『壹』 DT75型皮带输送机限料装置图
TD75早通用带式输送皮带机;DTII型TD75基础改进
1.首先TD75与DTII我定型产品能看做标准
2.TD75棉帆布带做牵引承载构件各部件都滚筒许用扭矩按
棉帆布带额定抗拉强度定并滚筒许用扭矩所点并合理
3.随着工业发展需要型输送机械八十代设计GX钢丝绳芯带式输送机
各部件都
4.随着外输送机械发展TD75与GX钢丝绳芯带式输送机都合适例
功率计算与德DIN22101都区别且公式合理所编制DTII手册介于TD75与GX钢丝绳芯带式输送机间各主要部件都与际标准接轨
5.DTII灵魂改现场焊接螺栓连接(别部件除外)
『贰』 机械设计课程设计 设计带式输送机传动装置中的-装备图
哇,你有点诚意好不好啊,把那个发给你,就相当于给你设计出来了啊
『叁』 求消防水泵机械应急启动装置的图片
1.根据《消防给水及消火栓系统技术规范》GB50974-2014标准规定,若继电器和弱电信号故障不能自动启动消防泵时,应依靠消防泵控制柜设置的“机械应急启动装置”直接启动消防泵。
“机械应急启动装置”启动手柄平时处于停止状态(带锁),紧急火警时必须由被授权的管理人员操作。
2. “机械应急启动装置”输出和原控制柜内输出端子相连接,以实现应急直接启动消防泵。启动时手动启动手柄按下90°,消防泵依据所配电器采用星三角启动、降压启动方式启动,停泵由有管理权限的人手动停泵(不可自动停泵或火警时手动停泵)。
(3)机械推送装置图扩展阅读:
水泵线路的敷设
在许多设计图纸中发现:消防水泵的供配电线路、控制线路多穿PVC管进行保护,并从吊顶内走线。
笔者认为这种走线方法欠妥。尽管《建规》只要求消防用电设备的配电线路明敷时穿金属管,没有要求暗敷时穿金属管保护。
但《民用建筑电气设计规范》(以下称《民规》)24.8.5条要求:消防联动控制、自动灭火控制等的线路,应采用阻燃电缆穿钢管暗敷在不燃烧体结构层内,保护层厚度不小于3cm,当必须明敷时,应在金属管上采取防火措施。
《火灾自动报警系统设计规范》(以下称《自动报警规范》)第8.2.2条对此也做出了相应规定。
我们知道,消防水泵在火灾发生后一段时间内仍要发挥作用,来完成对建筑火灾的扑救工作。
因此在这段时间内,仍要保证水泵线路的安全。对于配电室与电气竖井距离较远,消防用电设备容量较大,线路无法暗敷的,可以在采取有效的防火措施后敷设在吊顶内。
在这种情况下应避免采用耐火槽盒,因为吊顶也是火灾多发地段,敷设在吊顶内的线路火灾时并不安全,而且槽盒仅能防止外部燃烧对线路的破坏,无法防止槽盒内线路自身故障造成的火灾。
建议消防水泵等重要消防设备采用耐火电缆供电,以保证发生火灾时能够在一定的时间内不受影响继续工作。
『肆』 机械设计课程设计:带式运输机传送装置装配图!求大神帮忙!有加分!
带式运输机采用双班连续工作,载荷有轻微
『伍』 专业机械设备的安装实例
一、颚式破碎机的安装
颚式破碎机(见图3-3)构造简单,在陶瓷及非金属矿产品加工厂中广泛应用,是粗碎不可缺少的设备。小型鄂式破碎机在制造厂已组装整体,可采用整体安装。安装前必须检查设备制造质量,按装箱单清点部件、配件数量,在运输过程中有无撞损等。随之测量机架地脚螺栓孔中心尺寸,并作出记录,以便校正基础地脚螺栓孔中心尺寸。
颚式破碎机安装顺序:
1.基础划线
根据工艺布置的设计尺寸,对照设备地脚螺栓孔实际尺寸在基础上划出中心十字线(图10-9);
图10-9颚式破碎机基础划线
1-250×500颚式破碎机基础;2-道木;3-电动机基础
2.基础标高符合设计要求
基础与垫木(道木)的接触面应铲平。垫木最好选用榆木,使设备在运转过程中起到减震作用。
3.整体吊装
设立两木搭用倒链(神仙葫芦)或用绞车,将颚式破碎机吊在基础上,找正中心位置,拧紧地脚螺母,再在偏心轴头上测水平,根据实测的误差,松开地脚螺母进行调整(图10-10)。水平度达到要求后,再拧紧地脚螺母。
图10-10250×500颚式破碎机安装
1-道木;2-底垫;3-活动颚板;4-电动机
4.清洗检查
试运转之前,机器要进行清洗检查,偏心轴与轴瓦接触角度要有110°~120°,由于偏心轴运转受力时,略有弹性变形,故在负荷时,其接触面应如图10-11所示,否则应刮研。
安装后,质量要求如下:
(1)中心位置误差不超过±5mm;
(2)标高误差不超过士5mm;
(3)两端轴头中心高要相等,误差不超过0.2mm;
(4)水平度用0.05/1000水平尺,测量不超过一格;
(5)轴瓦侧间隙以0.001D(轴径)计算。
图10-11轴瓦接触面示意图
试运转及操作:试运转之前,将主轴承及运转部件都应加注润滑油,各部连接螺栓都应紧固好,机器周围清理干净。
电动机要进行单机试运转,无问题后才能挂上三角皮带传动颚式破碎机运转。试运转技术操作要求如下:
(1)单机无负荷运转3~4小时;
(2)轴瓦温度稳定,滚动轴承不超过70℃。滑动轴承(五金瓦)不超过60℃。正常温度应为35~45℃;
(3)机座震动量不超过0.2~0.5mm/m;
(4)负荷试运转7~8小时。
负荷试车开始下料时,要慢慢地加入,随时注意各个轴承的温度及运转情况,不能加入超过入料尺寸的大块矿石,如果不慎为大矿石卡住出料口,应立即停车,以免损坏机件。
载荷运转正常后,投入生产之前,应将各部连接螺栓再次拧紧,在生产过程中,每隔一定时间检查一次。
根据需要的矿石粒度,调整出料口宽度(见图3-3)。用手扳子调节螺栓7,使后壁板的斜垫板2上下移动,调整螺栓被往上提,就能使斜垫板上升,出料口减少;反之,加大。调到合适宽度后,在调节螺栓上做出记号,便于以后调整。
为了保证正常生产,操作人员应注意如下事项:
(1)加料要均匀,加料过多,机器超负荷,易出机械事故,但加料过少,则降低生产效率;
(2)经常检查被破碎物料中是否有金属块,以免损坏机器;
(3)偏心轴承要经常检查,并注入足够的润滑油,轴承可用温度计测量,并可用手摸试,当发现轴承烫手时,必须停车检查,修理;
(4)经常检查各部分螺栓,不得有松动;
(5)缓冲位置,拉杆弹簧拉紧时,弹簧两个相邻螺旋圈间的最小距离不应小于2~4mm;
(6)加料口内物料完全破碎后才停车,设备未开动前,不准加料;
(7)颚板衬板、侧壁板损坏时,应及时更换;
(8)机器运转时,禁止进行清理或修理工作,皮带轮和飞轮应设防护罩。
二、球磨机的安装
球磨机的安装和其它机械安装一样,应遵循下述步骤:
(1)先安装球磨机体,后安装皮带轮、齿轮等传动机构;
(2)先安装主轴承,后校正传动部分的轴承;
(3)先校准球磨机筒体中心线、主轴承中心线,后校准传动轴承中心线等。
安装过程如下:
(一)安装前准备
先按照产品说明书对球磨机的各配件检点、清洗与预装配。如发现有遗漏、误差,应作书面记录,存档备查。
(二)基础划线
球磨机在安装前应按产品说明书(或自行设计)的要求浇制基础,待有足够强度后,才进行基础划线和安装。
基础划线的第一步是埋设中心标板:
中心标板在厚5mm、宽100mm、长150mm钢板焊上5mm钢筋(见图10-12),作好标记定位用。
图10-12挂中心线(中心标板)
在埋设时,不要露出基础面太多,最好与基础相平。埋设数量为:球磨机身纵向中心标板2块,横向中心标板4块,传动轴中心标板2块。
第二步是基础划线,根据选定的位置,定出球磨机中心线的方位,再用10m钢皮尺以20kg拉力拉紧,多人多次准确量出两主轴头中点之间的距离。以传动轴基础为基准点,将此距离在中心标板上打上标记。再以此两点为基准按图纸尺寸划出小齿轮轴承座及其它传动设备的中心线。
第三步是安装线架,挂上中心线。用角钢或方木制作中心线架,固定在基础端面上(见图10-12)。中心线架高度要超过筒体高度。用22号钢丝挂上中心线,一端固定,另一端挂上一10kg重物。吊上线锤,以中心标板的中心为准,将中心找正,使钢丝与标板中心眼重合。
(三)底座及轴承的安装
1.轴承合金刮研
用倒链将球瓦吊于主轴上,并事先在主轴上涂以红铅丹,转动球瓦,根据接触情况,将接触面用半圆刮刀刮削,使接触面积每平方厘米有1~2个点接触,接触角90°~120°,两侧间隙应符合图纸要求。
2.底座及轴承划线
底座划线:在底座加工面上,以地脚螺栓为基础,划出纵横中心线(见图10-13),作为安装找正用。
图10-13底座划线
轴承座划线:在轴承孔中间加一方木,在方木的中心钉上菱形薄铁皮,作为求中心点用。用划规求出中心点及十字线,根据瓦座宽度作出侧面中心线(见图10-14)。划线工作结束且混凝土基础强度达75%以上后,即可安装。
图10-14轴承座划图
3.底座的安装
测量标高:底座标高可用水准仪或水管连通器进行测量。一般用水管连通器测量较简单。其方法是:取一条胶管,两头套上玻璃管,加上浅颜色的水。在底座加工面上,放上水平尺,根据底座标高点,将水管一端放在标高点上。以此为基准,另一端靠近底座侧面,根据水平高度,确定底座高或低。根据测量结果确定垫铁厚度。使用水管连通器要注意水管装水时不得有气泡,使用前将两玻璃管合在一起看看是否等高。
底座找正:根据挂设的中心线,吊上铅锤,调整底座纵横中心与线锤顶点重合。每一端底座找中心位置时,要吊二个线锤。这样才能保证底座中心线垂直和平行。
用0.04~0.1/1000水平尺放在底座加工面上测量水平度,测量时要多测几个位置才能准确。
加垫铁:根据测量结果,得到垫铁需用厚度。垫铁厚的用铸铁板,较薄的可用锻打成楔形的钢板。放垫铁时,应铲平垫铁下面的基础。若底座基础低,则加一层砂浆。
4.地脚螺栓孔灌浆
底座安装校正后,可进行地脚螺栓灌浆,一般要求用150号混凝土。待混凝土强度充分增长后,方可拧紧地脚螺栓。
5.轴承座的安装
球面轴瓦在浇注合金前,应进行2~4kgf/cm2的水压试验。如发现班点漏水,可钻孔解决。若有裂纹,可烧生铁电焊。浇注后,应进行一次水压试验。
将轴承座吊装在底座上,以瓦座中心点吊线锤找正,使瓦座中心线与底座中心线重合。
用钢皮尺测量两端轴承中心距,其误差应符合图纸要求。
用水管连通器测量两轴承大瓦座中心高,使两端瓦座在同一水平线上。
扭紧轴承螺栓。
(四)磨体的安装
磨体安装前,应对筒体与球磨机侧板、或侧板与主轴头等联接情况进行一次检查。若发现不符合要求,应进行调整或重装。
1.小型球磨机可架设三角架,直接用起重葫芦吊装。较大的球磨机可在两基础之间搭枕木堆,用卷扬机或绞车将筒体运到两轴瓦上(高于轴瓦50~100mm),然后在磨体每一端各用两台千斤顶顶起。拆除一层枕木,调整筒体,使两端主轴头与轴瓦两端距离相等。然后徐徐落于轴瓦上,安装方法见图10-15。
2.测量磨体中心线,使挂好的吊线铅垂线与磨体两端轴中心点重合。
3.标高测量,用水管连通器测量(见图10-16)。要求两端轴中心线应在同一水平面上,允许误差最大不超过0.5mm。
图10-15球磨机筒体安装
图10-16磨体标高测量
4.在两端轴上面用0.04~0.1/1000水平尺测量水平,其偏差不应超过一格。
5.用原薄规探测大瓦与轴两侧间隙,其间隙应符合图纸要求。
6.把油圈安装于两主轴头上。
7.用手转动筒体看转动是否灵活,但不能有不同心晃动,否则应再反复校正以上的技术设施。
8.安装主轴承盖。安装前,将大瓦和主轴清洗干净,然后涂上机油,盖上瓦盖,把连接螺钉对称均匀拧紧,转动磨体,检查螺钉扭力是否均匀或接触间隙是否过小。
(五)二次灌浆
底座与基础之间要进行灌浆。灌浆前,拧紧地脚螺栓,打紧斜铁,用电焊将垫铁点牢,但底座与垫铁不要焊接。底座下面基础要清扫干净。灌浆时要捣实,不能有间隙或蜂窝等缺陷。
(六)大齿轮的安装与检查
1.用薄铁片制成的齿规检查齿距,不符合的应加以修理,同时要清理铸造沙皮。
2.若大齿轮是剖分式的,则应将两半齿轮组合起来,拧紧对口螺栓,用地规检查节圆、外圆直径偏差。若偏差超过图纸规定,应使用油压机调整。
3.将制造的装配十字头配好,先安装一半,转动筒体,使半部齿轮移到下方再安装另一半。筒体连接螺栓中应有四分之一为隐钉螺栓,即孔与螺栓配合为过渡配合,隐钉螺栓位置在圆周上均匀分布并应对称。
4.检查齿轮安装质量。用三齿样板检查两半齿轮接口处的齿距,误差不得超过±0.005m(模数),大齿轮与筒体法兰接口处间隙不得超过0.05mm。用划针测量法检查大齿轮的轴向偏差和径向偏差(见图10-17),要求径向偏差不得超过士0.001D(D是大齿轮外径),轴向偏差不得超过±0.5~1.0mm。
图10-17大齿轮测量
a-径向偏差;b-轴向偏差
(七)小齿轮与传动轴安装
先将传动轴瓦刮研,要求轴瓦接触角70°~90°,接触面每平方厘米不小于2点,瓦口间隙应符合图纸要求。
传动轴的安装要求符合图纸中两齿轮中心距,轴与磨机中心线应平行。小齿轮装配用热压法,装配后放在轴承座上,然后灌地脚螺栓。待保养一段时间后,再拧紧连接螺栓和校对中心线,装上轴承盖并检查与轴的间隙。
(八)大小齿轮的啮合检查
在小齿轮齿面上涂上红铅油,转动磨机测量接触面积,接触点应在节圆线上,按标准要求最好为齿高的20%~25%,为齿宽的65%~70%。
用压铅法或用尺测量啮合的顶间隙及侧间隙。顶间隙为0.2~0.25m(模数)+热膨胀量(约1mm);侧间隙,铣齿为0.06~0.10m(模数),铸齿为0.16m(模数)。
(九)大三角皮带轮的静平衡测定与调整
大三角皮带轮在装配前必须进行静平衡测定,若静不平衡,运转时会产生振动,或导致齿轮转动时出现周期性的噪音。
静平衡试验可利用传动基座进行。将两轴承安装好后,放上大皮带轮,找正、找平,将轮按圆周分四点,盘转观察。若不平衡,其重的一侧总是向下,可在对称位置加以重物,使之平衡为止。
(十)衬板的安装
非金属矿产加工使用的多是间歇式球磨机。粉磨矿物原料时,为保证质量,又要保护易受磨损的球磨钢质筒体,所有球磨均需使用衬板。过去衬板多用燧石砌筑,近年来,有些厂进行了用橡胶衬板代替燧石板的湿磨原料试验。在工艺上取得的数据证明,采用橡胶衬板的球磨与采用燧石衬板的球磨相比有如下优点:在产量方面,同容积磨机可增产30%~40%;在单产电耗方面可节约电力15%~20%;噪音减少;磨机运转中振动大大减轻,能延长磨机传动装置寿命。此外,橡胶衬板的突出优点是其使用寿命约为燧石衬板的5~6.5倍(即橡胶衬板可使用10年)。大大减少了衬板安装工时与维修费。但橡胶衬板的一次投资费用较大,其费用是燧石衬板一次投资的6.82倍。
有关衬板的安装方法这里不再详细介绍。
(十一)球磨机的试运转
球磨机安装后,应按顺序进行空载试运转、半负荷试运转和全负荷运转,以检查安装质量是否符合要求。
1.空载试运转
在不装研磨体、物料的情况下起动磨机,运转4小时以上,检查下列各项:
润滑系统工作情况,如油环带油是否有效。检查轴承温度,不应超过60℃。
球磨机窜动量是否超过容许限度。
大小齿轮及减速机运行是否正常,噪声是否强烈,大小齿轮啮合印痕是否符合要求,大齿轮经向及轴向偏摆是否在容许范围之内。
大三角皮带轮运转是否正常,从振动的情况判断,大三角皮带轮重量是否平衡,从皮带轮带槽附近的发热情况判断皮带的松紧是否适当。
电动机的温升及整个电器系统工作是否正常。
2.半负荷试运转
装入半数研磨体和物料,运转4~8小时,同样检查上述项目进行调整。
3.全负荷试运转
加入研磨体及物料,运转中密切注意电动机电流是否超过额定值,电动机转速有无明显降低。检查皮带打滑和轴承发热情况,检查球磨机振动情况。如上述情况正常,则试运转结束。停磨后重新拧紧地脚螺母。即可正式投入生产。
三、皮带输送机的安装
(一)安装顺序
安装前应将基础清扫干净,进行基础划线。以头、尾两鼓轮的中心,挂设一条纵向钢丝线,划出基础中心线,由此线再划出左右两条边线(支架地脚螺栓中心线)。再根据施工图尺寸划出横向间距线。
按基础已划出的线迹,校对预留地脚螺栓孔的位置,如有不符则应重新凿孔。
1.机架安装
按照地脚螺栓孔的位置,先将机架排列好,用螺栓连接起来,并将地脚螺栓插入孔内。根据基础的中心线进行找正、找平后,可将地脚螺栓灌浆,待地脚螺栓达到强度后,需再找正一次,拧紧地脚螺栓,然后再进行托辊安装。
2.机头、机尾鼓轮安装
依据机架中心线找正位置,两鼓轮横向中心线应平行,误差不超过1mm,水平度每米不大于0.5mm。
3.传动装置安装
根据驱动鼓轮先安装减速机,再安装电动机,轴向中心线均应吊线锤检查,误差不大于1mm。
4.皮带安装
安装前将拉紧装置调到终点,用钢盘尺实测长度尺寸,按皮带厚度进行皮带长度计算,应力求准确,切口要垂直整齐,连接时工作面朝上,用倒链拉伸,胶合牢固后可以放开。
(二)皮带输送机安装应达到的基本要求
(1)皮带与滚子接触要好,不得有滑动摩擦现象存在,以提高皮带使用寿命;
(2)保证皮带运行平稳,不得有明显的蛇行及脉动现象存在;
(3)在运转过程中保证皮带不脱落;
(4)皮带接头要正确,要在一条直线上,同时工作面不能装反。
四、转筒干燥器的安装
转筒干燥器的安装按下述步骤进行:
(1)安装托轮装置、挡托轮装置于基础上;
(2)将机体吊起,轻轻放于托轮、挡托轮装置上;
(3)安装传动装置;
(4)调整合格后灌浆;
(5)试运转。
安装过程如下:
(一)安装前准备
先按照产品说明书对转筒干燥器零件进行清点、清洗与预装配,修整零部件加工表面。
(二)基础划线
转筒干燥器在安装前应按产品说明书的要求浇制基础,基础支承面倾斜度应与机体一致,待有足够强度后,才进行基础划线和安装。
(三)托轮座与挡托轮座的安装
托轮与挡托轮座装到基础上时基础板上的刻线应完全与基础水平基点板刻线重合(如图10-18所示)。
图10-18支承座在基础上的安装图
1-基础;2-压紧螺钉;3-地脚螺栓;4-台架;5-装在轴承上的滚轮;6-铅垂线;7-基础中心刻线
图10-19支承托轮安装检查图
1-内径规;2-支承滚轮
同时,机座应由压紧螺钉抵在基础限动板上。地脚螺栓穿入板上的孔,装上垫圈、螺母拧紧螺栓,校准机座的斜度和高度。较准时铅垂线两端应与基础纵向轴线定向水平基点板的刻线重合。用内径规检查机座两托轮间的间隙Q(图10-19所示)。此间隙应等于
非金属矿产加工机械设备
式中Db——支承箍直径;
Dc——支承滚轮直径。
支承滚轮中心间的距离A应等于:A=2a+Dc,要从每个机座的两侧检查这一尺寸的大小。而后移动基础上的挡托轮座使纵向铅垂线两端与按基础纵向轴线定位置的台板刻度重合(与托轮中心线平行)(图10-20所示)。将直尺放在托轮端部,测其不应超过5mm的位移量(图10-21所示)。
图10-20托轮座在基础上的安装图
图10-21支承托轮平行和同心度的检查
1-支承滚轮;2-基础板;3-基础;4-定向板;5-直尺
拉紧挡托轮座滚轮上方的横向线,使铅垂线与基础上的已装座横轴线配置定向水准基点板刻线重合。移动挡托轮座使铅垂线与座板中心线垂直支承滚轮中心线的定向刻线重合。自横向线放下两根铅垂线到托轮上母线(图10-22)。同时铅垂线两头至母线中间的距离应一样,并等于:
非金属矿产加工机械设备
式中h——基底到托轮中心线的支承轴承高度;
α——托轮座对水平线的倾斜角。
在支承托轮宽度中间表面上装一窄面直尺,尺上放一水平仪,以压紧螺钉调节直尺达到水平位置。
图10-22托轮座与横向铅垂线相对位置检查图
图10-23托轮座倾斜的检查
1-水平仪;2-楔子;3-支承滚轮;α-相当于设备设计倾斜角的角度
校准支承座的安装位置,使挡托轮座和托轮座托轮中间平面之间的距离等于设备壳体箍中部之间的距离。
挡托轮座和托轮座由调节螺钉实现倾斜(图10-23)。
校准结束后,对基础螺栓灌浆,待混凝土凝固后把螺母上紧,再次校准,对两个机座最后二次灌浆。
(四)筒体的安装
筒体在托轮座上的安装,要保证托轮轴线与筒体中心线斜度相同,可用硬木依照筒体斜度制成楔形标板,放在托轮上,再用水平仪置于楔形标板之上进行测量。托轮安装后,放上筒体,还要用压铅法测量托轮与滚圈接触情况作进一步的调整。经调整后,筒体两端径向圆跳动小于4mm。
干燥器运转时,滚圈端面应不常与上下挡轮接触,或只允许稍有接触。若筒体上窜,与上挡轮接触,则在托轮上加机油,此时筒体应下窜,离开上挡轮,反之若筒体下窜,与下挡轮接触,则往托轮上撒少许细砂,不久筒体亦能停止下窜,滚圈离开下挡轮。
若筒体窜动严重时,则需在水平位置上,转动托轮的轴线(调整顶丝)校正。方法是:在托轮表面用粉笔划一箭头,使箭头指向托轮转动方向,将托轮轴线顺时针方向或逆时针方向转动后,若此箭头向下方倾斜,则可使筒体向下移动,反之则向上移动。
(五)传动装置的安装
往基础上装放包括下部冕状齿轮、主辅减速器和电动机在内的电动减速器组(如图10-24),用厚度等于齿轮齿端和齿间间隙大小的两块薄片(0.25模数+0.5mm热膨胀补偿数)对下部冕状齿轮和冕状齿轮找中心。薄片放在齿轮两边要啮合的齿间底部并将下部冕齿轮和支承框推到这些薄片的尽头,用压紧螺钉调节位置。
冕状齿轮和下部冕状齿轮的允许啮合偏差如下:
齿圈,径向和轴向振摆要小于3mm;
相对冕状齿轮中心线的中心线偏移5mm;
传动装置倾斜度应与机体一致,偏差小于每米0.1mm,电动机、减速机轴中心线同轴度小于0.5mm。
在把传齿轮和冕状齿轮安装找正结束后,对主减速器和下部冕状齿轮、副减速器和主减速器、电动机和主副减速器,在各半联轴节处最后检查定中心情况。
传动装置(电动减速器组)试车3小时,其中对电动机每一个转速试车30分钟以上,由辅助电动机驱动试车1小时以上。
图10-24传动装置安装图
1-减速器;2-壳体;3-减速器;4-电动机;5-支承框;6-地脚螺栓;7-压紧螺钉;8-基础;9-冕状齿轮;10-下部冕状齿轮
对装卸料罩、燃烧室及密封圈等,按照装配图及一般规程装配。
(六)设备的试运转
各部分安装调整合格之后灌浆,待水泥干固后进行空载试验。
检查地脚螺栓及各部连接处确属牢固,齿轮及其它活动部位无卡阻之后,开机连续运转8小时,检查筒体有否激烈往复窜动,齿轮传动有无激烈震动,轴承工作情况如何,轴承温度最高不得超过65℃(环境温度30℃),电动机电流无显著波动。空载试验合格后,进行负荷试验。试验程序:运转中通入热介质,待达到工作温度后,加入物料至正常负荷,连续运转8小时检查设备运转是否正常,如运转正常,可投入试生产。
『陆』 机械原理运动简图
|向答案如图所示:
向左转|向右转
解析如下:
1、针固定在针杆上,针杆由电专机通过一系列的齿轮和属凸轮(稍后会详细介绍)牵引做上下运动。
2、当针的尖端穿过织物时,它在一面向另一面拉出一个小线圈。
3、织物下面的一个装置会抓住这个线圈,然后将其包住另一根线或者同一根线的另一个线圈。
『柒』 冲压机构及送料机构设计
第一节 冲床冲压机构、送料机构及传动系统的设计
一、 设计题目
设计冲制薄壁零件冲床的冲压机构、送料机构及其传动系统。冲床的工艺动作如图5—1a)所示,上模先以比较大的速度接近坯料,然后以匀速进行拉延成型工作,此后上模继续下行将成品推出型腔,最后快速返回。上模退出下模以后,送料机构从侧面将坯料送至待加工位置,完成一个工作循环。
(a) (b) (c)
图5—1 冲床工艺动作与上模运动、受力情况
要求设计能使上模按上述运动要求加工零件的冲压机构和从侧面将坯料推送至下模上方的送料机构,以及冲床的传动系统,并绘制减速器装配图。
二、 原始数据与设计要求
1.动力源是电动机,下模固定,上模作上下往复直线运动,其大致运动规律如图b)所示,具有快速下沉、等速工作进给和快速返回的特性;
2.机构应具有较好的传力性能,特别是工作段的压力角应尽可能小;传动角γ大于或等于许用传动角[γ]=40o;
3.上模到达工作段之前,送料机构已将坯料送至待加工位置(下模上方);
4.生产率约每分钟70件;
5.上模的工作段长度l=30~100mm,对应曲柄转角0=(1/3~1/2)π;上模总行程长度必须大于工作段长度的两倍以上;
6.上模在一个运动循环内的受力如图c)所示,在工作段所受的阻力F0=5000N,在其他阶段所受的阻力F1=50N;
7.行程速比系数K≥1.5;
8.送料距离H=60~250mm;
9.机器运转不均匀系数δ不超过0.05。
若对机构进行运动和动力分析,为方便起见,其所需参数值建议如下选取:
1)设连杆机构中各构件均为等截面均质杆,其质心在杆长的中点,而曲柄的质心则与回转轴线重合;
2)设各构件的质量按每米40kg计算,绕质心的转动惯量按每米2kg·m2计算;
3)转动滑块的质量和转动惯量忽略不计,移动滑块的质量设为36kg;
6)传动装置的等效转动惯量(以曲柄为等效构件)设为30kg·m2;
7) 机器运转不均匀系数δ不超过0.05。
三、 传动系统方案设计
冲床传动系统如图5-2所示。电动机转速经带传动、齿轮传动降低后驱动机器主轴运转。原动机为三相交流异步电动机,其同步转速选为1500r/min,可选用如下型号:
电机型号 额定功率(kw) 额定转速(r/min)
Y100L2—4 3.0 1420
Y112M—4 4.0 1440
Y132S—4 5.5 1440
由生产率可知主轴转速约为70r/min,若电动机暂选为Y112M—4,则传动系统总传动比约为。取带传动的传动比ib=2,则齿轮减速器的传动比ig=10.285,故可选用两级齿轮减速器。图5—2 冲床传动系统
四、 执行机构运动方案设计及讨论
该冲压机械包含两个执行机构,即冲压机构和送料机构。冲压机构的主动件是曲柄,从动件(执行构件)为滑块(上模),行程中有等速运动段(称工作段),并具有急回特性;机构还应有较好的动力特性。要满足这些要求,用单一的基本机构如偏置曲柄滑块机构是难以实现的。因此,需要将几个基本机构恰当地组合在一起来满足上述要求。送料机构要求作间歇送进,比较简单。实现上述要求的机构组合方案可以有许多种。下面介绍几个较为合理的方案。
1.齿轮—连杆冲压机构和凸轮—连杆送料机构
如图5—3所示,冲压机构采用了有两个自由度的双曲柄七杆机构,用齿轮副将其封闭为一个自由度。恰当地选择点C的轨迹和确定构件尺寸,可保证机构具有急回运动和工作段近于匀速的特性,并使压力角尽可能小。
送料机构是由凸轮机构和连杆机构串联组成的,按机构运动循环图可确定凸轮推程运动角和从动件的运动规律,使其能在预定时间将工件推送至待加工位置。设计时,若使lOG<lOH ,可减小凸轮尺寸。
图5—3 冲床机构方案之一 图5—4冲床机构方案之二
2.导杆—摇杆滑块冲压机构和凸轮送料机构
如图5—4所示,冲压机构是在导杆机构的基础上,串联一个摇杆滑块机构组合而成的。导杆机构按给定的行程速比系数设计,它和摇杆滑块机构组合可达到工作段近于匀速的要求。适当选择导路位置,可使工作段压力角较小。
送料机构的凸轮轴通过齿轮机构与曲柄轴相连。按机构运动循环图可确定凸轮推程运动角和从动件的运动规律,则机构可在预定时间将工件送至待加工位置。
3.六连杆冲压机构和凸轮—连杆送料机构
如图5—5所示,冲压机构是由铰链四杆机构和摇杆滑块机构串联组合而成的。四杆机构可按行程速比系数用图解法设计,然后选择连杆长lEF及导路位置,按工作段近于匀速的要求确定铰链点E的位置。若尺寸选择适当,可使执行构件在工作段中运动时机构的传动角γ满足要求,压力角较小。
凸轮送料机构的凸轮轴通过齿轮机构与曲柄轴相连,若按机构运动循环图确定凸轮转角及其从动件的运动规律,则机构可在预定时间将工件送至待加工位置。设计时,使lIH<lIR,则可减小凸轮尺寸。
图5—5冲床机构方案之三 图5—6冲床机构方案之四
4.凸轮—连杆冲压机构和齿轮—连杆送料机构
如图5—6所示,冲压机构是由凸轮—连杆机构组合,依据滑块D的运动要求,确定固定凸轮的轮廓曲线。
送料机构是由曲柄摇杆扇形齿轮与齿条机构串联而成,若按机构运动循环图确定曲柄摇杆机构的尺寸,则机构可在预定时间将工件送至待加工位置。
选择方案时,应着重考虑下述几个方面:
1)所选方案是否能满足要求的性能指标;
2)结构是否简单、紧凑;
3)制造是否方便,成本可否降低。
经过分析论证,方案1是四个方案中最为合理的方案,下面就对其进行设计。
五、 冲压机构设计
由方案1图5—3可知,冲压机构是由七杆机构和齿轮机构组合而成。由组合机构的设计可知,为了使曲柄AB回转一周,C点完成一个循环,两齿轮齿数比Z1/Z2应等于1。这样,冲压机构设计就分解为七杆机构和齿轮机构的设计。
1.七杆机构的设计
设计七杆机构可用解析法。首先根据对执行构件(滑块F)提出的运动特性和动力特性要求选定与滑块相连的连杆长度CF,并选定能实现上述要求的点C的轨迹,然后按导向两杆组法设计五连杆机构ABCDE的尺寸。
设计此七杆机构也可用实验法,现说明如下。
如图5—7所示,要求AB、DE均为曲柄,两者转速相同,转向相反,而且曲柄在角度的范围内转动时,从动件滑块在l=60mm范围内等速移动,且其行程H=150mm。图5—7 七杆机构的设计
1)任作一直线,作为滑块导路,在其上取长为l的线段,并将其等分,得分点F1、F2、…、Fn(取n=5)。
2)选取lCF为半径,以Fi各点为圆心作弧得K1、K2、…、K5。
3)选取lDE为半径,在适当位置上作圆,在圆上取圆心角为的弧长,将其与l对应等分,得分点D1、D2、…、D5。
4)选取lDC为半径,以Di为圆心作弧,与K1、K2、…、K5对应交于C1、C2、…、C5。
5)取lBC为半径,以Ci为圆心作弧,得L1、L2、…、L5。
6)在透明白纸上作适量同心圆弧。由圆心引5条射线等分(射线间夹角为)。
7)将作好图的透明纸覆在Li曲线族上移动,找出对应交点B1、B2、…、B5,便得曲柄长lAB及铰链中心A的位置。
8)检查是否存在曲柄及两曲柄转向是否相反。同样,可以先选定lAB长度,确定lDE和铰链中心E的位置。也可以先选定lAB、lDE和A、E点位置,其方法与上述相同。
用上述方法设计得机构尺寸如下:
lAB=lDE=100mm, lAE=200mm, lBC= lDC=283mm, lCF=430mm,A点与导路的垂直距离为162mm,E点与导路的垂直距离为223mm。
2.齿轮机构设计
此齿轮机构的中心距a=200mm,模数m=5mm,采用标准直齿圆柱齿轮传动,Z1=Z2=40,ha*=1.0。
六、 七杆机构的运动和动力分析
用图解法对此机构进行运动和动力分析。将曲柄AB的运动一周360o分为12等份,得分点B1、B2、…、B12,针对曲柄每一位置,求得C点的位置,从而得C点的轨迹,然后逐个位置分析滑块F的速度和加速度,并画出速度线图,以分析是否满足设计要求。
图5—8是冲压机构执行构件速度与C点轨迹的对应关系图,显然,滑块在F4~F8这段近似等速,而这个速度值约为工作行程最大速度的40%。该机构的行程速比系数为
故此机构满足运动要求。图5-8 七杆机构的运动和动力分析
在进行机构动力分析时,先依据在工作段所受的阻力F0=5000N,并认为在工作段内为常数,然后求得加于曲柄AB的平衡力矩Mb,并与曲柄角速度相乘,获得工作段的功率;计入各传动的效率,求得所需电动机的功率为5.3KW,故所确定的电动机型号Y132S—4(额定功率为5.5KW)满足要求。(动力分析具体过程及结果略)。
七、 机构运动循环图
依据冲压机构分析结果以及对送料机构的要求,可绘制机构运动循环图(如图5—9所示)。当主动件AB由初始位置(冲头位于上极限点)转过角(=90o)时,冲头快速接近坯料;又当曲柄由转到(=210o)时,冲头近似等速向下冲压坯料;当曲柄由转到(=240o)时,冲头继续向下运动,将工件推出型腔;当曲柄由转到(=285o)时,冲头恰好退出下模,最后回到初始位置,完成一个循环。送料机构的送料动作,只能在冲头退出下模到冲头又一次接触工件的范围内进行。故送料凸轮在曲柄AB由300o转到390o完成升程,而曲柄AB由390o转到480o完成回程。
图5-9 机构运动循环图
七、送料机构设计
送料机构是由摆动从动件盘形凸轮机构与摇杆滑块机构串联而成,设计时,应先确定摇杆滑块机构的尺寸,然后再设计凸轮机构。
1.四杆机构设计
依据滑块的行程要求以及冲压机构的尺寸限制,选取此机构尺寸如下:
LRH=100mm,LOH=240mm,O点到滑块RK导路的垂直距离=300mm,送料距离取为250mm时,摇杆摆角应为45.24o。
2.凸轮机构设计
为了缩小凸轮尺寸,摆杆的行程应小AB,故取,最大摆角为22.62o。因凸轮速度不高,故升程和回程皆选等速运动规律。因凸轮与齿轮2固联,故其等速转动。用作图法设计凸轮轮廓,取基圆半径r0=50mm,滚子半径rT=15mm。
八、调速飞轮设计
等效驱动力矩Md、等效阻力矩Mr和等效转动惯量皆为曲柄转角的函数,画出三者的变化曲线,然后用图解法求出飞轮转动惯量JF。
九、带传动设计
采用普通V带传动。已知:动力机为Y132S-4异步电动机,电动机额定功率P=5.5KW ,满载转速n1=1440rpm ,传动比i=2, 两班制工作。
(1)计算设计功率Pd
由[6]中的表6-6查得工作情况系数KA =1.4
(2)选择带型 由[6]中的图6-10初步选用A型带
(3)选取带轮基准直径 由[6]中的表6-7选取小带轮基准直径
由[6]中的表6-8取直径系列值取大带轮基准直径:
(4)验算带速V
在(5~25m/s) 范围内,带速合适。
(5)确定中心a和带的基准长度
在 范围内初选中心距
初定带长
查[6]中的表6-2 选取A型带的标准基准长度
求实际中心距
取中心距为500mm。
(6)验算小带轮包角
包角合适
(7)确定带的根数Z
查表得
取Z=3根
(8)确定初拉力
单根普通V带的初拉力
(9)计算带轮轴所受压力
(10)带传动的结构设计(略)
十、齿轮传动设计
齿轮减速器的传动比为ig=10.285,采用标准得双级圆柱齿轮减速器,其代号为
ZLY-112-10-1。
第二节 棒料校直机执行机构与传动系统设计
一、设计题目
棒料校直是机械零件加工前的一道准备工序。若棒料弯曲,就要用大棒料才能加工出一个小零件,如图5-10所示,材料利用率不高,经济性差。故在加工零件前需将棒料校直。现要求设计一短棒料校直机。确定机构运动方案并进行执行机构与传动系统的设计。
图5-10 待校直的弯曲棒料
二、设计数据与要求
需校直的棒料材料为45钢,棒料校直机其他原始设计数据如表5-1所示。
表5-1 棒料校直机原始设计数据
参数
分组 直径d2
(mm) 长度L
(mm) 校直前最大曲率半径ρ
(mm) 最大校直力
(KN) 棒料在校直时转数
(转) 生产率
(根/分)
1 15 100 500 1.0 5 150
2 18 100 400 1.2 4 120
3 22 100 300 1.4 3 100
4 25 100 200 1.5 2 80
注:室内工作,希望冲击振动小;原动机为三相交流电动机,使用期限为10年,每年工作300天,每天工作16小时,每半年作一次保养,大修期为3年。
三、工作原理的确定
1) 用平面压板搓滚棒料校直(图5-11)。此方法的优点是简单易行,缺点是因材料的回弹,材料校得不很直。
2) 用槽压板搓滚棒料校直。考虑到“纠枉必须过正”,故将静搓板作成带槽的形状,动、静搓板的横截面作成图5-12所示形状。用这种方法既可能将弯的棒料校直,但也可能将直的棒料弄弯了,不很理想。
3) 用压杆校直。设计一个类似于图5-13所示的机械装置,通过一电动机,一方面让棒料回转,另一方面通过凸轮使压杆的压下量逐渐减小,以达到校直的目的。其优点是可将棒料校得很直;缺点是生产率低,装卸棒料需停车。
4) 用斜槽压板搓滚校直。静搓板的纵截面形状如图5-14所示,其槽深是由深变浅而最后消失。其工作原理与上一方案使压下量逐渐减小是相同的,故也能将棒料校得很直。其缺点是动搓板作往复运动,有空程,生产效率不够高。虽可利用如图所示的偏置曲柄滑块机构的急回作用,来减少空程损失,但因动搓板质量大,又作往复运动,其所产生的惯性力不易平衡,限制了机器运转速度的提高,故生产率仍不理想。
5) 行星式搓滚校直。如图5-15所示,其动搓板变成了滚子1,作连续回转运动,静搓板变成弧形构件3,其上开的槽也是由深变浅而最后消失。这种方案不仅能将棒料校得很直,而且自动化程度和生产率高,所以最后确定采用此工作原理。图5-11平面压板搓滚棒料校直 图5-12 槽压板搓滚棒料校直
图5-13 压杆校直
图5-14 斜槽压板搓滚校直 图5-15 行星式搓滚校直
四、执行机构运动方案的拟定
行星式棒料校直机有两个执行构件,即动搓板滚子和送料滑块。动搓板滚子的运动为单方向等速连续转动,可将其直接装在机器主轴上。送料滑块的运动为往复移动。图5-16给出了两种送料机构方案,其中图a)为曲柄摇杆机构与齿轮、齿条机构组合,图b)为摆动推杆盘形凸轮机构与导杆滑块机构的组合,曲柄(或凸轮)每转一周送出一根棒料。由于凸轮机构能使送料机构的动作和搓板滚子的运动能更好的协调,故图b)的执行机构运动方案优于图a),下面设计计算针对图b)方案进行。
a) b)
图5-16 行星式棒料校直机执行机构运动方案
五、传动系统运动方案的拟定
初步拟定的传动方案如图5-17所示。驱使动搓板滚子1转动的为主传动链,为提高其传动效率,主传动链应尽可能简短,而且还要求冲击振动小,故图中采用了一级带传动和一级齿轮传动。传动链的第一级采用带传动有下列优点:电动机的布置较自由,电动机的安装精度要求较低,带传动有缓冲减振和过载保安作用。
图5-17 行星式棒料校直机传动方案
六、执行机构设计
由于动搓板滚子1直接装在机器主轴上,只有执行构件,没有执行机构,故只需对送料机构进行设计。对于图5-16b)所示得运动方案,送料机构的设计,实际上就是摆动推杆盘状凸轮机构的设计。
凸轮轴的转动是由滚子轴(传动主轴)的转动经过齿轮机构传动减速而得到的。下面来讨论滚子轴与凸轮轴间的传动比应如何确定。
应注意在校直棒料时,不允许两根棒料同时进入校直区,否则将因两根棒料的相互干扰,可能一根棒料也未被校直。所以一定要待前一根棒料退出落下后,后一根棒料才能进入校直区。
设滚子1的直径,棒料的直径为,校直区的工作角为,从棒料进入到退出工作区,滚子1的转角为。因在棒料校直时的运动状态跟行星轮系传动一样,弧形搓板相当于固定的内齿轮,其内经为,角相当于行星架的转角,根据周转轮系的计算式,即可求得滚子1的相应转角,即
故
设已确定为了校直棒料,棒料需在校直区转过的转数为,校直区的工作角为,则滚子1的直径,可由下式确定:
为了保证不出现两根棒料同时在校直区的现象,应在滚子1转过角度时,送料凸轮4才转一转,由此可定出齿轮的传动比为
图中采用了一级齿轮减速(轮为过轮,用它主要是为了协调中心距)。若一级齿轮减速不能满足要求时,可考虑用二级或三级齿轮减速。
对于第一组数据,并设校直区的工作角为=1200,则由上面公式可求得滚子1的直径=240mm,滚子1的转角为=2550,故取1=2600,从而求得齿轮的传动比为ig=0.722。故取Zc=26,Za=36。
送料滑块应将棒料推送到A点,设推送距离对应的圆心角为300,则可求得滑块行程约为120mm,若取摆杆长lCF=400mm,则其摆角为17.25o。
确定推杆运动规律,设计凸轮轮廓曲线(略)。
七、传动系统设计
原动机选为Y100L2-4异步电动机,电动机额定功率P=3KW ,满载转速n=1420rpm,则传动系统的总传动比为i=n/n1,其中n1为滚子1的转速。对于第一组数据,n1=2600×150/3600 =108.3,总传动比为i=13.11,若取带传动的传动比为ib=3.0,则齿轮减速器的传动比为ig=13.11/3.0=4.3,故采用单级斜齿圆柱齿轮减速器。
带传动和单级斜齿圆柱齿轮减速器的设计(略)。
『捌』 求简单的机械装置图。
这是我画的一种限位装置的图片,仅供参考。
『玖』 如何才能看懂机械制图中的装配图
看懂机械制图中的装配图的习惯方法如下:
首先熟能生巧,要想要看懂装配图,专首先自己要有机械基础。属
其次,是必须要耐心,装配图是很细致的图,一直看难免会枯燥,但是一定要耐心。
要读懂装配图,不仅要具有一定的空间思维能力,熟悉装配图常规与特殊的各种表达方法,还要了解装配图中的工艺结构、装配过程中的合理结构等技术要求。
首先从标题栏入手,可了解装配体的名称和绘图比例。从装配体的名称联系生产实践知识,往往可以知道装配体的大致用用途。
例如:阀,一般是用来控制流量起开关作用的;虎钳,一般是用来夹持工件的;减速器则是在传动系统中起减速作用的;各种泵则是在气压、液压或润滑系统中产生一定压力和流量的装置。通过比例,即可大致确定装配体的大小。
再从明细栏了解零件的名称和数量,并在视图中找出相应零件所在的位置。
浏览一下所有视图、尺寸和技术要求,初步了解该装配图的表达方法及各视图间的大致对应关系,以便为进一步看图打下基础。
『拾』 如何才能看懂机械制图中的装配图
1、了解各种机械图纸基本符号的意义:机械图纸是由一些线条、符号、尺寸组成的,我们首先要弄懂它们的意义;如:直线、平面度、圆孔、沉孔、剖面等用什么符号表示,这些是最基本的常识,必须掌握,要购买一些机械制图的书看看。