间的平均速度。平均功率随所取的时间不同而不同,因此在谈到平均功率时,一定要指出是哪一段时间内的平均功率。参阅功率条。
即时功率
即“瞬时功率”,简称功率。描述机械在某一瞬间作 物体运动即时速度的乘积。作平均速度时,P当然代表平均功率,如果作即时速度,那么P就代表机械在某瞬时的即时功率。当作匀速运动时,即时功率和平均功率相同 杠杆概念:当动力点离支点的距离小于阻力点离支点的距离时,省力。 当动力点离支点的距离大于阻力点离支点的距离时,费力。 当动力点离支点的距离等于阻力点离支点的距离时,不省力也不费力。
编辑本段分类法
第一种分类法
第一类杠杆:是动力F和有用阻力W分别在支点的两边。这类杠杆 不省力也不费力。例如,剪金属片用的剪刀,刀口很短,它的机械利益远大于1 。这是因为金属板很硬,刀口短,刀把长,即动力臂大于阻力臂,可以少用力。属于这种情况的杠杆还有克丝钳等。家庭裁衣剪布用的剪刀,把与刃基本是等长的,即动力臂等于阻力臂,属于不省力也不费力的类型。因为布的厚度较薄,不需太大的力,剪布要直故刀口要长些,为此用力不大,布剪的也直。属于这种类型的还有物理天平。又如理发用的剪刀,刀口很长,即动力臂小于阻力臂,它的机械利益小于1。这是因为剪发本来不需要多大的力,刀口长一些,能够剪得快一些和齐一些。 第二类杠杆:是支点和动力点分别在有用阻力点的两边。这类杠杆的动力臂大于阻力臂,其机械利益总是大于1,所以总是省力的。例如,用铡刀铡草、独轮车等都是这类杠杆。 第三类杠杆:是支点和有用阻力点分别在动力点的两边,这类杠杆的动力臂小于阻力臂,其机械利益总是小于1,所以总是费力的。例如,缝纫机的脚踏板、夹食品的竹夹子都属于这类杠杆。
第二种分类法
第一类杠杆:是省力的杠杆,即动力臂大于阻力臂。例如,羊角锤、木工钳、独轮车、汽水板子、铡刀等等。 第二类杠杆:是费力的杠杆,即动力臂小于阻力臂。如镊子、钓鱼杆、理发用的剪刀。 第三类杠杆:不省力也不费力的杠杆,即动力臂等于阻力臂。其机械利益等于1。如夭平、定滑轮等。
㈣ 顶部驱动装置原理
什么是顶部驱动钻井系统?编辑
所谓的顶驱,就是可以直接从井架空间上部直接旋转钻柱,并沿井架内专用导轨向下送进,完成钻柱旋转钻进,循环钻井液、接单根、上卸扣和倒划眼等多种钻井操作的钻井机械设备。
见图:它主要有三个部分组成:导向滑车总成、水龙头-钻井马达总成和钻杆上卸扣装置总成。
该系统是当前钻井设备自动化发展更新的突出阶段成果之一。经实践证明:这种系统可节省钻井时间20%到30%,并可预防卡钻事故,用于钻高难度的定向井时经济效果尤为显著。
3顶部驱动系统的研制过程:编辑
1、钻井自动化进程推动了顶部驱动钻井法的诞生。
二十世纪初期,美国首先使用旋转钻井法获得成功,此种方法较顿钻方法是一种历史性的飞跃,据统计,美国有63%的石油井是用旋转法钻井打成的。
但在延续百多年的转盘钻井方式中,有两个突出的矛盾未能得到有效的解决:其一、起下钻时不能及时实现循环旋转的功能,遇上复杂地层或是岩屑沉淀,往往造成卡钻。其二、方钻杆的长度限制了钻进的深度(每次只能接单根),降低了效率,增加了劳动的强度,降低了安全系数。
二十世纪七十年代,出现了动力水龙头,改革了驱动的方式,在相当的程度上改善了工人的操作条件,加快了钻井的速度以及同期出现的“铁钻工”装置、液气大钳等等,局部解决了钻杆位移、连接等问题,但远没有达到石油工人盼望的理想程度。
TDS-3SB
二十世纪八十年代,美国首先研制了顶部驱动钻井系统TDS-3S投入石油钻井的生产。80年代末期新式高扭矩马达的出现为顶驱注入了新的血液和活力。TDS—3H、TDS—4应运而生,直至后来的TDS-3SB、TDS-4SB、TDS-6SB。
二十世纪九十年代研制的IDS型整体式顶部驱动钻井装置,用紧凑的行星齿轮驱动,才形成了真正意义上的顶驱,既有TDS到IDS,由顶部驱动钻井装置到整体式顶部驱动钻井装置,实现了历史性的飞跃。
2、挪威DDM-HY-650型顶部驱动钻井装置:
最大载荷6500kN,液压驱动,工作扭矩为55kN.m,工作时最大扭矩为63.5kN.m,工作转速为130—230r/min,液压动力压力为33MPa,排量1600L/min,水龙头吊环到吊卡上平面的距离为6.79米,质量17吨。
3、加拿大8035E顶部驱动钻井装置:
额定钻井深度5000米,额定载荷3500kN,输出功率670kW,最大连续扭矩33.10kN.m,最高转速200r/min,质量为8.6吨。最低井架高度要求39米。
4、美国ES-7型顶部驱动钻井系统:
采用25kW直流电机驱动钻柱,连续旋转扭矩34.5kN.m,间歇运转扭矩41.5kN.m,额定载荷5000kN,最高转速300r/min,钻井液压力35.1MPa,系统总高7.01米,质量8.1吨。
5、国产DQ-60D型顶部驱动钻井装置。
额定钻井深度6000m,最大钩载4500kN,动力水龙头最大扭矩40kN.m,转速范围0—183r/min,无级调速;直流电机最大输出功率940kw;倾斜臂最大倾斜角,前倾30°,后倾15°;回转半径1350mm;最大卸扣扭矩80kN.m;上卸扣装置夹持钻杆的范围Ø89—Ø216mm(3½—8½ in)。
4顶部驱动钻井装置的结构:编辑
(一)、 顶部驱动钻井装置主要有以下部件和附件组成:
1、水龙头--钻井马达总成(关键部件);
2、马达支架/导向滑车总成(关键部件);
3、钻杆上卸扣总成(体现最大优点的部件);
4、平衡系统;
5、冷却系统;
6、顶部驱动钻井装置控制系统;
7、可选用的附属设备。
顶部驱动钻井装置的主体部件,主要包括:
1、钻井马达;
2、齿轮箱;
3、整体水龙头;
4、平衡器。
钻井马达的冷却系统:
马达的冷却为风冷。
1、近距离安装鼓风机
2、加高进气口的近距离安装鼓风机
3、远距离安装鼓风机近距离就是近距离向马达提供冷却风,取风高度在马达行程最低点距离钻台6米以上。
远距离安装鼓风机:
在不能保证提供安全冷却空气的情况下,例如:井架为密闭式的即可采用直径8in软管冷却系统,且鼓风机马达为40hp(比近距离安装提高了一倍),马达安在二层平台,从井架外吸进空气,增加的马力用于驱使空气流过较长的进气软管。
(二)、导向滑车总成
整个导向滑车总成沿着导轨与游车导向滑车一起运动。当钻井马达处于排放立根的位置上时,导向滑车则可作为马达的支撑梁。导轨有单轨和双轨两种。
(三)、钻杆上卸扣装置
主要组成部件:
1、扭矩扳手
2、内防喷器和启动器
3、吊环连接器和限扭器
4、吊环倾斜装置
5、旋转头
扭矩扳手总成提供钻杆的上卸扣的手段。他位于内防喷器下部的保护接头一侧,他有两个液缸在扭矩管和下钳头之间。
钳头有一直径为10in的夹紧活塞,用以夹持与保护接头相连接的钻杆母扣。范围:3½in--7⅜in。
钻杆上卸扣装置另有两个缓冲液缸,类似大钩弹簧,可提供丝扣补偿行程125mm。
内防喷器是全尺寸、内开口、球型安全阀式的。带花键的远控上部内防喷器和手动的下部内防喷器形成井控防喷系统,内防喷器采用6⅝in正规扣,工作压力为105MPa。
吊环倾斜装置:
有两种功用:
1、吊鼠洞中的单根。
2、接立柱时,不用井架工在二层台上将大钩拉靠到二层台上。若行程1.3米的倾斜装置不能满足要求则可选择2.9米的长行程吊环倾斜装置。
平衡系统的主要作用是防止上卸接头扣时螺纹的损坏,其次在卸扣时可帮助公扣接头从母扣接头中弹出,这依赖于它为顶部驱动钻井装置提供了一个类似于大钩的152 毫米的减震冲程。是因为使用顶部驱动钻井装置后没有再安装大钩了;退一步说,即使装有大钩,它的弹簧也将由于顶部驱动钻井装置的重量而吊长,起不了缓冲作用。
5顶部驱动装置操作过程编辑
接立根钻进
接立根钻进是顶部驱动钻井装置普遍采用的方式。采用立根钻进方法很多。对钻从式井的轨道钻机和可带立根运移的钻机,钻杆立根可立在井架上不动,留待下一口井接立根钻进使用。若没有立根,推荐两种接立根方法:一是下钻时留下一些立根竖在井架上不动,接单根下钻到底,用留下的立根钻完钻头进尺;二是在钻进期间或休闲时,在小鼠洞内接立根。为安全起见,小鼠洞最好垂直,以保证在垂直平面内对扣,简化接扣程序。还应当注意接头只要旋进钻柱母扣即可,因为顶部驱动钻井钻井马达还要施加紧扣扭矩上接头。
接单根钻进
通常在两种情况需要接单根钻进。一种是新开钻井,井架中没有接好的立根;另一种是利用井下马达造斜时每9.4 m必须测一次斜。吊环倾斜装置将吊卡推向小鼠洞提起单根,从而保证了接单根的安全,提高了接单根钻进的效率。接单根钻进程序如下:
1 钻完单根坐放卡瓦于钻柱上,停止泥浆循环(图a);
2 用钻杆上卸扣装置上的扭矩扳手卸开保护接头与钻杆的连接扣;
3 用钻井马达旋扣;
4 提升顶部驱动钻井装置。提升前打开钻杆吊卡,以便让吊卡通过卡瓦中的母接箍(图b);
5 起动吊环倾斜装置,使吊卡摆至鼠洞单根上,扣好吊卡;
6 提单根出鼠洞。当单根公扣露出鼠洞后,关闭起动器使单根摆至井眼中心(图c);
7 对好钻台面的接扣,下放顶部驱动钻井装置,使单根底部进入插入引鞋(图d);
8 用钻井马达旋扣和紧扣,打背钳承受反扭矩;
起下钻操作
起下钻仍采用常规方法。为提高井架工扣吊卡的能力和减少起下钻时间,可以使用吊环倾斜装置使吊卡靠近井架工。吊环倾斜装置有一个中停机构,通过它可调节吊卡距二层台的距离,便于井架工操作。
打开旋转锁定机构和旋转钻杆上卸扣装置可使吊卡开口定在任一方向。如钻柱旋转,吊卡将回到原定位置。起钻中遇到缩径或键槽卡钻,钻井马达可在井架任一高度同立根相接,立即建立循环和旋转活动钻具,使钻具通过卡点。
倒划眼操作
1、使用顶部驱动钻井装置倒划眼
可以利用顶部驱动钻井装置倒划眼,从而防止钻杆粘卡和破坏井下键槽。倒划眼并不影响正常起钻排放立根,即不必卸单根。
2、倒划眼起升程序
倒划眼起升步骤如下(参见下图):
1) 在循环和旋转时提升游车,直至提出的钻柱第三个接头时停止泥浆循环和旋转(图a),即已起升提出一个立根;
2) 钻工坐放卡瓦于钻柱上,把钻柱卡在简易转盘中;
3) 从钻台面上卸开立根,用钻井马达旋扣(倒车扣);
4) 用扭矩扳手卸开立根上部与马达的连接扣,这时只有顶部驱动钻井装置吊卡卡住立根。在钻台上打好背钳,用钻井马达旋扣(图b);
5) 用钻杆吊卡提起自由立根(图c);
6) 将立根排放在钻杆盒中(图d);
7) 放下游车和顶部驱动钻井装置到钻台(图e);
8) 将钻井马达下部的公接头插入钻柱母扣,用钻井马达旋扣和紧扣。稍微施加一点卡瓦力,则钻杆上卸扣装置的扭矩扳手就可用于紧扣;
9) 恢复循环,提卡瓦,起升和旋转转柱,继续倒划眼起升。
一、下管套
顶部驱动钻井装置配用500~750 t吊环和足够额定提升能力的游动滑车,就能进行额定重量500~650 t的下套管作业。为留有足够的空间装水龙头,必须使用4.6 m的长吊环。
将一段泥浆软管线同钻杆上卸扣装置保护接头相连,下套管过程中可控制远控内防喷器的开启与关闭,实现套管的灌浆。
如果需要,也可使用悬挂在顶部驱动钻井装置外侧的游动滑车和大钩,配用Varco BJ规定吊卡和适当的游动设备,按常规方法下套管。顶部驱动钻井装置起下套管装置如图3—5所示。
6顶部驱动钻井装置的优越性编辑
1、节省接单根时间。顶部驱动钻井装置不使用方钻杆,不受方钻杆长度的限制也就避免了钻进9米左右接一个单根的麻烦。取而带之的是利用立根钻进,这样就大大减少了接单的时间。按常规钻井接一个单根用3—4min计算,钻进1000米就可以节省4-5h。
2、倒划眼防止卡钻。由于不用接方钻杆就可以循环和旋转,所以在不增加起下 钻时间的前提下,顶部驱动钻井装置就能够非常顺利的将钻具起出井眼,在定向钻井中,这种功能可以节约大量的时间和降低事故发生的机率。
3、下钻划眼。顶部驱动钻井装置具有不接方钻杆钻过砂桥和缩径点的能力。
4、节省定向钻进时间。该装置可以通过28米立根钻进、循环,这样就相应的减少了井下马达定向的时间。
5、人员安全。顶部驱动钻井装置,是钻井机械操作自动化的标志性产品,终于将钻井工人从繁重的体力劳动中解救出来。接单根的次数减少了2/3,并且由于其自动化的程度高,从而大大减少了作业者工作的危险程度,进而大大降低了事故的发生率。
6、井下安全。在起下钻遇阻、遇卡时,管子处理装置可以在任何位置相连,开泵循环,进行立根划眼作业。
7、设备安全。顶部驱动钻井装置采用马达旋转上扣,操作动作平稳、可以从扭矩表上观察上扣扭矩,避免上扣过赢或不足。最大扭矩的设定,使钻井中出现憋钻扭矩超过设定范围时马达就会自动停止旋转,待调整钻井参数后再进行钻进。这样就避免了设备长时间超负荷运转,增加了使用寿命。
8、井控安全。该装置可以在井架的任何位置钻具的对接,数秒钟内恢复循环,双内防喷器可安全控制钻柱内压力。
9、便于维修。钻井马达清晰可见。熟练的现场人员约12小时就能将其组装和拆卸。
10、使用常规的水龙头部件。顶部驱动装置可使用650吨常规水龙头的一些部件,特殊设计后维修难度没有增加。
11、下套管。顶部驱动钻井装置的提升能力很大(650吨),在套管和主轴之间加一个转换头(大小头)就可以在套管中进行压力循环。套管可以旋转和循环入井,从而减少缩径井段的摩阻力。
12、取心。能够连续钻进28米,取心中间不需接单根。这样可以提高取心收获率,减少起钻的次数与传统的取心作业相比它的优点明显。污染小、质量高。
13、使用灵活。可以下入各种井下作业工具、完井工具和其他设备,即可以正转又可以反转。
14、节约泥浆。在上部内防喷器内接有泥浆截流阀,在接单根时保证泥浆不会外溢。
15、拆卸方便。工作需要时不必将它从导轨上移下就可以拆下其他设备。
16、内防喷器功能。起钻时如果有井喷的迹象即可由司钻遥控钻杆上卸扣装置,迅速实现水龙头与钻杆的连接,循环钻井液,避免事故的发生。
17、其他优点:采用交流电机驱动,减低维修保养费用;特别适用于定向井和水平井,因为立根钻进能使钻杆尽快的通过水平井段的一些横向截面。
7顶驱钻井装置与常规钻井设备的比较编辑
钻井效率明显提高。
A、从钻井到起下钻或从起下钻恢复钻进状态,该装置不存在常规钻机的上、卸水龙头和方钻杆所造成的时间损失。
B、不存在常规钻机转盘方补心蹦出所造成的停工。
C、不用钻鼠洞。
D、立根钻进,从而减少了常规钻井接单根上提钻柱需从新定工具面角的时间。
E、在井下纯作业时间增多,上扣、起下钻、测量和其他非纯钻进时间减少。
立柱钻进节省了大量的时间
A、减少了坍塌页岩层扩眼或清洗井底的时间。
B、在井径不足需扩眼或首次下入足尺寸稳定器进行扩眼时减少了钻进时间。
C、在同一平台钻丛式井,不用甩钻具或卸立柱。
D、不需要接单根就能够回收最大长度的岩心。
E、定向钻井时,减少了定向时间。
连续旋转和循环降低了风险。
A、连续的旋转和循环是顶部驱动钻井装置的重要特征。
B、顶部驱动钻井装置允许使用少量的、比较便宜的润滑剂、钻井液或添加剂。
c、减少了钻柱或昂贵的井下工具卡钻的几率。
有利于井控。
A、任何时间和位置的于钻柱对接。
B、随时可以进行的循环和旋转。
C、减少钻柱被卡后,上卸方钻杆的危险作业程序。
安全性提高。
A、减少了使用大钳和猫头等,降低了钻井工人作业危险。
B、减少许多笨重的工作,提高了起升重钻具的安全性。
C、自动吊卡,消除了人工操作吊卡的事故隐患。
D、井控安全性得到大大提高。
E、遥控防喷盒,防止泥浆溅落到钻台上,增加了工作的安全性。
作业时间的比较
起下钻
非生产
纯钻进
典型钻井的作业时间分配
30%
40%
30%
顶部驱动钻井装置钻井时间分配
25%
35%
40%
水平井费用比较
项 目
转盘/方钻杆
顶驱装置
日成本,美元
40800
43000
测深,M
2000
2000
机械钻速, m/h
30
30
日进尺
240
288
钻2000m所需天数
8.3
6.9
单井成本,美圆
338640
296700
单井用顶驱节约,美圆
41940
8口井用顶驱节约,美圆
335120
8维护保养以及操作注意事项编辑
强电系统
1)、防尘、防潮是最主要的两条。SCR主控柜、综合柜在尚未置放在空调房前必须注意防潮、防尘,并且
不能在温度过高(45°C以上)、过低(一10℃以下)的环境中工作。放置一段时间重新启用前,须用吸尘器将元件积存的尘埃除去,然后用电吹风将元件烘干,最后须测绝缘电阻值,至少在1MΩ以上,一般应在5MΩ以上。只有在进行了以上步骤以后,方可启动SCR。
2)、一定要先启动鼓风电机,然后选择主电机的转向。再给定额定电流值(即额定钻井扭矩值),最后开动主电机,即给出一个电压值(转速值)。
3)、一般说来应先启动冷却风机及合上励磁开关后再合主开关。如先合主开关,那就该尽快合上励磁关。
4)、运行中要随时注意观察电流大小(PLC操作柜上的扭矩表反映出主电机工作电流的大小)。
5)、各部分电缆应连接牢靠,焊接部位不应有虚焊现象。
6)、由于光线照射及空气的氧化作用,电缆会发生老化现象,使用二年以后应注意观察有无裂开、剥落老化现象,一般说,使用四年后应更换电缆。
弱电控制系统
1)、PLC柜、操作柜均为正压防爆系统,要配备动三大件,保证空气的干燥、清洁,不含易燃、易爆危险气体。
2)、使用操作柜时应先合上电源开关,再打开操作柜开关,最后打开PLC开关,停止操作时先关PLC,再关操作柜,最后关电源柜。
3)、PLC柜操作柜也应注意防潮防尘,但因其具有防爆结构,相应地防潮防尘能力也较强。
主电机
1)、吸风口应朝下,防止雨水进入。
2)、主电机外壳不应承受本身重量以外的负荷。
3)、由于主电机停止转动,加热器即自动加热,当长期不用时应关掉加热电路。
4)、电枢及励磁部分的绝缘电阻应大于1MΩ,当小于0.8MΩ时必须先烘干再工作。
5)、主电机轴伸锥度、粗糙度、接触斑点均应符合要求。
6)、由于泥浆管路从电机中心穿过,故在密封要求上必须严格。
7)、正常钻井时,每天应在主轴承部位加润滑脂。
液压系统
1)、油箱的液位不低于250mm,油温不高于80℃。
2)、过滤器应定期更换滤芯(3月至6月),具有发讯装置 的过滤器更应勤清洗和制订相应的更换措施。
3)、液压油必须干净,在使用三个月以后应更换。
4)、开泵前,吸油口闸阀一定要打开,出口管应与系统连起来。
5)、管路连接一定要可靠,注意各部位组合垫。o形圈不要遗忘,在不经常拆卸的螺纹处可以使用密封胶。
6)、滤芯应经常清洗,半年应重新更换滤芯,二年至三年应更换高压胶管。
7)、要防止在拆装、搬运、加油、修理过程中外界 污染物进入系统。
8)、液压源的溢流阀应调整至略高于泵的压力限定值,一般地不要在无油流输出情况下启动泵。
本体部分:
减速箱是一个传递动力和运动的重要部件,润滑油应经常更换(三个月至半年),油面应保持一定高度,初次装配需经充分空运转跑合,出厂前应更换为干净的润滑油。减速箱内装有铂电阻温度传感器,箱体外装有温度变送器,用来监视润滑油的温度,现已调整为75℃,超过此温度,PLC操作柜相应的红灯将显示,并有声报警。
两个防喷器(手动、液动各一个)均应密封可靠,试压在50Mpa以上。正常情况下当主轴转动时,不得操作内防喷器,只有发生井喷井涌时才操作,使之关闭。起下钻时为节省钻井液的消耗,应将内防喷器关闭,开钻前一定要先打开内防喷器,再开钻井泵。
上卸扣机构应根据钻杆的尺寸选择相应牙板,各油缸之间的协调动作借助于减压阀、顺序阀来调整。
上卸扣机构与回转头相连的链条长度应调整合适,略微松弛一些,可起到安全的作用。
㈤ 液压千斤顶为什么能顶起重物
千斤顶分为机械千斤顶和液压千斤顶两种,原理各有不同。从原理上来说,液压千斤顶所基于的原理为帕斯卡原理,即:液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。机械千斤顶采用机械原理,以往复扳动手柄,拔爪即推动棘轮间隙回转,小伞齿轮带动大伞齿轮、使举重螺杆旋转,从而使升降套筒获得起升或下降,而达到起重拉力的功能。但不如液压千斤顶简易。
静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。 这就是说,在密闭容器内,施加于静止液体上的压强将以等值同时传到各点。这就是静压传递原理或称帕斯卡原理。 帕斯卡定律是流体力学中,由于液体的流动性,封闭容器中的静止流体的某一部分发生的压强变化,将大小不变地向各个方向传递。帕斯卡首先阐述了此定律。压强等于作用压力除以受力面积。根据帕斯卡定律,在水力系统中的一个活塞上施加一定的压强,必将在另一个活塞上产生相同的压强增量。如果第二个活塞的面积是第一个活塞的面积的10倍,那么作用于第二个活塞上的力将增大为第一个活塞的10倍,而两个活塞上的压强仍然相等。 这一定律是法国数学家、物理学家、哲学家布莱士·帕斯卡首先提出的。这个定律在生产技术中有很重要的应用,液压机就是帕斯卡原理的实例。它具有多种用途,如液压制动等。帕斯卡还发现静止流体中任一点的压强各向相等,即该点在通过它的所有平面上的压强都相等。这一事实也称作帕斯卡原理。
㈥ 油田的那种标志性机械叫什么什么作用
http://www.cchere.com/article/519384
磕头机是一种抽油泵,这种泵底部有个钢筒,筒底有个洞,筒里有个钢球,刚好盖住底下的洞,筒里还有个活塞 钢筒往下动时,钢球被液体(油、水)向上顶开,油水进入钢筒,筒往下动,钢球堵住底下的洞,油被抽上来。
“磕头机”情思(人民论坛)
【来源:人民网-人民日报】
到了向往已久的大庆,除了看到碧蓝的晴空、明净的水洼、笔直宽阔的大街、鳞次栉比的楼房,映入眼帘最多的,是高高挺立的铁架所支撑着的橙黄色长臂在上下摆动的机器了。这是一种大型采油机,石油就是靠它们一叩首、一抬头不停地从地层深处涌流而出的。
当地群众把这种采油机叫做“磕头机”,一个十分生动而通俗的称呼。
长久地凝视着“磕头机”,我禁不住浮想联翩。
据了解,大庆有3万多台“磕头机”,遍布于大庆人生活、工作、休闲的每一个角落。
大庆本是一片荒原沼泽地,40多年前,以王进喜为代表的中国石油工人在这儿勘探、开采出石油之后,各种各样的建筑就在“磕头机”周围立了起来,逐渐形成了大庆市。大庆人对“磕头机”情有独钟,是十分自然的事。就是靠着它们,40多年来为国家抽出17亿吨原油,上交国家利税达1万亿元,出口创汇500亿美元,使我国甩掉了“贫油国”的帽子。“磕头机”的伟大贡献,正是大庆人的真实写照,正是中国工人阶级自力更生、奋发图强的形象再现。
“磕头机”一年到头,不管刮风下雨、不管炎日冰霜,不分白天黑夜,不论地处闹市还是在荒僻水洼,总是一刻不停地在奋力工作。一台“磕头机”,要由电动机、减速器、曲柄、连杆及游梁等许多零部件组成,在地下1000多米深处,由深井泵采挖,经抽油杆使柱塞往复运动,地上看似并不复杂,实际上是一个有机的严密的复合体。3万多台“磕头机”每天在有条不紊、井然有序地辛勤劳作,集中体现出了大庆职工的“当老实人、说老实话、做老实事,严格的要求、严密的组织、严肃的态度、严格的纪律”的大庆精神,令人肃然起敬。
面对“磕头机”,我不禁想到,如果把广袤而富庶的大地比作母亲的话,地底下的石油自然就是母亲的乳汁。作为大地之子的我们,就是在一刻不停地、不断地得到母亲珍贵的乳汁的喂养,因此,“磕头机”形象地表现了我们真诚的良知,我们理应向大地母亲“磕头”,这自然是一种感恩。是的,我们不应该对大自然的慷慨奉献忘恩绝情啊!
最近,大庆人在格外珍惜、更好利用与保护石油资源方面,拉长产业链、搞好油气的中下游加工,使大庆精神增添了更深刻的内涵。
离开大庆时,我久久地凝望一上一下劳作着的“磕头机”,她们在阳光和鲜花丛中向人们挥手。我,不由自主低下了头,是致意,也是沉思……
㈦ 常用的简单机械种类有什么
常用的简单机械种类有杠杆、滑轮、轮轴、齿轮、斜面、螺旋、劈等。
前四种简单机械是杠杆的变形,所以称为“杠杆类简单机械”。后三种是斜面的变形,故称为“斜面类简单机械”。不论使用哪一类简单机械都必须遵循机械的一般规律——功的原理。
凡能够改变力的大小和方向的装置,统称“机械”。利用机械既可减轻体力劳动,又能提高工作效率。机械的种类繁多,而且比较复杂。
(7)能往起顶达到撑开作用的机械装置扩展阅读:
一、杠杆原理
亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力和阻力)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为
F1· L1=F2·L2
式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。
但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
二、杠杆应用
不同类型杠杆各具有不同的特点和用途。掌握了杠杆原理,就可根据需要有意识地选用不同类型的杠杆来使用。
应明确:省力杠杆省力但要多移动距离,费力杠杆费力但省距离,等臂杠杆不省力也不省距离,又省力又省距离的杠杆是没有的。有的杠杆是否省力或省距离,不是永恒不变的。
根据使用情况的不同,会由省力变为省距离。例如,用铁锹铲土,往车上装土的过程都会有所改变。铲土时支点在动力点及阻力点之间,在装土时动力点在支点与阻力点之间。
㈧ 起重机械的安全装置有那些
起重机械属于特种设备,鉴于其安全至关重要,因此在起重机械上需装设安全装置。不同类型的起重机,应安装不同类型和性能的安全装置。较常见的安全装置有以下几种: 过卷扬限制器 根据规定,起重机的卷扬机构必须装有过卷扬限制器,当吊钩滑车起升距起重机构架300mm时,可以自动切断电机的电源,电动机停止运转。这样,可保证起重机的安全运行,避免由于过卷扬提升,而造成的钢丝绳被拉断、重物坠落等事故的发生。 行程限制器它是防止起重机驶近轨道末端而发生撞击事故,或两台起重机在同一条轨道上发生碰撞事故,所采取的安全装置。行程限制器,能保证距离轨道末端200mm处以及起重机互相驶近距500mm处时,立即切断电源,停止运行。 自动联锁装置 桥式起重机上多有裸线通过,为了预防检修人员触电,要求在驾驶室通往车驾(或桥架)的仓门口处装设自动连锁装置,实现检修时停电,检修完后通电,保证检修作业的安全。 缓冲器缓冲器是一种吸收起重机与物体相碰时的能量的安全装置,在起重机的制动器和终点开关失灵后起作用。当起重机与轨道端头立柱相接时,保证起重机较平稳地停车。起重机上常用的缓冲器有橡胶缓冲器,弹簧缓冲器和液压缓冲器。 当车速超过120m/min时,一般缓冲器则不能满足要求,必须采用光线式防止冲撞装置、超声波式防止冲撞装置以及红外线反射器等。 制动器起重设备上的制动器,能使起重设备在升降、平移和旋转过程中随时停止工作和使重物停留在任何高度上的一种装置,它即能防止意外事故,又能满足工作要求。 制动器的种类繁多,有弹簧式制动器、安全摇柄等。由于制动器的作用对于起重机来说十分重要,许多事故的发生往往是由于制动器的失灵或发生鼓掌而造成的。因此,为保障起重作业安全,必须加强对制动器的检查与保养,一般要求每班检查一次。 重量限制器重量限制器是起重机的超载防护装置。按其结构方式和工作原理的不同,可分为机械式和电子式两种类型。在起重作业过程中,当起重量超过起重机额定起重量的10%时,重量限制器将起作用,使机构断电,停止工作,从而起到超载限制的作用。 力矩限制器对于动臂变幅的起重机(如塔式起重机、流动式起重机等),除考虑载荷的大小,还应考虑随着动臂变幅引起的载荷重心至起重机的距离的变化,即起重力矩问题。力矩限制器就是一种综合起重量和起重机运行幅度两方面因素,以保证起重力矩始终在允许范围内的安全装置。可分为机械式和电子式两种类型。 机械式力矩限制器有杠杆式和水平吊臂上使用的两种限制器。在起吊操作中,当起重量增大到限定值时,该限制器能够带动控制块以触动控制开关而断开电源,停止工作。 电子式力矩限制器在操作过程中能够通过仪表自动将实际起重力矩与额定起重力矩进行比较,若超载,继电器就会自动切断工作机构电源,保证安全。电子式力矩限制器克服了机械式力矩限制器的缺点,广泛应用于各种起重机上。
㈨ 液力传动装置有哪些类型
=(1)机械传动
机械传动是通过齿轮、皮带、链条、钢丝绳、轴和轴承等机械零件传递能量的。它具有传动准确可靠、制造简单、设计及工艺都比较成熟、受负荷及温度变化的影响小等优点,但与其他传动形式比较,有结构复杂笨重、远距离操纵困难、安装位置自由度小等缺点。
(2)电力传动
电力传动在有交流电源的场合得到了广泛的应用,但交流电动机若实现无级调速需要有变频调速设备,而直流电动机需要直流电源,其无级调速需要有可控硅调速设备,因而应用范围受到限制。电力传动在大功率及低速大转矩的场合普及使用尚有一段距离。在工程机械的应用上,由于电源限制,结构笨重,无法进行频繁的启动、制动、换向等原因,很少单独采用电力传动。
(3)气体传动
气体传动是以压缩空气为工作介质的,通过调节供气量,很容易实现无级调速,而且结构简单、操作方便、高压空气流动过程中压力损失少,同时空气从大气中取得,无供应困难,排气及漏气全部回到大气中去,无污染环境的弊病,对环境的适应性强。气体传动的致命弱点是由于空气的可压缩性致使无法获得稳定的运动,因此,一般只用于那些对运动均匀性无关紧要的地方,如气锤、风镐等。此外为了减少空气的泄漏及安全原因,气体传动系统的工作压力一般不超过0.7~0.8MPa,因而气动元件结构尺寸大,不宜用于大功率传动。在工程机械上气动元件多用于操纵系统,如制动器、离合器的操纵等。
(4)液体传动
以液体为工作介质,传递能量和进行控制的叫液体传动,它包括液力传动、液黏传动和液压传动。
1)液力传动
它实际上是一组离心泵一涡轮机系统,发动机带动离心泵旋转,离心泵从液槽吸入液体并带动液体旋转,最后将液体以一定的速度排入导管。这样,离心泵便把发动机的机械能变成了液体的动能。从泵排出的高速液体经导管喷到涡轮机的叶片上,使涡轮转动,从而变成涡轮轴的机械能。这种只利用液体动能的传动叫液力传动。现代液力传动装置可以看成是由上述离心泵一涡轮机组演化而来。
液力传动多在工程机械中作为机械传动的一个环节,组成液力机械传动而被广泛应用着,它具有自动无级变速的特点,无论机械遇到怎样大的阻力都不会使发动机熄火,但由于液力机械传动的效率比较低,一般不作为一个独立完整的传动系统被应用。
2)液黏传动
它是以黏性液体为工作介质,依靠主、从动摩擦片间液体的黏性来传递动力并调节转速与力矩的一种传动方式。液黏传动分为两大类,一类是运行中油膜厚度不变的液黏传动,如硅油风扇离合器;另一类是运行中油膜厚度可变的液黏传动,如液黏调速离合器、液黏制动器、液黏测功器、液黏联轴器、液黏调速装置等。
3)液压传动
它是利用密闭工作容积内液体压力能的传动。液压千斤顶就是一个简单的液压传动的实例。
液压千斤顶的小油缸l、大油缸2、油箱6以及它们之间的连接通道构成一个密闭的容器,里面充满着液压油。在开关5关闭的情况下,当提起手柄时,小油缸1的柱塞上移使其工作容积增大形成部分真空,油箱6里的油便在大气压作用下通过滤网7和单向阀3进入小油缸;压下手柄时,小油缸的柱塞下移,挤压其下腔的油液,这部分压力油便顶开单向阀4进入大油缸2,推动大柱塞从而顶起重物。再提起手柄时,大油缸内的压力油将力图倒流入小油缸,此时单向阀4自动关闭,使油不致倒流,这就保证了重物不致自动落下;压下手柄时,单向阀3自动关闭,使液压油不致倒流入油箱,而只能进入大油缸顶起重物。这样,当手柄被反复提起和压下时,小油缸不断交替进行着吸油和排油过程,压力油不断进入大油缸,将重物一点点地顶起。当需放下重物时,打开开关5,大油缸的柱塞便在重物作用下下移,将大油缸中的油液挤回油箱6。可见,液压千斤顶工作需有两个条件:一是处于密闭容器内的液体由于大小油缸工作容积的变化而能够流动,二是这些液体具有压力。能流动并具有一定压力的液体具有压力能。液压千斤顶就是利用油液的压力能将手柄上的力和位移转变为顶起重物的力和位移。
㈩ 施工升降机的安全装置有哪些
一、缓冲装置
作用:缓冲弹簧装在与基础架连接的弹簧座上,以便当吊笼发生坠落事故时,减轻吊笼的冲击,同时保证吊笼和配重下降着地时成柔性接触,减缓吊笼和配重着地时的冲击。
标准做法:每个吊笼对应的底架上有两个或三个圆锥卷弹簧或四个圆柱螺旋弹簧。
二、电气安全开关
1.电气联锁限位开关
作用:行程开关又称限位开关,用于控制机械设备的行程及限位保护,是根据运动部件的行程位置而切换电路的电器。
原理:一组常开,一组常闭。
检查方法:开门断电。
2.极限开关
作用:切断主电源。
原理:连杆上下拨动均可切断电源,上下限位失效后,一端作用在标准节上的限位碰铁,切断电源。是一种急停开关,不能自动复位。
检查标准:上下拨动断电停止运转。
三、机械联锁装置
作用:机械联锁装置要配合电气安全开关使用,其作用是在各个门未关闭或关闭不严时,电气安全开关将不能闭合,吊笼不能启动工作;吊笼运行中,一旦门被打开,吊笼的控制电路也将被切断,吊笼停止运行。
1.外围栏安全门机械连锁装置
外围栏安全门电气联锁开关
标准做法:正常情况下,施工升降机围栏门要设置有机械锁钩、电气联锁限位开关。
检查方法:
A.观察围栏门是否有机械锁钩,若无机械锁钩则该安全装置缺失。
B.施工升降机运行中打开围栏门,若围栏门能开启则机械锁钩失效,若开启时吊笼无法停止运转则机械锁钩、电气联锁限位开关均失效。
2.吊笼门机械联锁开关
吊笼门电气联锁限位开关
标准做法:正常情况下,施工升降机吊笼门要设置有机械锁钩、电气联锁限位开关。
检查方法:
A.观察吊笼门是否有机械锁钩,若无机械锁钩则该安全装置缺失。
B.施工升降机运行中吊笼门(靠围栏门一侧)能开启则机械锁钩失效,若吊笼门、吊笼双开门开启时吊笼无法停止运转则机械锁钩、电气联锁限位开关均失效
四、防坠安全器
定义:也叫作限速器,指非电气、气动和手动控制的防止吊笼坠落的机械式安全保护装置。
作用:防坠安全器是施工升降机最重要的安全装置,安装在吊笼内部。其作用是限制吊笼超速运行,当吊笼因故障引起超速下滑时,防坠器开始工作,并使力矩增加,在一定的距离内将吊笼平稳制动,防止吊笼坠落,保证人员设备安全。
标准做法:防坠安全器使用寿命:5年强制报废;必须每年检测标定一次。
检查方法:每季度必须做一次防坠落实验,查看防坠器检测日期是否过期。
五、施工电梯超载保护器
定义:轴销传感器安装在吊笼与驱动板的连接处(连接销轴),通过吊笼重量使轴销传感器产生微弱变形来测量重量,并将重量信号经过转换后传给重量限制器。
作用:在升降机超载时能够报警给升降机司机,达到限制重量时切断电路,不能启动。
标准做法:通常显示屏能根据载重量不同而显示相应读数。
检查标准:超载启动。
六、安全钩
定义:安全钩一般由整体浇铸和钢板加工两种。其结构分底板和钩体两部分,底板由螺栓固定在施工升降机吊笼的立柱上。
作用:它能使吊笼上行到轨架安全防护设施顶部时,安全地勾在导轨架上,防止吊笼脱离导轨架或防坠安全器输出端齿轮脱离齿条,保证吊笼不发生倾覆坠落事故。
检查标准:查看施工升降机是否设置安全钩,要求设置不少于一对,并检查安全钩是否稳固可靠。
七、其他安全措施
1.急停开关
定义:吊笼在运行过程中发生各种原因的紧急情况时,司机能在任何时候按下急停开关,使吊笼停止运行。
作用:紧急制动。
检查方法:按下急停按钮,观察升降机是否停止运转。
2.楼层呼叫器
定义:为使施工升降机吊笼内司机能接受到各楼层呼叫信息而安装闭路的双向电器通讯装置。
作用:楼层呼叫信息传递。
检查方法:在楼层处按压呼叫器按钮,观察吊笼内司机能否收信息。
3.楼层防护门
定义:在楼层运料和人进出的通道与施工升降机结合部设置的楼层通道门。
作用:施工升降机运行中,楼层内的人员无法打开此门。
标准做法:层门高度不宜小于1.8m,宽度与吊笼门宽度差不应大于120mm,层门与关闭的吊笼门水平距离不超过200mm,层门下沿离通道应小于50mm。
检查方法:查看楼层防护门尺寸、位置是否符合要求。