导航:首页 > 装置知识 > 风力平衡实验装置

风力平衡实验装置

发布时间:2022-05-31 01:25:52

1. (2009徐汇区模拟)某研究性实验小组为探索航天器球形返回舱穿过大气层时所受空气阻力(风力)的影响因

(1)以小球为研究对象,对小球进行受力分析,设小球受到风力为F是细金属丝与竖直方向的夹角为θ,由平衡条件可知其风力
F=mgtanθ ①
设细金属丝与电阻丝相交点与C点之间的长度Htanθ,电阻为R′=

R
L
Htanθ,
由串联电路的分压规律可知电压表示数 U=
ER′
R
=
E
L
Htanθ ②
①②两式联立解得 F=
mgL
EH
U ③
(2)由表中的测量数据可以看出,在球半径一定的情况下,电压表示数与风速成正比,则风力大小与风速成正比,即F与v成正比.
在风速一定的情况下,球半径增大到原来的二倍,电压表示数减小为原来的
1
4

由③式和球体积公式、密度公式可得 F=
mgL
EH
U=
VρgL
EH
U=
ρgL
EH
?
4
3
πr3U
可得在风速一定的情况下,风力大小与球半径的关系是:F与r成正比.
综上,风力大小与风速成正比,与球半径成正比,风力的大小F与风速大小v、球半径r的关系式可以写为F=kvr,式中k为常数.
故答案为:
mgUL
EH
,F=kvr,

2. 高三物理!!!

1.某研究性学习小组,为探索航天器球形返回舱穿过大气层时所受空气阻力的影响因素,进行了模拟实验研究.右图为测定风力的实验装置图,其中CD是一段水平放置的长为L的光滑均匀电阻丝,电阻丝阻值较大;一质量和电阻都不计的细长裸金属丝一端固定于O点,另一端悬挂球P,无风时细金属丝竖直,恰与电阻丝在C点接触,OC=H;有风时,金属丝将偏离竖直方向θ,与电阻丝相交于某一点. (如图中虚线所示,细金属丝与电阻丝保持良好接触)
(1)已知电源电压为U0,理想电压表两接线柱分别与O点和C点相连, P球的重为G,平衡时风力F与小球重力G的大小满足: F=Gtanθ
由此可推得风力的大小F与电压表示数U的关系式为F= .把此电压表上面盘刻度换成相应的风力值,这个电压表就成了风力表.
(2)研究小组的同学猜想:风力的大小可能与风速大小v和球半径r这两个因素有关,于是他们进行了如下实验:
实验一:使用同一球,改变风速,测出了在不同风速下小球受到的风力.
表一:球半径r=0.50cm
风速(m/s) 10 15 20 30
风力(N) 4 6 8 12
由表一可知:在球半径一定的情况下,风力大小与风速大小的关系是: F∝v
实验二:保持风速一定,换用等质量、不同半径的实心球,测出了不同半径的小球受到的风力.
表二:风速V=10m/s
球半径(cm) 0.25 0.5 0.75 1.00
风力(N) 2 4 6 8
根据表二数据可知:在风速一定的情况下,风力大小与球半径的关系是: F∝r 。
(3)根据上述实验结果可知风力的大小F与风速大小v、球半径r的关系式是:
F= 80vr 。
2.用打气筒给自行车打气时,筒壁的温度会升高,用手触摸会有明显的感觉,针对这一现象的原因,初三(1)班学生展开了讨论,形成了两种解释:
打气时活塞压缩气体做功,气体内能增大,温度升高,并热传递使筒壁温度升高.
活塞与筒壁摩擦生热,使筒壁温度升高.
究竟哪种原因是主要的,老师要求同学们设计实验进行验证.小明设计的实验是:
①用打气筒向车胎内打气10次(每一个往复为1次)后,用手触摸筒壁,感觉温度变化情况.
②向气筒内壁加少量润滑油,打开车胎气门放掉适量空气,待筒壁温度降至室温时,再向车胎内打气10次后,用手触摸筒壁,感觉温度变化情况.
1.请你帮助小明完成对实验可能出现的现象进行分析:如果①情形时筒壁温度明显高于②情形时筒壁温度,则说明活塞与筒壁摩擦生热,使筒壁温度升高是主要原因;如果①②两种情形筒壁的温度差不多,则说明活塞压缩气体做功,气体内能增大,并热传递使筒壁温度升高是主要原因.
2.小明的设计存在一点问题,请你进行评价并设计一个验证方案.
评价:活塞与筒壁间的摩擦本来就不会太大,小明采取添加润滑油试图减小摩擦的做法不能达到实验的目的.
方案: ①用打气筒向车胎内打气10次(每一个往复为1次)后,用手触摸筒壁,感觉温度变化情况.
②从车胎上取下打气筒,待筒壁温度降至室温时,打气10次(导气管夹头露于空中) 后,用手触摸筒壁,感觉温度变化情况.
分析:如果①②两种情形下气筒壁温度差不多,则说明活塞与筒壁摩擦生热,是筒壁温度升高
的主要原因;如果①情形下筒壁温度明显高于②情形下筒壁温度,则说明活塞压缩气体做功是筒壁温度升高的主要原因.

3. 如何制作小型风力发电机(是小实验)

目前商用大型风力发电机组一般为水平轴风力发电机,它由风轮、增速齿轮箱、发电机、偏航装置、控制系统、塔架等部件所组成。风轮的作用是将风能转换为机械能,它由气动性能优异的叶片(目前商业机组一般为2—3个叶片)装在轮毂上所组成,低速转动的风轮通过传动系统由增速齿轮箱增速,将动力传递给发电机。上述这些部件都安装在机舱平面上,整个机舱由高大的搭架举起,由于风向经常变化,为了有效地利用风能,必须要有迎风装置,它根据风向传感器测得的风向信号,由控制器控制偏航电机,驱动与塔架上大齿轮咬合的小齿轮转动,使机舱始终对风 风力发电机的基本原理及部件组成 :大部分风力发电机具有恒定转速,转子叶片末的转速为64米/秒,在轴心部分转速为零。距轴心四分之一叶片长度处的转速为16米/秒。图中的黄色带子比红色带子,被吹得更加指向风力发电机的背部。这是显而易见的,因为叶片末端的转速是撞击风力发电机前部的风速的八倍。 为什么转子叶片呈螺旋状? 大型风力发电机的转子叶片通常呈螺旋状。从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。如果叶片从特别陡的角度受到撞击,转子叶片将停止运转。因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离 风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

4. 测量风力的仪器叫什么

风速计。

通常分为风叶型(风车型)和风杯型。气象站使用的是风杯型的,一般安装在离地10米高的杆子上,四周应空旷。根据一定时间内风杯的转速,可算出平均速度。

风速计其基本原理是将一根细的金属丝放在流体中,通电流加热金属丝,使其温度高于流体的温度,因此将金属丝风速计称为“热线”。当流体沿垂直方向流过金属丝时,将带走金属丝的一部分热量,使金属丝温度下降。

根据强迫对流热交换理论,可导出热线散失的热量Q与流体的速度v之间存在关系式。标准的热线探头由两根支架张紧一根短而细的金属丝组成。金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。

常用的丝直径为5μm,长为2mm;最小的探头直径仅1μm,长为0.2mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头。

热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。

0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。风速仪的热敏式探头用于0至5m/s的精确测量;风速仪的转轮式探头测量5至40m/s的流速效果最理想;而利用皮托管则可在高速范围内得到最佳结果。

正确选择风速仪的流速探头的一个附加标准是温度,通常风速仪的热敏式传感器的使用温度约达+-70C。特制风速仪的转轮探头可达350C。皮托管用于+350C以上。

类型

1、杯形风速计

1845年,阿马天文台的约翰·托马斯·罗姆尼·罗宾逊博士发明了一种简单类型的风速计。它由四个安装在水平臂上的半球形杯组成,这些杯安装在垂直轴上。沿任何水平方向流过杯子的气流以大致与风速成比例的速度转动轴。

因此,在设定的时间间隔内计算轴的转数会产生一个与广泛速度范围内的平均风速成比例的值。它也被称为旋转风速计。

2、叶片风速计

其他形式的机械速度风速计之一是叶片式风速计。它可以被描述为风车或螺旋桨风速计。与旋转轴垂直的Robinson风速计不同,叶片式风速计的轴必须与风向平行,因此是水平的。此外,由于风的方向会发生变化,并且轴必须跟随其变化,因此必须采用风向标或其他一些装置来实现相同的目的。

因此,叶片风速计将螺旋桨和尾翼组合在同一轴上,从而从同一仪器获得准确和精确的风速和风向测量值。风扇的速度由转速计数器测量,并由电子芯片转换为风速。因此,如果横截面积已知,则可以计算体积流量。

3、板式风速计

这是第一款现代风速计。它们由一个从顶部悬挂的平板组成,以便风使平板偏转。1450年,意大利艺术建筑师莱昂·巴蒂斯塔·阿尔贝蒂发明了第一台机械风速计;1664年,它被罗伯特胡克(他经常被误认为是第一个风速计的发明者)重新发明。

这种形式的后来版本由一个平板组成,无论是方形的还是圆形的,通过风向标保持垂直于风。它脸上的风压由弹簧平衡。

弹簧的压缩决定了风施加在板上的实际力,这可以在合适的仪表上读取,也可以在记录仪上读取。这种仪器对小风没有反应,对大风读数不准确,对多变风的反应很慢。

5. 风洞实验室中可产生大小、方向可调节的风力.用长为l的细线拴一小球将其放入风洞实验室,调节风力方向为

(1)对小球受力分析,受重力、拉力和风力,如图所示:

6. 气象研究小组用图示简易装置测定水平风速.在水平地面上竖直固定一直杆,半径为R、质量为m的薄空心塑料球

A、小球受重力、拉力、风力处于平衡,根据共点力平衡知风力F=mgtanθ,θ变为原来的2倍,则风力变为原来的3倍,因为风力大小正比于风速和球正对风的截面积,所以风速v=9m/s.故A错误.
B、风速增大,θ不可能变为90°,因为绳子拉力在竖直方向上的分力与重力平衡.故B错误.
C、若风速不变,换用半径变大、质量不变的球,则风力变大,根据F=mgtanθ,知θ变大.故C错误.
D、若风速不变,换用半径相等、质量变大的球,知风力不变,根据F=mgtanθ,知重力减小,风力不变,则θ减小.故D正确.
故选D.

7. 风力发电机组测试有哪些标准,如何进行测试

1叶片主要检验和分析项目
风力发电机组动力性能的测试要根据IEC 61400-23“风力机发电系统-第23部分:风轮叶片全尺寸结构试验”标准的最新版执行。
1.1 叶片静力试验
静力试验用来测定叶片的结构特性,包括硬度数据和应力分布。
叶片可用面载荷或集中载荷(单点/多点载荷)来进行加载。每种方法都有其优缺点,加载方法通常按下面讨论的经验方法来确定。包括分布式面载荷加载方法、单点加载方法、多点加载方法。静力试验加载通常涉及一个递增加载顺序的应用。对于一个给定的加载顺序,静力试验载荷通常按均匀的步幅施加,或以稳定的控制速率平稳地增加。必要时,可明确规定加载速率与最大载荷等级的数值。通常加载速率应足够慢,以避免载荷波动引起的动态影响,从而改变试验的结果。
1.2 叶片疲劳试验
叶片的疲劳试验用来测定叶片的疲劳特性。实际大小的叶片疲劳试验通常是认证程序的基本部分。疲劳试验时间要长达几个月,检验过程中,要定期的监督、检查以及检验设备的校准。在疲劳试验中有很多种叶片加载方法,载荷可以施加在单点上或多点上,弯曲载荷可施加在单轴、两轴或多轴上,载荷可以是等幅恒频的,也可以是变幅变频的。每种加载方法都有其优缺点。加载方法的选用通常取决于所用的试验设备。主要包括等幅加载、 分块加载、变幅加载、单轴加载、多轴加载、多载荷点加载、共振法加载。
推荐的试验方法的优缺点如下表:
表1 推荐的试验方法的优缺点

试验方法

优 点

缺 点

分布式表面加载(使用沙袋等静重)

- 精确的载荷分布

- 剪切载荷分布很精确

- 只能单轴

- 只能静态载荷

- 失效能量释放可导致更严重的失效

- 非常低的固有频率

单点加载

- 硬件简单

- 一次只能精确试验一个或两个剖面

- 由试验载荷引起的剪切载荷较高

多点加载

- 一次试验可试验叶片的大部分长度

- 剪切力更真实

- 更复杂的硬件和载荷控制

单轴加载

- 硬件简单

- 不易获得准确的应变,损伤分布在整个剖面上

多轴加载

- 挥舞和摆振方向载荷合成更真实

- 更复杂的硬件和载荷控制

共振加载

- 简单硬件

- 能耗低

- 不易获得准确的应变,损伤分布在整个剖面上

等幅加载

- 简单,快速,较低的峰值载荷

- 对疲劳公式的精确性敏感

等幅渐进分块加载

- 失效循环次数有限

-对疲劳公式精确性和加载顺序影响敏感

等幅可变分块加载

- 简单方法模拟变幅加载

-对疲劳公式精确性和加载顺序影响敏感

(尽管敏感程度低于等幅渐进分块加载)

变幅加载

- 更真实的加载

- 对疲劳公式精确性不敏感

- 较高的峰值载荷

- 复杂的硬件和软件

- 比较慢

1.3叶片挠曲变形测量
由于风轮相对于塔架的间隙有限,因此,叶片挥舞方向的挠度是非常重要的。在试验过程中,应记录叶片和试验台的挠度。该试验通常与静力试验一起进行。
1.4叶片刚度分布测量
叶片在给定载荷方向下的弯曲刚度可由载荷/应变测量值或由挠度测量值来导出。叶片的扭转刚度可以表示为旋转角随扭矩增大的函数。
1.5 叶片应变分布测量
如果需要,可用由置于叶片测试区域上的应变计测量叶片应变水平分布,应变计的位置和方向必须记录。测量的次数取决于试验的叶片(例如叶片的大小、复杂程度、需要测量的区域等)。如果要求从零应力水平获取非线性,则必须使用一片未加载的叶片对应位置上的应变计来补偿其自重力影响。
应在叶片表面临界区域测量叶片应变,叶片上的比较典型的位置为:几何形状突变、临界的细部设计或应变水平预计较高的位置。
1.6叶片固有频率测量
通常重要的频率只限于挥舞方向的一、二阶和摆振方向的一阶频率(有些情况下,还包括扭转一阶频率)。对于大多数叶片来说,这些频率间隔很好,且很少会耦合。因此,可把叶片置于所要求的振动模态下,监测来自诸如应变计、位移传感器或加速度计等的振动模态响应信号,逐个地直接测量出这些频率。二阶挥舞方向的激振模态可能会导致一些问题,尤其是对刚性非常大的叶片测量的过程中。
1.7叶片阻尼测量
可以通过测量叶片挥舞和摆振方向无扰动振荡的对数衰减量确定叶片的结构阻尼。振幅必须足够小,以排除气动阻尼(几厘米)的影响。应注意阻尼通常与温度关系密切。
1.8叶片振型测量
与清晰间隔固有频率的低阻尼线性结构相应的标准振型值,可以由(在共振时)传递函数的虚部来逼近,此传递函数是确定振型值点处的输入力与加速度响应关系的函数。
进行挥舞和摆振方向的振型测量时,可将叶片安装在刚性试验台上,在叶片的某个适当点处(多数在叶尖)施加一个激振力(以相关的频率),沿叶片适当间隔位置监测所引起的加速度响应,激振力可由力传感器来测量,加速度由加速度计来测量,然后把测量值输入分析仪中,通过分析仪获得可能的模态数以及在共振频率下复杂传递函数的相位,在文献[7]中给出详细说明。
除采用移动单个加速度计的方法外,还可以沿叶片展向均匀地布置若干加速度计,用一系列强迫频率来激振叶片,也可以确定叶片的振型。
1.9 叶片质量分布测量
粗略的质量分布可以通过测量叶片总质量和重心的方法计算出来,必要时可把叶片截成小段并称出每段的重量来测量其质量分布。
1.10 叶片蠕变测量
对蠕变敏感的材料来说,有必要通过试验确定叶片的蠕变和恢复特性。这些试验是通过对叶片进行长时间静加载进行的(如几小时或几天)。在试验过程中,应频繁地测量叶片的挠度,并记录叶片的挠度与对应时间。经过一段时间后去掉载荷,当叶片松弛时,应再记录叶片的恢复与对应时间。
1.11 叶片的其它非破坏性试验
在有些情况下,非破坏性试验(NDT)技术可用来检查叶片是否按设计要求制造,并用来发现制造缺陷。非破坏性试验可与其它试验同时进行,常用的方法有:检查叶片几何形状(如尺寸、外形等)的测量、硬币轻敲、声音传导、超声波探伤、声发射、热成像等。
1.12 叶片解剖
叶片解剖可用来检查叶片是否按设计要求制造,并且可以用来发现制造缺陷。
通过叶片解剖可以检查下列特性:叶片的质量分布、几何形状(如翼型等)、铺层、梁、胶接等的制造(如确定玻璃纤维叶片的纤维含量、纤维方向和疏松度等)。
1.13 叶根螺栓套的静强度和疲劳强度试验
风力发电机组风轮叶片承受的各种载荷都必须经叶根连接结构传递至轮毂,其强度和可靠性直接影响整台机组的运行安全和出力。因此叶根连接结构的可靠性是考核叶片强度的重要指标之一。
2风力发电机组主要测试项目
2.1 风力发电机组功率特性测试
风力发电机组动力性能的测试要根据IEC 61400-12“风力机发电系统-第12部分:风力机动力性能”标准的最新版本执行。
由于风速的随机波动性和间歇性,需要测试发电机组随风速变化的功率特性曲线,确定发电机组的功率特性,比较实际功率曲线同设计功率曲线的关系,为整机的年发电量评估提供依据。
2.2 风力发电机组噪声测试
风力发电机组除噪性能的测试要根据IEC 61400-11“风力机发电系统-第11部分:噪音测试技术”标准的最新版本执行。
由于风电机组的运行会产生噪声,对周围的环境产生影响,需进行噪声监测,为除噪效果提供依据,同时根据噪声判别风机的运行状态。要注意特别是风轮叶片类型、塔高和塔的类型以及风力发电机组驱动系统变速箱的类型都会对噪声效果产生影响。
2.3 风力发电机组电能质量测试
风力发电机组电特征的测试要根据IEC 61400-21“风力机发电系统-第21部分:风力机电网连接电能质量测试和评估”标准的最新版本执行。
电能质量从普遍意义上讲是指优质供电,包括电压质量、电流质量、供电质量和用电质量。其可以定义为:导致用电设备故障或不能正常工作的电压、电流或频率的偏差,其内容包括频率偏差、电压偏差、电压波动与闪变、三相不平衡、暂时或瞬态过电压、波形畸变(谐波)、电压暂降、中断、暂升以及供电连续性等。通过测试电能质量可以对机组的并网发电以及对电网的稳定性作出评估。
2.4 风力发电机组涡轮运转性能测试
涡轮运转测试的目的是为了对作为风力发电机组设计基础的参数和性能进行验证。
涡轮运转测试有以下几个单独测试组成:安全系统测试、制动系统测试、自动操作测试、开关操作测试、自然频率测试、机械制动的液压。
2.5 风力发电机组机械载荷测试
载荷测试要根据最新版的IECTS 61400-13“风力机发电系统-第13部分:机械载荷测试”标准的最新版执行。
为了验证机组设计载荷工况,为建设和修订机组理论设计模型提供依据,对风机进行载荷测试。测试的主要项目有叶片根部摆振和挥舞方向的弯矩,电机主轴弯矩和扭矩,塔架底部的偏航力矩和俯仰弯矩,塔架顶部的偏航力矩、俯仰弯矩和扭矩。实际测试中的获得的数据将和风机设计软件的仿真结果进行对比,从而验证机组的设计模型。
要在支撑结构上安装附加传感器,安装位置要参考风能大全后再做决定。
2.6 风力发电机组机变速箱原型的测试
测试的目的是检查变速箱设计的实现条件和获取重要参数用于风力发电机组变速箱生产阶段的级数检验。要通过实际操作对变速箱的基本性能进行验证。
在根据变速箱的动态特征或变速箱独立元件的载荷分布进行设计修改时,需要重新进行原型测试。

试验测试参考标准:
IEC 61400-12“风力机发电系统-第12部分:风力机动力性能
IEC 61400-13“风力机发电系统-第13部分:机械载荷测试
IEC 61400-21“风力机发电系统-第21部分:风力机电网连接电能质量测试和评估
IEC 61400-11“风力机发电系统-第11部分:噪音测试技术
IEC 61400-23“风力机发电系统-第23部分:风轮叶片全尺寸结构试验
风力发电机组认证指南(GL2005)

8. 风力发电机的叶片怎么做动平衡

大型的不知道怎么搞
小型叶片,一般都有动平衡试架。 有叶片法兰
主轴阻尼很小,叶片放上去后自然会朝重心偏差的方向动作。
随即调整。

9. 化学实验室通风设备技术要求有哪些

在化学实验过程中抄,经常会产生各种难闻的,有腐蚀性的、有毒的或易爆的气体。这些有害气体如不及时排除室外,就要造成室内空气污染,影响实验人员的健康与安全;影响仪器设备的精度和使用寿命,因此,实验室通风是实验室设计中不可缺少的一个组成部分。为了使实验室工作人员不吸入或咽入一些有毒的、可致病的或毒性不明的化学物质和有机体,实验室中应有良好的通风。为阻止一些蒸气、气体和微粒(烟雾、煤烟、灰尘和气悬体)吸入,污染物质须用通风柜、通风罩、局部排风的方法除去。

化学实验室的通风方式有两种,即局部排风和全室通风。局部排风是在有害物质产生后立即就近排出,这种方式能以较少的风量排走大量的有害物质,能量省而效果好,是改善现有实验室条件可行和经济的方法,也可能是适应新实验室通风建设的最好方式。对于有些实验不能采用局部排风,或局部排风满足不了排风要求时,采用全室通风。

与风力平衡实验装置相关的资料

热点内容
大众途昂仪表盘怎么看油耗 浏览:874
泄露检测装置 浏览:328
马达轴承线存在什么问题 浏览:989
机械台班费用如何计算 浏览:423
三轮车前轮轴承盖眼大怎么办 浏览:81
永康广博电动工具厂 浏览:307
水制冷是什么意思 浏览:504
热水器红蓝阀门怎么开图 浏览:261
修理阀门需要什么资质 浏览:963
全自动氰化物蒸馏装置报价 浏览:459
pvc管阀门怎么更换 浏览:478
卢瑟福做的是什么实验实验装置有哪些 浏览:565
阀门阀头指什么 浏览:819
预作用报警装置控制器接线图 浏览:424
什么是机械手表 浏览:515
蹲便器感应阀门怎么安装 浏览:844
实验室回流冷凝器装置图6 浏览:553
电热水器红色阀门是什么意思 浏览:211
icloud怎么退出旧设备 浏览:892
燃气灶空气阀门图片大全 浏览:902
© Arrange www.fbslhl.com 2009-2021
温馨提示:资料来源于互联网,仅供参考