导航:首页 > 装置知识 > 太阳辐射强度检测装置的原理

太阳辐射强度检测装置的原理

发布时间:2022-07-17 21:45:52

① 紫外线强度计的构造及其工作原理

普通硅光电池对紫外光不响应,而荧光紫外型硅光电池对紫外光部分能很好地响应,两种光电池同时采光,通过对两个信号的作差,就能得出所测光中紫外线信号。最后通过AD放大、MCU处理显示输出紫外线强度。太阳光入射在双元探头,在两个光电池上产生两路光电信号。其中一个涂有荧光物质,实现紫外荧光、光谱转换,载有紫外信息。将这两路信号输入差分处理电路,便可以得出反映紫外线强度的电信号,工作原理如下:太阳光>双元探头>差分放大>AD采样>MCU软件处理>输出显示

② 核辐射探测器的工作原理

辐射探测器的工作原理基于粒子与物质的相互作用。当粒子通过某种物质时,这种物质就吸收其全部或部分能量而产生电离或激发作用。
如果粒子是带电的,其电磁场与物质中原子的轨道电子直接相互作用。
如果是γ射线或X射线,则先经过一些中间过程,发生光电效应、康普顿效应或产生电子对,把部分或全部能量传给物质的轨道电子,再产生电离或激发。
对于不带电的中性粒子,例如中子,则是通过核反应产生带电粒子,然后造成电离或激发。
辐射探测器就是用适当的探测介质作为与粒子作用的物质,将粒子在探测介质中产生的电离或激发,转变为各种形式的直接或间接可为人们感官所能接受的信息。

③ 请问 核辐射检测器 的工作原理

能够指示、记录和测量核辐射的材料或装置。辐射和核辐射探测器内的物质相互作用而产生某种信息(如电、光脉冲或材料结构的变化),经放大后被记录、分析,以确定粒子的数目、位置、能量、动量、飞行时间、速度、质量等物理量。核辐射探测器是核物理、粒子物理研究及辐射应用中不可缺少的工具和手段。按照记录方式,核辐射探测器大体上分为计数器和径迹室两大类。
计数器 以电脉冲的形式记录、分析辐射产生的某种信息。计数器的种类有气体电离探测器、多丝室和漂移室、半导体探测器、闪烁计数器和切伦科夫计数器等。
气体电离探测器 通过收集射线在气体中产生的电离电荷来测量核辐射。主要类型有电离室、正比计数器和盖革计数器。它们的结构相似,一般都是具有两个电极的圆筒状容器,充有某种气体,电极间加电压,差别是工作电压范围不同。电离室工作电压较低,直接收集射线在气体中原始产生的离子对。其输出脉冲幅度较小,上升时间较快,可用于辐射剂量测量和能谱测量。正比计数器的工作电压较高,能使在电场中高速运动的原始离子产生更多的离子对,在电极上收集到比原始离子对要多得多的离子对(即气体放大作用),从而得到较高的输出脉冲。脉冲幅度正比于入射粒子损失的能量,适于作能谱测量。盖革计数器又称盖革-弥勒计数器或G-M计数器,它的工作电压更高,出现多次电离过程,因此输出脉冲的幅度很高,已不再正比于原始电离的离子对数,可以不经放大直接被记录。它只能测量粒子数目而不能测量能量,完成一次脉冲计数的时间较长。
多丝室和漂移室 这是正比计数器的变型。既有计数功能,还可以分辨带电粒子经过的区域。多丝室有许多平行的电极丝,处于正比计数器的工作状态。每一根丝及其邻近空间相当于一个探测器,后面与一个记录仪器连接。因此只有当被探测的粒子进入该丝邻近的空间,与此相关的记录仪器才记录一次事件。为了减少电极丝的数目,可从测量离子漂移到丝的时间来确定离子产生的部位,这就要有另一探测器给出一起始信号并大致规定了事件发生的部位,根据这种原理制成的计数装置称为漂移室,它具有更好的位置分辨率(达50微米),但允许的计数率不如多丝室高。
半导体探测器 辐射在半导体中产生的载流子(电子和空穴),在反向偏压电场下被收集,由产生的电脉冲信号来测量核辐射。常用硅、锗做半导体材料,主要有三种类型:①在n型单晶上喷涂一层金膜的面垒型;②在电阻率较高的 p型硅片上扩散进一层能提供电子的杂质的扩散结型;③在p型锗(或硅)的表面喷涂一薄层金属锂后并进行漂移的锂漂移型。高纯锗探测器有较高的能量分辨率,对γ辐射探测效率高,可在室温下保存,应用广泛。砷化镓、碲化镉、碘化汞等材料也有应用。
闪烁计数器 通过带电粒子打在闪烁体上,使原子(分子)电离、激发,在退激过程中发光,经过光电器件(如光电倍增管)将光信号变成可测的电信号来测量核辐射。闪烁计数器分辨时间短、效率高,还可根据电信号的大小测定粒子的能量。闪烁体可分三大类:①无机闪烁体,常见的有用铊(Tl)激活的碘化钠NaI(Tl)和碘化铯CsI(Tl)晶体,它们对电子、γ辐射灵敏,发光效率高,有较好的能量分辨率,但光衰减时间较长;锗酸铋晶体密度大,发光效率高,因而对高能电子、γ辐射探测十分有效。其他如用银 (Ag)激活的硫化锌ZnS(Ag)主要用来探测α粒子;玻璃闪烁体可以测量α粒子、低能X辐射,加入载体后可测量中子;氟化钡 (BaF2)密度大,有荧光成分,既适合于能量测量,又适合于时间测量。②有机闪烁体,包括塑料、液体和晶体(如蒽、茋等),前两种使用普遍。由于它们的光衰减时间短(2~3纳秒,快塑料闪烁体可小于1纳秒),常用在时间测量中。它们对带电粒子的探测效率将近百分之百。③气体闪烁体,包括氙、氦等惰性气体,发光效率不高,但光衰减时间较短(<10纳秒)。
切伦科夫计数器 高速带电粒子在透明介质中的运动速度超过光在该介质中的运动速度时,则会产生切伦科夫辐射,其辐射角与粒子速度有关,因此提供了一种测量带电粒子速度的探测器。此类探测器常和光电倍增管配合使用;可分为阈式(只记录大于某一速度的粒子)和微分式(只选择某一确定速度的粒子)两种。
除上述常用的几种计数器外,还有气体正比闪烁室、自猝灭流光计数器,都是近期出现的气体探测器,输出脉冲幅度大,时间特性好。电磁量能器(或簇射计数器)及强子量能器可分别测量高能电子、γ辐射或强子(见基本粒子)的能量。穿越辐射计数器为极高能带电粒子的鉴别提供了途径。
径迹室 通过记录、分析辐射产生的径迹图象测量核辐射。主要种类有核乳胶、云室和泡室、火花室和流光室、固体径迹探测器。
核乳胶 能记录带电粒子单个径迹的照相乳胶。入射粒子在乳胶中形成潜影中心,经过化学处理后记录下粒子径迹,可在显微镜下观察。它有极佳的位置分辨本领(1微米),阻止本领大,功用连续而灵敏。
云室和泡室 使入射粒子产生的离子集团在过饱和蒸气中形成冷凝中心而结成液滴(云室),在过热液体中形成气化中心而变成气泡(泡室),用照相方法记录,使带电粒子的径迹可见。泡室有较好的位置分辨率(好的可达10微米),本身又是靶,目前常以泡室为顶点探测器配合计数器一起使用。
火花室和流光室 这些装置都需要较高的电压,当粒子进入装置产生电离时,离子在强电场下运动,形成多次电离,增殖很快,多次电离过程中先产生流光,后产生火花,使带电粒子的径迹成为可见。流光室具有较好的时间特性。它们都具有较好的空间分辨率(约 200微米)。除了可用照相记录粒子径迹外,还可记录电脉冲信号,作为计数器用。
固体径迹探测器 重带电粒子打在诸如云母、塑料一类材料上,沿路径产生损伤,经过化学处理(蚀刻)后,将损伤扩大成可在显微镜下观察的空洞,适于探测重核。
由许多类型的探测器、磁铁、电子仪器、计算机等组成的辐射谱仪,可获得多种物理信息,是近代核物理及粒子探测的发展趋势。

④ 太阳辐射测量仪的基本原理

它用两块吸收率98%的锰铜窄片作接收器。一片被太阳曝晒,另一片屏蔽,并通电加热。每片上都安置热电偶,当二者温差为零时,屏蔽片加热电流的功率便是单位时间接收的太阳辐射量。
日射强度计测量半个天球内,包括直射和散射的太阳辐射能。它的接收器大多是水平放置的黑白相间或黑色圆盘形的热电堆,并用半球形玻璃壳保护,防止外界干扰。
用于分光辐射测量的有滤光片辐射计和光谱辐射计。前者是在辐射接收器前安置滤光片,用于宽波段测量;后者是一具单色仪,测量宽约50埃的波段。1965年起,已在火箭和气球上装置上述仪器,以测量大气外的太阳辐射。

⑤ 总辐射表的测量原理

1、TBQ-2L总辐射表由双层石英玻璃罩、感应元件、遮光板、表体、干燥剂等部分组成。
感应元件是该表的核心部分,它由快速响应的绕线电镀式热电堆组成。感应面涂3M无光黑漆,感应面为热结点,当有阳光照射时温度升高,它与另一面的冷结点形成温差电动势,该电动势与太阳辐射强度成正比。
2、TBQ-2L总辐射表双层玻璃罩是为了减少空气对流对辐射表的影响。内罩是为了截断外罩本身的红外辐射而设的。
3、TBQ-2L总辐射表输出辐射量(W/m)=测量输出电压信号值(μV)÷灵敏度系数(μV/W·m),每个传感器分别给出标定过的灵敏度系数。
工作原理
该表为热电效应原理,感应元件采用绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层。热接点在感应面上,而冷结点则位于机体内,冷热接点产生温差电势。在线性范围内,输出信号与太阳辐照度成正比。为减小温度的影响则配有温度补偿线路,为了防止环境对其性能的影响,则用两层石英玻璃罩,罩是经过精密的光学冷加工磨制而成的。

⑥ 射线检测仪的射线检测仪的工作原理

射线检测仪是利用X射线的穿透能力,在工业上一般用于检测一些眼睛所看不到的物品内部伤断,或电路的短路等。比如说检测多层基板内部电路有无短路,X射线可心穿透基板的表面看到基板的内部电路,在X射线发生器对面有个数据接收器,自动的将接收到的辐射转换成电信号并传到扩张板中,并在电脑中转换成特定的信号,通过专用的软件将图像在显示器中显示出来,这样就可以通过肉眼观测到基板的内部结构,而不用拿万用表去慢慢测试。
γ射线有很强的穿透性,射线探伤就是利用γ射线得穿透性和直线性来探伤的方法。γ射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。当γ射线穿过(照射)物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越小。此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。因此,用γ射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。一般情况下,γ射线探伤是不易发现裂纹的,或者说,γ射线探伤对裂纹是不敏感的。因此,γ射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。即γ射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤

⑦ 如何测定群体内的太阳辐射,以及群体结构对于其中太阳辐射的影响及测定

作物的生长、发育和产量形成同气象条件有密切的关系:太阳辐射和植物生长:农作物光合作用和生长发育的全部能量来自太阳辐射。光对植物的作用有三个方面,即光合作用、光周期效应和向光性效应。不同波长的辐射对植物有不同的影响,按照对植物的作用,可将太阳光谱划分为8个波段:①波长大于1.00微米的辐射,不参与光合作用,只转化为热能。②波长1.00~0.72微米的辐射,能促进茎伸长。③波长0.72~0.61微米的辐射,为叶绿素最强的吸收带,有强的光合效应,很多情况下也表现强的光周期效应。④波长0.61~0.51微米的辐射,为光合作用的低效区,弱的成形作用。⑤波长0.51~0.40微米的辐射为叶绿素和黄色素的强吸收带,光合作用的次高峰区,强的成形作用。⑥波长0.40~0.315微米的辐射,可使植株变矮,叶片变厚,多数害虫对此波段辐射有趋光性。⑦波长0.315~0.28微米的辐射,有显著的灭菌作用,对多数植物有害,⑧波长小于0.28微米的辐射有强灭菌作用,小于0.26微米的辐射对植物有致死作用。由于大气臭氧层对紫外幅射的吸收作用,小于0.29微米的太阳辐射不能到达地面。

太阳光谱中决定植物光合作用的主要是0.38~0.71微米波段的可见光,称之为光合有效辐射(Photosyn—thesis Active Radiation,缩写pAR),光合有效辐射一般占总辐射的45~53%。环境因子和光合作用:光合作用受光强、温度和二氧化碳浓度的影响。

① 光照度。植物叶片的光合强度随着光照度的增加而增加,光照度超过某一临界值以后光合强度不再增加,这一临界值称为光饱和点。植物净光合作用为零时(即光合作用与呼吸作用互相抵消时)的临界光照度称为光补偿点。在群体(或群落)条件下,由于叶片互相遮荫,上部叶片达到光饱和时,下部叶片仍处于光不足的状态,因此就作物群体而言,自然光强下一般不能达到光饱和状态。

⑧ 太阳能电池组件功率测试仪的原理是什么

原理就是利用氙灯模拟阳光照射,测试其几点的电流和电压。通过已经校准后的IV曲线,进行比照描点发描出其IV曲线。

⑨ 克鲁克斯辐射计的工作原理

克鲁克斯辐射计包括一个玻璃泡,里面悬挂着四个叶片。玻璃泡内为高度真空。当您将光线照射到辐射计内的叶片时,它们就会旋转起来——在明亮的太阳照射下,叶片的转速可达每分钟数千转!
玻璃泡内的真空程度是辐射计能否正常工作的关键。如果泡内不是真空(也就是说里面充满了空气),叶片会由于阻力过大而无法转动。如果泡内接近完全真空,叶片也不会旋转(除非叶片是以无摩擦方式固定的)。如果支持叶片的装置之间没有摩擦力,而玻璃泡内又为完全真空,则从叶片的银色面弹出的光子会推动叶片转动。但这一推力仍非常微弱。
如果玻璃泡内为高度真空而非完全真空,那么在叶片的边缘会发生另一种称为热发散的效应,这种效应使我们看到的旋转就象是光在推动叶片的黑色面。叶片的黑色面会沿远离光的方向运动。
看下这篇文章嘛,或许对你有帮助
http://www.jys.e.cn/shuzihua/20071010101350.asp

阅读全文

与太阳辐射强度检测装置的原理相关的资料

热点内容
南通中华电动工具 浏览:333
设备系统如何入账 浏览:676
下料自动校正装置设计 浏览:469
尼尔机械纪元6o战术刀怎么获得 浏览:887
温州地区最大的阀门厂 浏览:76
冷库制冷机电流偏低是什么原因 浏览:985
阀门膜头是什么材质 浏览:81
踏板车后轮轴承垫片怎么取下来 浏览:213
机床结构示意图怎么画 浏览:380
暖气片阀门儿向左是开向右是开 浏览:527
无锡军青机械制造有限公司怎么样 浏览:776
仪表如何隔离 浏览:618
对开门冷藏柜不制冷怎么办 浏览:282
根据图1实验装置图回答 浏览:349
铜与浓硝酸反应实验装置 浏览:564
滚子轴承两个轴怎么接 浏览:129
玉器雕刻用什么机械设备 浏览:311
小丸工具箱提取字幕 浏览:860
机床各部分静刚度曲线怎么绘制 浏览:482
淋浴阀门有点漏水怎么办 浏览:638