❶ 水解酸化池的原理及作用
1、水解酸化池的原理:污水进入水解酸化池后,水解池出水氨氮高于进水。根据污水处理厂实际运行情况,水解酸化池水力停留时间为4.4小时,污泥龄在6d左右,水解酸化池氨氮平均去除率达到42.34%,凯氏氮去除率为40.1%,总氮去除率为37.92%。
同化实现后,同化去除率一般小于10%,没有硝化反硝化的一般条件,如溶解氧、水力停留时间等。因此,必须有另一种形式的氨氮脱除反应,并初步分析可能存在的厌氧氨氧化现象。但还需要进一步的分析和研究。
2、水解酸化池的作用:
(1)提高废水可生化性:能将大分子有机物转化为小分子。
(2)去除废水中的COD:既然是异养型微生物细菌,那么就必须从环境中汲取养分,所以必定有部分有机物降解合成自身细胞。
3、水解酸化池的运行过程:厌氧发酵过程可分为四个阶段:水解阶段、酸化阶段、酸降解阶段和甲烷化阶段。在水解酸化池中,反应过程分水解和酸化两个阶段进行控制。在水解阶段,复合填料可将固体有机物降解为可溶性物质,将大分子有机物降解为小分子物质。
在产酸阶段,碳水化合物和其他有机化合物降解为有机酸,主要是乙酸、丁酸和丙酸。水解和酸化反应进行得相对较快,通常很难将其分离。这一阶段的主要微生物是水解酸化菌。
(1)污水处理实验装置水解酸化扩展阅读:
水解酸化池的稳定性:
水解酸化池具有较强的抗冲击负荷能力,在进水COD为1000mg/l时,仍能保证出水在200mg/l,起到很好的缓冲作用;水解酸化池水力停留时间短,土建造价低,操作成本低。
额定成本低,能耗低,污泥水解率高,降低脱水机运行时间,降低能耗。因此,水解酸化池的稳定性和经济性远远高于其他预处理工艺。
❷ 污水处理过程中的酸化
1,水解酸化最初提出,是在厌氧基础上。
作为第二代厌氧反应器的很重要的预处理阶段,用以高分子降解为小分子、产乙酸,
为下一阶段产甲烷创造良好基质环境。
2,只在目的,提高可生化性,即将大分子降解为小分当然了,也有一些基团并未降解为小分子,但是提高可生化性,
例如,硝基苯,可生化性极差,但是在水解条件下,控制适当,则可转化为苯胺,苯胺的生化性相对较好。
至于你说要采取哪些措施,你可以根据这个设计要求去找相应的措施
池深 H:应大于 5.5~6m。
容积负荷 N_v=2~2.5kgCOD/〖(m〗^3*d)
水力停留时间:6~8h
污泥浓度:MLSS=10~20g/L
溶解氧:<0.2~0.3mg/L,
用氧化还原电位之-50~+20mv
PH 值:5.5~6.5 水温尽可能高,大于 25 摄氏度效果较好
配水:由配水区进入反应区的配水
孔流速 v=0.20~0.23m/s;v 不宜太小,以免 不均。
❸ 刚入门污水处理,水解酸化+接触氧化池是什么工艺啊
应该是水解酸化+好氧生化处理工艺,通常都是先采用加药混凝沉淀,去除部分污水有机污染物。接着再采用水解酸化+好氧生化处理工艺,去除污水中的有机物。
❹ 一体化污水处理设备里的水解酸化池有什么作
水解酸化池,主要作用就是利用微生物分解污水中大分子有机物,利用微生物氧化作用将污水中大分子难降解的有机物分解成小分子有机物,从而提高有机物的可生化能力。总而言之就是较大有机物分解成较小有机物,提高生化能力。
❺ 污水处理工艺中水解的作用是什么
水解(酸化)工艺的研究工作是从厌氧
生物处理
的试验开始,经过反复实验和理论研究,逐步发展为水解(酸化)生物处理工艺。通常把厌氧反应发酵产生沼气的过程分为水解阶段、酸化阶段、
甲烷化
阶段。水解工艺就是利用厌氧工艺的前两段,即把反应控制在第二阶段完成之前,不进入第三阶段。为区别厌氧工艺,定名为水解(Hydrolization)工艺
水解工艺是在缺氧条件下(DO小于0.3—0.5mg/L),主要利用微生物水解菌和产酸菌的作用完成水解、酸化两个过程。
在水解阶段,固体物质溶解为溶解性物质,
大分子物质
降解为小分子物质,
难生物降解
物质转化为易生物降解物质。在酸化阶段,有机物降解为各种有机酸。
正因为水解工艺是在缺氧条件下完成,因而在工程实施中,可将水解工艺和后续好氧工艺串联组合,实现水解-好氧工艺。为区别厌氧-好氧工艺,把水解(H)-好氧(O)工艺,定名为H/O法。
水解
工艺特点
:1与厌氧相比不需要密闭的
池子
,不需要
搅拌器
,不需要水、气、固三相分离器,
水解反应
的
水力停留时间
短,降低了造价,便于维护。2水解产酸阶段的产物主要是小分子有机物,可生化性较好,污水经水解处理后,
BOD5
/CODCR的比值明显升高,故水解工艺可以改变原污水的可生化性,从而减少后续生化处理(如接触氧化)反应时间、处理能耗及总投资。3水解工艺不产生如厌氧反应那样的臭味,改善了处理厂的环境。4水解工艺对固体有机物的降解,减少了污泥量,具有消化功能。5水解菌种是一种兼性菌种,在自然界存在量较多,而且存在面较广,在工程实施时。容易培菌。一旦污水中有机物(底物)发生变化,处理装置也能很快适应,故调试时间短。
水解,在兼性微生物作用下水解和酸化,使大分子的
有机污染物
小分子化,使非溶性的有机物水解为水溶性物质,使难生物降解的物质转化为易生物降解物质,提高了污水的可生化性,为后续
好氧处理
创造良好的生化条件,因而提高了整个污水站的
CODcr\BODs去除率(CDOcr去除率可达96-98%),并可降低能耗。该工艺可根据污水
CODcr浓度、有机污染物分子结构及除磷
脱氮
要求,连续串联二次或三次水解一好氧生化处理过程。
该技术与全好氧生化处理技术相比,具有以下优点:可处理高浓度
有机废水
;可降低能耗40%左右,占地面积可减少25%左右;耐冲击负荷能力大,受气温变化影响小。与厌氧生化处理相比显示出以下优越性:水力停留对间可缩短
l/2-2/3,故污水处理站基建投资省;可实现生化脱氮,且一般情况桭无需外加碳源;可有效地处理含分子态氧浓度较高的有机废水;对原水pH值适用范围较宽,水温为常温,耐冲击负荷;运行稳定,一旦有相,物成分改变,可在短时间内恢复正常运行。该技术可作为有机污水处理的基本方法加以推广应用,目前已在全国30多个工程上推广应用,取得了较好的经济和社会效益。
❻ 水解酸化池的工作原理是什么
水解酸化池的原理:污水进入水解酸化池后,水解池出水氨氮高于进水。
根据污水处理厂实际运行情况,水解酸化池水力停留时间为4.4小时,污泥龄在6d左右,水解酸化池氨氮平均去除率达到42.34%,凯氏氮去除率为40.1%,总氮去除率为37.92%。
目前污水处理中所使用的提高废水可生化性的方法有水解酸化法和催化氧化——Fenton试剂等方法。由于Fenton试剂法使用大量的药剂,会使运行成本大大提高因此,水解酸化法相对经济优选。
水解酸化池的稳定性:
水解酸化池具有较强的抗冲击负荷能力,在进水COD为1000mg/l时,仍能保证出水在200mg/l,起到很好的缓冲作用;水解酸化池水力停留时间短,土建造价低,操作成本低。
额定成本低,能耗低,污泥水解率高,降低脱水机运行时间,降低能耗。因此,水解酸化池的稳定性和经济性远远高于其他预处理工艺。
❼ 污水处理水解酸化是厌氧过程吗
水解酸化可以理解为是厌氧反应的前两个阶段
厌氧反应分四个阶段:
1、水解阶段
水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
2、发酵(或酸化)阶段
发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
3、产乙酸阶段
在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
4、甲烷阶段
这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
水解酸化是污水处理的一种预处理方式
两点普遍认同的作用:
1、提高废水可生化性:能将大分子有机物转化为小分子。
2、去除废水中的COD:既然是异养型微生物细菌,那么就必须从环境中汲取养分,所以必定有部分有机物降解合成自身细胞。
❽ 在污水处理中的水解酸化池有什么作用
水解酸化是厌氧的前半段,厌氧的预处理段。
在厌氧反应池内,也同样需要经过水解酸化,产酸,产甲烷.至于把水解酸化分离出来的目的一般都是为了利用其断链大分子有机物的目的,提高废水的生化性
而在现实中的水解酸化池其实也是很难完全控制在水解酸化阶段的,往往都会有一定程度的产甲烷
❾ 污水处理水解酸化法的优点是什么
水中溶解氧和温度控制条件不十分严格,操作管理较方便,抗冲击负荷强,缺点应该是味道大吧,不太清楚了,一般用于难生化降解的工业废水的预处理,后面自然是加好氧系统生化处理,先答这么多,如果还不清楚我有时间再给你查查。2007年嘎问题?
❿ 什么是水解酸化池有什么作用
水解酸化池内分污泥床区和清水层区,待处理污水以及滤池反冲洗时脱落的剩余微生物膜由反应器底部进入池内,并通过带反射板的布水器与污泥床快速而均匀地混合。污泥床较厚,类似于过滤层,从而将进水中的颗粒物质与胶体物质迅速截留和吸附。由于污泥床内含有高浓度的兼性微生物,在池内缺氧条件下,被截留下来的有机物质在大量水解—产酸菌作用下,将不溶性有机物水解为溶解性物质,将大分子、难于生物降解的物质转化为易于生物降解的物质;同时,生物滤池反冲洗时排出的剩余污泥(剩余微生物膜)菌体外多糖粘质层发生水解,使细胞壁打开,污泥液态化,重新回到污水处理系统中被好氧菌代谢,达到剩余污泥减容化的目的。由于水解酸化的污泥龄较长(一般15~20天)。若采用水解酸化池代替常规的初沉池,除达到截留污水中悬浮物的目的外,还具有部分生化处理和污泥减容稳定的功能