1. 有效扩散系数测定及地质应用指什么
扩散是指在浓度梯度作用下,气体分子由高浓度区通过各种介质向低浓度区自由迁移达到浓度平衡的一种物理过程。扩散快慢以扩散系数来表述,岩石的有效扩散系数是指沿扩散方向,在单位时间通过单位面积岩石的扩散流的流量与浓度梯度的比率。油气藏中,储层与盖层之间存在的浓度梯度会促使天然气通过盖层进行扩散运移,成为油气散失的另一方式。
扩散系数的大小反映了扩散运移速率的快慢,如常规孔渗资料一样,可用其评价盖层的质量好坏。扩散系数越小,则通过盖层的散失速度越慢,封盖性能越好。同理还可用其它间接参数来进行盖层评价,主要参数有扩散速率因子、扩散阻滞时间和扩散阻滞系数(杨家琦等,1995)等参数。当然,最有效、最直观的盖层评价指标是扩散散失量及浓度封闭因子。
1)扩散速率因子扩散运移不仅受岩石扩散系数影响,还受盖层厚度和时间的影响。扩散速率因子定义为单位浓度差下的扩散通量密度,即扩散系数与盖层厚度的比值:
2)扩散阻滞时间及阻滞系数扩散速率为VD,则气体穿越厚度为L的盖层所用的时间为tD,tD越小,表明气体越不易穿越盖层进行扩散运移,由此,定义时间tD为扩散阻滞时间:
如果tD大于气藏形成时间,则说明气藏形成后扩散前缘至今还未穿越盖层,气藏基本未遭受破坏,这反映了盖层对扩散运移的抑制能力,反之则说明存在扩散散失,二者之比称为扩散阻滞系数:
ED越大,盖层对扩散的阻滞能力越强,油气保存越好。
2. 扩散系数的扩散系数
物质的分子扩散系数表示它的扩散能力,是物质的物理性质之一。根据菲克定律,扩散系数是沿扩散方向,在单位时间每单位浓度梯度的条件下,垂直通过单位面积所扩散某物质的质量或摩尔数,即可以看出,质量扩散系数D和动量扩散系数ν及热量扩散系数α具有相同的单位(m2/s)或(cm2/s),扩散系数的大小主要取决于扩散物质和扩散介质的种类及其温度和压力。质扩散系数一般要由实验测定。某些气体与气体之间和气体在液体中扩散系数的典型值如表2-1所示。
其中,液相质扩散,如气体吸收,溶剂革取以及蒸馏操作等的D比气相质扩散的D低一个数量级以上,这是由于液体中分子间的作用力强烈地束缚了分子活动的自由程,分子移动的自由度缩小的缘故。
二元混合气体作为理想气体用分子动力理论可以得出D~p-1T3/2的关系。不同物质之间的分子扩散系数是通过实验来测定的。表2-2列举了在压强p0=1.013×105Pa、温度T0=273K时各种气体在空气中的扩散系数D0,在其它p、T状态下的扩散系数可用下式换算
两种气体A与B之间的分子扩散系数可用吉利兰(Gilliland)提出的半经验公式估算
(2-22)
式中,T:热力学温度,K;p:总压强,Pa;μA、μB:气体A、B的分子量;VA、VB:气体A、B在正常沸点时液态克摩尔容积,cm3/gmol。几种常见气体的液态克摩尔容积可以查表2-3。
按式(2-22),扩散系数D与气体的浓度无直接关系,它随气体温度的升高及总压强的下降而加大。这可以用气体的分子运动论来解释。随着气体温度升高,气体分子的平均运动动能增大,故扩散加快,而随着气体压强的升高,分子间的平均自由行程减小,故扩散就减弱。当然,按状态方程,浓度与压力、温度是相互关联的,所以质扩散系数与浓度是有关的,就象导热系数与温度有关一样。式(2-22)中D的单位是cm2/s,它和动量扩散系数ν=μ/ρ以及热扩散系数α=λ/cpρ的单位相同,在计算质扩散通量或摩尔扩散通量时,D的单位要换算为m2/s。
分子扩散传质不只是在气相和液相内进行,同样可在固相内存在,如渗碳炼钢、材料的提纯等等。在固相中的质扩散系数比在液相中还将低大约一个数量级,这可用分子力场对过程的影响更大,使分子移动的自由度更小作为合理的定性解释。
二元混合液体的扩散系数以及气-固、液-固之间的扩散系数,比气之间的扩散系数要复杂得多,只有用实验来确定。
3. 菲克定律中的扩散系数怎么得到根据Arrehenius公式D=D0exp(-Q/RT),确定扩散系数需要D0和Q,
这个公式描述了the correlation BTW Diffusion coefficient and Temperature(D与温度间的指数关系)。
R是气体常数,理想气体状态方程(ideal gas equation)中的常数,通常取8.314J/(mol-K)或0.08206(atm-L)/(mol-K)。这里取8.314
公式的使用方法:当知道某2个温度下的D,就可以求其它温度下的D,方法是将两个温度下的方程相除:D1/D2 = exp(-Q/RT1) / exp(-Q/RT2) = exp(-QR(1/T1-1/T2))
先代入一组T1, T2对应的D1, D2 求出Q,然后就可以求任意温度的,如果Q已知的话,已知一组T和D,直接用这个相除的公式,就可以求任意温度下的D。
扩散系数表示气体(或固体)扩散程度的物理量。扩散系数是指当浓度梯度为一个单位时,单位时间内通过单位面积的气体量
扩散系数可分为自扩散系数、互扩散系数及内扩散系数。
扩散系数可分为液体扩散系数和气体扩散系数。
目前能检测气体扩散系数的有CNAS兰光包装安全检测实验室。
(3)气体扩散系数测定实验装置扩展阅读:
扩散系数D与气体的浓度无直接关系,它随气体温度的升高及总压强的下降而加大。这可以用气体的分子运动论来解释。随着气体温度升高,气体分子的平均运动动能增大,故扩散加快,而随着气体压强的升高,分子间的平均自由行程减小,故扩散就减弱。
当然,按状态方程,浓度与压力、温度是相互关联的,所以质扩散系数与浓度是有关的,就象导热系数与温度有关一样。式(2-22)中D的单位是cm2/s,它和动量扩散系数ν=μ/ρ以及热扩散系数α=λ/cpρ的单位相同,在计算质扩散通量或摩尔扩散通量时,D的单位要换算为m2/s。
4. 气体扩散系数公式是什么
气体扩散系数公式是:
(4)气体扩散系数测定实验装置扩展阅读
在气体中,如果相距1厘米(或者每米)的两部分,其密度相差为1克每立方厘米(或者每米),则在1秒内通过1平方厘米(或者平方米)面积上的气体质量,规定为气体的扩散系数。单位:cm²/S或者m²/s。
挥发性液体之气体扩散系数可藉由Winklemann’s method来检测,在有限内径的垂直毛细管中保持固定的温度和经过毛细管顶部的空气流量,可确定液体表面的分子扩散到气体中的蒸气分压)。
5. 求助氮气,氧气扩散系数
氦气最低,氢气其次,氮气最高。分子晶体熔沸点看分子间作用力(范德华力),主要看极性和相对分子质量,尽管氢相对分子质量很小,但氢气是存在分子的,范德华力大于氦气,氮气相对分子质量就大的多了。体、蒸气在空气中的扩散系数 式中 D——在温度T反压力P下的气体扩散系数,米2/小时; D0——在T0=273K和P0=1绝对大气压下扩散系数,米2/小时。 某些气体及蒸气在标准状态下在空气中的扩散系数列于表5—l中。
6. 水合物热物理参数的实验测定
自然界中水合物有99%是甲烷水合物,直接研究甲烷水合物的热物理参数有重要的实际意义。然而,这一工作长期以来困难重重,一方面是由于实验室合成甲烷水合物过程中存在“铠甲”效应(即外部的水合物生成后会形成一层厚厚的“壳”,导致生成不够彻底,生成的水合物中夹杂大量的气体、水和冰粒,并且合成过程非常缓慢);另一方面是实验技术和测试方法的局限性。青岛海洋地质研究所水合物实验室研制出一套沉积物中水合物分解过程中的热物理特性模拟实验装置,包括一个可编程控制变温实验箱一台,高压模拟实验装置一套,研制了高压热-TDR探针,购置了TDR仪和数据采集器,制作了高压和温度监测系统,并研制了计算机控制与数据采集系统一套。该实验装置的技术核心在于热-TDR探针的设计制作。TDR技术和热脉冲技术具有相对独立的探头,我们将二者有机结合,可以实现同时同地测量介质含水量、温度、容积热容量、热导率、热扩散系数等多项参数。不但避免了介质时空变异性的影响,还可以实现连续定位测定。
实验装置
如图75.13所示,模拟实验系统硬件部分包括可编程步入式变频高低温箱一台、高压模拟实验装置一套(包括其核心技术———耐高压热-TDR探针)、数据采集系统,软件部分我们自行设计编写了计算机控制与数据采集系统。
图75.13 实验装置简图
高压模拟实验设备主体部分是增压系统、两个高压釜体及插入反应体系中的热-TDR探针。气高压气瓶顶端有两个压力控制阀门,用于控制气瓶输出压力和釜体输入压力。阀门连接两个压力指示表,可以直接读出两处压力值,便于控制加压幅度。
高压釜体包含一个反应釜体和一个为搅拌釜体。两个高压釜体容积均为200cm3,最大工作压力30MPa。高压反应釜外层用不锈钢制作,采用自紧法螺纹密封,为保证螺纹密封效果,在连接部分采用两个O型密封圈进行密封。整个反应釜也是专门设计定做,通过测试,其密封效果可以保证实验顺利完成。搅拌釜体内装有聚四氟磁棒,下部是磁力搅拌器。反应釜体内部装有内筒(内筒用聚砜材料切割制成,聚砜具有力学性能优异,刚性大、耐磨、耐高压、热稳定性好等特点,适合在低温高压条件下作为水合物的反应容器材料)。容积为70cm3。热-TDR探针插入内筒所盛的反应物中发射热脉冲和测定反应体系温度、含水量等参数。压力表直接连接在气体管路上,便于采集数据和人工监控。
实验技术与方法
将沉积物装入模拟装置,采用逐渐升压的办法,测量压力对热物理参数的影响。当模拟装置内的压力达到预定的压力条件时,停止加压。室温下模拟装置放置一定的时间后,若压力没有发生变化即可开展水合物生成模拟实验(压力恒定48h)。启动监测装置,监测模拟装置内,温度、压力和TDR波形的变化。随着水合物逐渐生成,TDR波形逐渐发生变化,反射系数逐渐增加,相对距离缩短。
打开搅拌釜、反应釜进气阀门(阀门3、4、5),打开抽真空口(阀门2),其余阀门关闭,将系统抽真空。待系统负压稳定后,关闭抽真空口和抽真空机。打开除高压阀以外的所有阀门,通入实验所用的甲烷气清洗气路,重复3~4次。然后打开进气阀门(阀门1、3、4),其余阀门关闭,开始向两个高压釜内加压。加至实验所需压力(4.0~7.0MPa)后关闭加压阀门稳定一段时间。打开磁力搅拌器直至搅拌釜内的甲烷气溶解在SDS溶液中达到饱和。打开搅拌釜和反应釜之间的阀门(阀门5),使溶解了饱和甲烷气的SDS溶液流向反应釜,直至反应釜中的松散沉积物达到含水量饱和状态后关闭阀门5。开启控温箱开关,将温度设置为0.5℃。实验进入水合物合成阶段。水合物合成所需时间受多个条件影响,如水合物的“记忆效应”、温度“过冷度”、表面活性剂的添加等。水合物合成一般需要1、2d时间。水合物生成进度可以通过TDR波形图明显看出。
实验选择的热脉冲电源为12V直流电源。通过计算机直接控制热脉冲发射的时间和时长。由于实验采用的加热丝直径很小,加热时间过长容易导致加热丝绝缘层烧化;另外,水合物本身遇热容易分解。综合考虑上述各因素影响,加热时长一般掌握在4~8s内。另外,一个热脉冲发射过后需要一定的散热时间,待反应体系温度完全恢复到脉冲发射前的状态时再发射下一个脉冲。两个相邻的热脉冲之间发射间隔过短,反应体系内的余温会干扰实验结果;间隔过长则费时费电(刁少波等,2008)。
计算
采用了平行热线法和交叉热线法测定热物理特性。
1)交叉热线法。热导率计算公式为:
岩石矿物分析第四分册资源与环境调查分析技术
式中:λ为热导率;"2、"1为两次热脉冲的加热时间;T2-T1为温度的变化;Q为热源强度。
2)平行热线法。热扩散系数α计算公式为:
岩石矿物分析第四分册资源与环境调查分析技术
式中:tm为达最高温度时的时间;t0为热脉冲的加热时间;r为热电偶距线性热源的垂直距离。
容积热容量计算公式为:
岩石矿物分析第四分册资源与环境调查分析技术
式中:q为单位长度加热丝在单位时间内释放的热量;Ei(-x)为指数积分。
由λ=α·ρc计算出热导率。
7. 怎样测试润滑油脂的扩散系数
动力粘度单位换算1厘泊(1cP)=1毫帕斯卡·秒 (1mPa·s)100厘泊(100cP)=1泊 (1P)1000毫帕斯卡·秒 (1000mPa·s)=1帕斯卡·秒 (1Pa·s)1000微 帕斯卡·秒(1000μ Pa.s)=1毫帕斯卡·秒 (1mPa·s)动力粘度与运动粘度的换算η=ν·ρ式中η--- 试样动力粘度(mPa·s)ν--- 试样运动粘度(mm²/s)ρ--- 与测量运动粘度相同温度下试样的密度(g/cm³)测定编辑动力ηt是二液体层相距1cm,其面积各为1(cm²)相对移动速度为1cm/s时所产生的阻力,单位为g/cm·s。1g/cm·s=1pa·s。一般工业上动力粘度单位用pa来表示。运动在温度t (℃)时,运动粘度用符号γ表示,在国际单位制中,运动粘度单位为斯,即每秒平方米(m²/s),实际测定中常用厘斯,(cst)表示厘斯的单位为每秒平方毫米(即 1cst=1mm²/s)。运动粘度广泛用于测定喷气燃料油、柴油、润滑油等液体石油产品深色石油产品、使用后的润滑油、原油等的粘度,运动粘度的测定采用逆流法。条件指采用不同的特定粘度计所测得的以条件单位表示的粘度,各国通常用的条件粘度有以下三种:①恩氏粘度又叫恩格勒(Engler)粘度。是一定量的试样,在规定温度(如:50℃、 80℃、100℃)下,从恩氏粘度计流出200毫升试样所需的时间与蒸馏水在20℃流出相同体积所需要的时间(秒)之比。温度tº时,恩氏粘度用符号Et表示,恩氏粘度的单位为条件度。②赛氏粘度,即赛波特(sagbolt)粘度。是一定量的试样,在规定温度(如 100ºF、F210ºF或122ºF等)下从赛氏粘度计流出200毫升所需的秒数,以“秒”单位。赛氏粘度又分为赛氏通用粘度和赛氏重油粘度(或赛氏弗罗(Furol)粘度)两种。③雷氏粘度即雷德乌德(Redwood)粘度。是一定量的试样,在规定温度下,从雷氏度计流出50毫升所需的秒数,以“秒”为单位。雷氏粘度又分为雷氏1号(Rt表示)和雷氏2号(用RAt表示)两种。上述三种条件粘度测定法,在欧美各国常用,我国除采用恩氏粘度计测定深色润滑油及残渣油外,其余两种粘度计很少使用。三种条件粘度表示方法和单位各不相同,但它们之间的关系可通过图表进行换算。同时恩氏粘度与运动粘度也可换算,这样就方便灵活得多了。粘度的测定有许多方法,如转桶法、落球法、阻尼振动法、杯式粘度计法、毛细管法等等。对于粘度较小的流体,如水、乙醇、四氯化碳等,常用毛细管粘度计测量;而对粘度较大流体,如蓖麻油、变压器油、机油、甘油等透明(或半透明)液体,常用落球法测定;对于粘度为0.1~100Pa?s范围的液体,也可用转筒法进行测定。
8. 盖层全孔隙结构测定方法
方法提要
本方法规定了双气路色谱法和压汞法联合测定岩石全孔隙结构的方法。双气路色谱法测定孔隙半径范围0.75~6.3nm,压汞法测定孔隙半径范围6.3~75000nm。本方法适用于各种块状岩样孔隙结构的测定。
双气路色谱法。根据多孔物质孔壁对气体的多层吸附和毛细管凝聚原理,岩样在液氮温度下的氮氦混合气环境中吸附氮气,半径越小的孔越先被氮气凝聚液充满,当吸附平衡撤掉液氮后,试样管由低温升至室温,岩样中吸附凝聚的氮气受热解吸,半径越大的孔越先被解吸。随着载气通过试样管经热导检测器的测量室,根据电桥产生的不平衡信号,可算出岩样的孔径分布、毛细管压力曲线和比表面积。
压汞法。根据毛细管作用原理,利用汞对岩石的非润湿性,在不同的外力作用下,克服岩石孔隙的毛细管压力,把汞压入岩石内各对应的孔隙中,并测得与其对应的压入汞量,通过计算绘出岩石孔隙半径分布图和岩石毛细管压力曲线。
仪器和设备
比表面积与孔径测定仪测定孔隙半径范围0.75~15nm,装置见图72.22。
孔隙结构仪最高工作压力120MPa,装置见图72.23。
烘箱室温~200℃。
分析天平感量1mg。
岩样钻切机。
液氮罐容量10kg。
碎样钵。
标准筛2~3mm。
试剂和材料
氦气钢瓶装,纯度不低于99.99%。
氮气钢瓶装,纯度不低于99.99%。
液氮纯度99.9%。
汞。
358号轻质油。
无水乙醇。
试样准备
1)双气路色谱法。含油岩样应先抽提洗油。将试样粉碎过筛,取粒径2~3mm间的颗粒样,置恒温箱内,在105℃条件下至少烘8h后,取出置存于干燥器内待测。
2)压汞法。含油岩样应先抽提除油。一般岩样可用$25mm取样钻钻取,疏松泥质岩样则用手工制备,但不得用锤子敲击取样,以免产生人为微裂缝。试样尺寸为$25mm,长15~30mm的圆柱体或相当于该尺寸的块状样,表面应尽量平整,以减小表面效应,提高测量精度。
将制备的岩样置恒温箱内,在105℃条件下至少烘8h,取出后应置存于干燥器内,待岩样冷却后称量,并作记录。称量后的试样置干燥器中待分析。
送余样测孔隙度和视比重。
汞使用前应先清除杂质,然后将汞倒入储汞瓶。
测定步骤
1)双气路色谱法(孔隙半径r≤6.3nm的测定),吸附等温线脱附分支的测定程序。
见图72.22,先打开气路,后开仪器电源,让仪器稳定1h。在计算机上设置有关参数,把载气流速调至50mL/min,测量电流为75mA。把干净的试样空管装接在六通阀气路位置,先测试样管空白值。卸下试样空管,把干样装入试样管,以装满试样管“肚子”为宜,称量。装样后的样管二端各插入细玻璃棒后,装接在六通阀气路位置,把六通阀切换在吸附位置,套上加热杯,在100℃条件下通气加热30min后取下加热杯。待试样管冷却后,二个六通阀均切换至吸附位置,试样管套上液氮杯,N2吸附5~6min后,推进He阀,让混合气先脱附6min,并记下RN2和RHe流速。待混合气脱附平衡后,点击程序中的脱附按钮,把标定管六通阀切换至脱附位置,待标定管出峰完成,再点击程序中的脱附按钮,把试样管六通阀切换至脱附位置,然后取下液氮杯,套上冷却水杯,待试样管出峰完成后点击完成按钮,存储测量数据。重复上述步骤,共测五个点,其相对压力分别为0.828、0.722、0.538、0.340、0.111(具体由 计算可得,即调节RN2和Rt的相对流量)。测定结束,先断电,后关闭气路。
图72.22 比表面与孔径测定仪装置图
2)压汞法(孔隙半径r≥6.3nm的测定)见图72.23。
图72.23 孔隙结构仪流程图
仪器的空白值测定。开仪器电路,稳定1h后,调节压力变送器和电容放大器;将不锈钢制成的实心样放进岩心室;启动真空泵,开岩心室真空阀,对岩心室抽真空;当岩心室真空度达到6.67×10-6MPa后,开汞瓶真空阀;3min后先开灌汞阀,再开截止阀5和4;当岩心室上端探针指示灯亮,灌汞阀自动关闭;按程序先后关闭截止阀5、6和1,再停止真空泵和关闭真空系统电磁阀;调节好电容测量起始值,然后由计算机控制加压泵;从0MPa逐渐加压到119MPa,记录加压点和各压力点对应的电容变化值,共测21个点;加压结束,加压泵自动退压至0MPa,打开截止阀1;首先关闭截止阀4,然后开截止阀6和5,开进气阀和卸汞阀,把岩心室中的汞放完后,关闭卸汞阀和进气阀,并清理擦净岩心室;重复上述步骤,仪器空白值至少测二次,二次测量的重复性相对误差要小于5%。
然后进行试样的测定。把已称量并经预热(100℃)的岩样装入岩心室。测定步骤与测定空白值的操作程序相同;测定结束,打开吸汞阀、截止阀5、卸汞阀,把管路中的汞放入储汞瓶中,然后关闭卸汞阀,装好岩心室,对其抽真空片刻,最后关闭电源。
3)试样比表面积测定(见图72.22)。先通气路,后开电源,让仪器稳定1h;用一支冷阱管把图中的2—3连接,1—4间装接已装入标准样的试样管;把已烘干的试样装进试样管,试样量按比表面积的大小估算,且以不超过试样管“肚子”的1/3为宜,称量,然后在试样管二端塞上少许玻璃棉;把试样管装接在六通阀的气路位置,套上加热杯,在100~120℃的条件下加热30min,此时六通阀应处于吸附位置;在计算机上设置有关参数,并把标准试样的质量和比表面积值输入计算机内,同时调节氮气流速为20mL/min,氦气流速为80mL/min,测量电流为100mA。加热完毕后取下加热杯,待试样管冷却后,把两六通阀均切换至脱附位置;在标准试样管和被测试样管外部,分别套上盛满液氮的杜瓦杯,其浸入高度应相等,在液氮温度下吸附12~15min(具体视被测试样的比表面积大小,比表面积大吸附时间长,反之则相对短一些)。待吸附平衡后,先点击计算机脱附按钮。按照先脱附标准试样后脱附被测试样的顺序分别进行脱附(切记取下液氮杯必须立即套上冷水杯),试样的吸附与脱附全靠液氮杯的上下。全部脱附结束,计算机自动计算出被测试样的比表面积值,直接打印出相应的数据和图谱;测定结束,先关电源后关气源。
计算
1)双气路色谱法。吸附量的计算:
岩石矿物分析第四分册资源与环境调查分析技术
式中:Vd为吸附量,mL;As为定量管中N2的峰面积,μV·s;Vs为定量管中N2的已知量,mL;Ad为试样的脱附峰面积,μV·s。
岩石矿物分析第四分册资源与环境调查分析技术
式中:A'd为仪器测量峰面积,μV·s;Ae为气路等效死空间(即空白值),μV·s;
孔隙半径的计算:
岩石矿物分析第四分册资源与环境调查分析技术
式中:rK为凯尔文半径,等于-0.414/lgX;t为吸附厚度,等于 ,X为相对压力;RN2为混合气中氮气流速,mL/min;pa为大气压,MPa;ps为液氮饱和蒸汽压,MPa;Rt为混合气流速,mL/min。
2)压汞法有关计算。毛细管压力和孔隙半径的计算:
岩石矿物分析第四分册资源与环境调查分析技术
式中:pHg为汞条件下的毛细管压力,MPa;r为pHg对应的孔隙半径,nm。
汞饱和度的计算:
岩石矿物分析第四分册资源与环境调查分析技术
式中:SHg为某压力点压入岩样的累计汞饱和度,%;A为某压力点压入岩样的累计汞体积,mL;K为某压力点仪器累计空白值,mL;V为岩样的孔隙总体积,mL。
3)在气水条件下,岩石毛细管压力曲线的绘制。孔隙半径r≥6.3nm,根据压汞法测定结果绘制;孔隙半径r<6.3nm,根据双气路色谱法测定结果绘制。
由下式计算r<6.3nm的孔隙体积:
岩石矿物分析第四分册资源与环境调查分析技术
式中:V样为岩样的孔隙总体积,mL;V汞为压入岩样孔隙中的汞体积,mL;V双为双气路色谱法测定所占的岩样孔隙体积,mL。
根据下式把汞毛细管压力pHg换算成气水条件下的毛细管压力pgw:
岩石矿物分析第四分册资源与环境调查分析技术
根据下式计算孔隙半径r<6.3nm的各对应点的孔隙含量,即饱和度S(%)。
岩石矿物分析第四分册资源与环境调查分析技术
式中:V双为由双气路色谱法测定所占的孔隙体积,mL;Vd为总吸附量,mL;ΔVdi为对应点的吸附量,mL;V样为岩样的孔隙总体积,mL。
根据下式计算孔隙半径r<6.3nm的各对应点的毛管压力:
岩石矿物分析第四分册资源与环境调查分析技术
式中:r=rK+t,nm;pgw为气水条件下毛管压力,MPa。
曲线绘制时,以pgw的自然对数等间距压力点为纵坐标,以S(%)为横坐标。
4)岩石比表面积B的计算:
岩石矿物分析第四分册资源与环境调查分析技术
式中:B为待测试样的比表面积,m2/g;Vd为待测试样的吸附量,mL/g;B标为标准试样的比表面积,m2/g;Vd标为标准试样的吸附量,mL/g。
参考文献和参考资料
曹寅,钱志浩,秦建中,等 .2006.石油地质样品分析测试技术及应用 [M].北京: 石油工业出版社
陈丽华,王家华,李应暹,等 .2000.油气储层研究技术 [M].北京: 石油工业出版社
地质矿产部石油地质海洋地质局.1994.芳香烃馏分同系物的色谱-质谱分析鉴定方法,石油地质分析测试方法 (DZS 2001.16—1994) (内部资料) [R]
地质矿产部石油地质海洋地质局.1994.岩石中氟利昂抽提石油地质分析测试方法,石油地质分析测试方法 (DZS 2001.7—1994) (内部资料) [R]
国家质量技术监督局 .2001.轻质原油气相色谱分析方法 (GB/T 18340.1—2001) .北京: 中国标准出版社
国家质量技术监督局 .2001.有机质稳定碳同位素组成分析方法 (GB/T 18340.2—2001) .北京: 中国标准出版社
国家质量技术监督局 .2001.岩石可溶有机物和原油中饱和烃气相色谱分析方法 (GB/T 18340.5—2001) .北京: 中国标准出版社
国家质量技术监督局 .2001.岩石热解分析 (GB/T 18602—2001) .北京: 中国标准出版社
国家质量技术监督局 .2001.天然气中硫化氢的测定第一部分 (GB/T 18605.1—2001) .北京: 中国标准出版社
国家质量技术监督局 .2001.天然气中硫化氢的测定第二部分 (GB/T 18605.2—2001) .北京: 中国标准出版社
国家质量技术监督局 .2001.气相色谱-质谱法测定沉积物和原油中生物标志物 (GB/T 18606—2001) .北京: 中国标准出版社
国家质量技术监督局 .2001.原油酸值的测定/电位滴定法 (GB/T 18609—2001) .北京: 中国标准出版社
国家质量技术监督局 .2003.岩石有机质中碳、氢、氧微量分析方法 (GB/T 19143—2003) .北京: 中国标准出版社
国家质量技术监督局 .2003.沉积岩中总有机碳测定 (GB/T 19145—2003) .北京: 中国标准出版社
国家质量技术监督局 .1989.原油试验法 (GB/T 2538—1988) .北京: 中国标准出版社
许怀先,陈丽华,万玉金,等 .2001.石油地质实验测试技术与应用 [M].北京: 石油工业出版社
张义纲,等 .1991.天然气的生成聚集和保存 [M].南京: 河海大学出版社
中华人民共和国石油天然气行业标准 .1996.透射光-荧光干酪根显微组分鉴定及类型划分方法 (SY/T5125—1996) [S].北京: 中国石油天然气总公司
中华人民共和国石油天然气行业标准 .1998.岩石样品扫描电子显微镜分析方法 (SY/T 5162—1997)[S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准.2003.油气化探试样测定方法 (SY/T 6009.1~6009.9—2003) .国家经济贸易委员会
中华人民共和国石油天然气行业标准 .1997.岩石可溶有机物和原油族组分棒薄层火焰离子化分析方法(SY/T 6338—1997) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .1994.岩石样品阴极发光鉴定方法 (SY/T 5016—1994) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .2005.岩石中氯仿沥青的测定脂肪抽提器法 (SY/T 5118—2005)[S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .1995.岩石可溶有机物和原油族组分柱层析分析方法 (SY/T5119—1995) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .1995.沉积岩中干酪根分离方法 (SY/T 5123—1995) [S].北京:石油工业出版社
中华人民共和国石油天然气行业标准 .1995.沉积岩中镜质组反射率测定方法 (SY/T 5124—1995) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .2000.油气田水分析方法 (SY/T 5523—2000) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .1995.岩石中气体突破压力测定 (SY/T 5748—1995) [S].北京:石油工业出版社
中华人民共和国石油天然气行业标准 .1994.牙形石分析鉴定方法 (SY/T 5912—94) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .2000.孢粉分析鉴定 (SY/T 5915—2000) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .1994.原子吸收光谱法测定油气田水中金属元素 (SY/T 5982—1994) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .1994.沉积岩包裹体均一温度和盐度测定方法 (SY/T 6010—1994) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .1995.岩石中烃类气体扩散系数测定 (SY/T 6119—1995) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .1996.岩石氯仿抽提物和原油芳烃气相色谱分析方法 (SY/T6196—1996) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .1996.原油中油质胶质蜡质含量气相色谱分析方法 (SY/T 6242—1996) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .1999.全岩光片显微组分测定方法 (SY/T 6414—1999) [S].北京: 石油工业出版社
中华人民共和国石油天然气行业标准 .1991.石油和沉积有机质的氢、碳同位素分析方法 (SY/T 5239—1991) [S].北京: 石油工业出版社
本章编写人: 曹寅 (中国石化石油勘探开发研究院无锡石油地质研究所) 。
9. 岩石中烃类气体扩散系数测定
方法提要
根据气体在浓度梯度下通过岩样自由扩散的原理,在岩样两端的扩散室中,一端充入烃类气体,另一端充入氮气,在恒温、恒压条件下,各组分气体的浓度随时间而变化;通过测试在不同时间两扩散室中各组分气体的浓度,可求得烃类气体在岩样中的扩散系数。
仪器和设备
岩石基质孔隙度中烃类气体扩散系数测定装置见装置示意图72.21,包括:
岩心夹持器两个堵头上分别有一容器为20~40cm3的空腔,直接开口于岩样,称为扩散室。
恒温箱(150±0.5)℃。
压力表1.0MPa,精度为0.4级。
差压传感器20kPa,精度为0.01kPa。
图72.21 岩石中烃类气体扩散系数测定装置示意图
气相色谱仪。
高压计量泵公称压力大于10MPa。
真空泵真空度小于6×10-2Pa。
试剂和材料
甲烷、乙烷、丙烷、丁烷和戊烷纯度大于99.9%。
天然气。
氮气纯度大于98.0%。
环氧树脂耐高温150~200℃。
氯化钠。
无水氯化钙。
六水氯化镁。
岩样准备
1)干样的准备。岩样制备、洗油、烘干(参见SY/T5336—88中4.3.2、4.5、4.6)。岩样按垂直渗透率分析要求钻取,长度为0.5~2.5cm。遇水易分散、难于钻取的泥质岩样等,可手工制成小直径的柱状或方形岩样,然后用环氧树脂胶结在金属套筒内,在室内温条件下老化12h以上。
2)饱和水岩样的制备。按SY/T5336—88中6.1.2要求将制备好的干样饱和以模拟地层水,模拟地层水应根据地层水资料配制,没有地层水资料时可用标准盐水(每升水中含70g氯化钠、6g无水氯化钙和4g六水氯化镁)代替。
分析步骤
将岩样装入岩心夹持器,加围压至3MPa以上。根据地层温度高设定恒温箱试验温度,恒温2~2.5h;测定干样中烃类气体的扩散系数时,接通真空泵抽空岩心夹持器及相应管线1~1.5h;测定饱和水岩样时不抽空。向两扩散室内分别通入氮气和烃类气体,并使两扩散压力同步上升至0.1MPa;当压力差小于0.1kPa时,断开气源。测定干样中烃类气体的扩散系数时,间隔0.5~6h取样一次;测定饱和水岩样时,间隔2~12h取气一次,取样分析按GB10410.2进行。每个岩样试验至少12h,且每端至少取5个气样。将恒温箱的温度降至室温,放掉两扩散室内的气体,结束试验。
数据整理
按GB10410.2计算两扩散室内中各组分气体的浓度。
根据费克第二定律计算岩样中烃类气体的扩散系数:
岩石矿物分析第四分册资源与环境调查分析技术
其中:
岩石矿物分析第四分册资源与环境调查分析技术
由式(72.119)得:
岩石矿物分析第四分册资源与环境调查分析技术
ln(ΔФ0/ΔФi)与ti呈线性关系,应用最小二乘法拟合,得斜率S。根据S可求得岩样中烃类气体的扩散系数:
岩石矿物分析第四分册资源与环境调查分析技术
式中:D为烃类气体在岩样中的扩散系数,cm2·s-1;ΔФ0为初始时间烃类气体在两扩散室中的浓度差,%;ΔФi为i时间烃类气体在两扩散室中的浓度差,%;ti为i时间,s;t0为初始时间,s;Фi1为i时间烃类气体在烃扩散室中的浓度,%;Фi2为i时间烃类气体在氮扩散室中的浓度,%;A为岩样的截面积,cm2;L为岩样的长度,cm;V1,V2为分别为烃扩散室和氮扩散室内的容积,cm3;E为中间变量,cm-2;S为斜率,s-1。
10. 扩散系数的气体扩散系数
挥发性液体之气体扩散系数可藉由Winklemann’s method来检测,在有限内径的垂直毛细管中保持固定的温度和经过毛细管顶部的空气流量,可确定液体表面的分子扩散到气体中的蒸气分压) 。
已知质传速率:
D = 扩散速率 (m2/s); CA= A物质于界面间的饱和浓度 (kmol/m3);L =质传有效距离(mm);CBm=蒸气的对数平均莫耳浓度 (kmol/m3);CT = 总莫耳浓度=CA+CBm (kmol/m3)