❶ 小直流电机调速控制系统设计
专门卖论文的网站,大概能做的如此详细。
建议还是自己动手做。
❷ 单片机直流电机调速系统设计
论文题目:直流电动机调速器硬件设计
专业:自动化
本科生:刘小煜 (签名)____
指导教师:胡晓东 (签名)____
直流电动机调速器硬件设计
摘 要
直流电动机广泛应用于各种场合,为使机械设备以合理速度进行工作则需要对直流电机进行调速。该实验中搭建了基于C8051F020单片机的转速单闭环调速系统,利用PWM信号改变电动机电枢电压,并由软件完成转速单闭环PI控制,旨在实现直流电动机的平滑调速,并对PI控制原理及其参数的确定进行更深的理解。实验结果显示,控制8位PWM信号输出可平滑改变电动机电枢电压,实现电动机升速、降速及反转等功能。实验中使用霍尔元件进行电动机转速的检测、反馈。期望转速则可通过功能按键给定。当选择比例参数为0.08、积分参数为0.01时,电机转速可以在3秒左右达到稳定。由实验结果知,该单闭环调速系统可对直流电机进行调速,达到预期效果。
关键字:直流电机, C8051F020,PWM,调速,数字式
Subject: Hardware Design of Speed Regulator for DC motor
Major: Automation
Name: Xiao yu Liu (Signature)____
Instructor:Xiao dong Hu (Signature) ____
Hardware Design of Speed Regulator for DC motor
Abstract
The dc motor is a widely used machine in various occasions.The speed regulaiting systerm is used to satisfy the requirement that the speed of dc motor be controlled over a range in some applications. In this experiment,the digital Close-loop control systerm is based on C8051F020 SCM.It used PI regulator and PWM to regulate the speed of dc motor. The method of speed regulating of dc motor is discussed in this paper and, make a deep understanding about PI regulator.According to experiment ,the armature voltage can be controlled linearnized with regulating the 8 bit PWM.So the dc motor can accelerate or decelerate or reverse.In experiment, hall component is used as a detector and feed back the speed .The expecting speed can be given by key-press.With using the PI regulator,the dc motor will have a stable speed in ten seconds when choose P value as 0.8 and I value as 0.01. At last,the experiment shows that the speed regulating systerm can work as expected.
Key words: dc motor,C8051F020,PWM,speed regulating,digital
目录
第一章 绪论 1
1.1直流调速系统发展概况 1
1.2 国内外发展概况 2
1.2.1 国内发展概况 2
1.2.2 国外发展概况 3
1.2.3 总结 4
1.3 本课题研究目的及意义 4
1.4 论文主要研究内容 4
第二章 直流电动机调速器工作原理 6
2.1 直流电机调速方法及原理 6
2.2直流电机PWM(脉宽调制)调速工作原理 7
2.3 转速负反馈单闭环直流调速系统原理 11
2.3.1 单闭环直流调速系统的组成 11
2.3.2速度负反馈单闭环系统的静特性 12
2.3.3转速负反馈单闭环系统的基本特征 13
2.3.4转速负反馈单闭环系统的局限性 14
2.4 采用PI调节器的单闭环无静差调速系统 15
2.5 数字式转速负反馈单闭环系统原理 17
2.5.1原理框图 17
2.5.2 数字式PI调节器设计原理 18
第三章 直流电动机调速器硬件设计 20
3.1 系统硬件设计总体方案及框图 20
3.1.1系统硬件设计总体方案 20
3.1.2 总体框图 20
3.2 系统硬件设计 20
3.2.1 C8051F020单片机 20
3.2.1.1 单片机简介 20
3.2.1.2 使用可编程定时器/计数器阵列获得8位PWM信号 23
3.2.1.3 单片机端口配置 23
3.2.2主电路 25
3.2.3 LED显示电路 26
3.2.4 按键控制电路 27
3.2.5 转速检测、反馈电路 28
3.2.6 12V电源电路 30
3.3硬件设计总结 31
第四章 实验运行结果及讨论 32
4.1 实验条件及运行结果 32
4.1.1 开环系统运行结果 32
4.1.2 单闭环系统运行结果 32
4.2 结果分析及讨论 32
4.3 实验中遇到的问题及讨论 33
结论 34
致谢 35
参考文献 36
论文小结 38
附录1 直流电动机调速器硬件设计电路图 39
附录2 直流电动机控制系统程序清单 42
附录3 硬件实物图 57
第一章 绪论
1.1直流调速系统发展概况
在现代工业中,电动机作为电能转换的传动装置被广泛应用于机械、冶金、石油化学、国防等工业部门中,随着对生产工艺、产品质量的要求不断提高和产量的增长,越来越多的生产机械要求能实现自动调速。
在可调速传动系统中,按照传动电动机的类型来分,可分为两大类:直流调速系统和交流调速系统。交流电动机直流具有结构简单、价格低廉、维修简便、转动惯量小等优点,但主要缺点为调速较为困难。相比之下,直流电动机虽然存在结构复杂、价格较高、维修麻烦等缺点,但由于具有较大的起动转矩和良好的起、制动性能以及易于在宽范围内实现平滑调速,因此直流调速系统至今仍是自动调速系统的主要形式。
直流调速系统的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。正是这些技术的进步使直流调速系统发生翻天覆地的变化。其中电机的控制部分已经由模拟控制逐渐让位于以单片机为主的微处理器控制,形成数字与模拟的混合控制系统和纯数字控制系统,并正向全数字控制方向快速发展。电动机的驱动部分所用的功率器件亦经历了几次更新换代。目前开关速度更快、控制更容易的全控型功率器件MOSFET和IGBT成为主流。功率器件控制条件的变化和微电子技术的使用也使新型的电动机控制方法能够得到实现。脉宽调制控制方法在直流调速中获得了广泛的应用。
1964年A.Schonung和H.stemmler首先提出把PWM技术应用到电机传动中从此为电机传动的推广应用开辟了新的局面。进入70年代以来,体积小、耗电少、成本低、速度快、功能强、可靠性高的大规模集成电路微处理器已经商品化,把电机控制推上了一个崭新的阶段,以微处理器为核心的数字控制(简称微机数字控制)成为现代电气传动系统控制器的主要形式。PWM常取代数模转换器(DAC)用于功率输出控制,其中,直流电机的速度控制是最常见的应用。通常PWM配合桥式驱动电路实现直流电机调速,非常简单,且调速范围大。在直流电动机的控制中,主要使用定频调宽法。
目前,电机调速控制模块主要有以下三种:
(1)、采用电阻网络或数字电位器调整直流电机的分压,从而达到调速的目的;
(2)、采用继电器对直流电机的开或关进行控制,通过开关的切换对电机的速度进行调整;
(3)、采用由IGBT管组成的H型PWM电路。用单片机控制IGBT管使之工作在占空比可调的开关状态,精确调整电动机转速。
1.2 国内外发展概况
1.2.1 国内发展概况
我国从六十年代初试制成功第一只硅晶闸管以来,晶闸管直流调速系统开始得到迅速的发展和广泛的应用。用于中、小功率的 0.4~200KW晶闸管直流调速装置已作为标准化、系列化通用产品批量生产。
目前,全国各大专院校、科研单位和厂家都在进行数字式直流调速系统的开发,提出了许多关于直流调速系统的控制算法:
(1)、直流电动机及直流调速系统的参数辩识的方法。该方法据系统或环节的输入输出特性,应用最小二乘法,即可获得系统环节的内部参数。所获得的参数具有较高的精度,方法简便易行。
(2)、直流电动机调速系统的内模控制方法。该方法依据内模控制原理,针对双闭环直流电动机调速系统设计了一种内模控制器,取代常规的PI调节器,成功解决了转速超调问题,能使系统获得优良的动态和静态性能,而且设计方法简单,控制器容易实现。
(3)、单神经元自适应智能控制的方法。该方法针对直流传动系统的特点,提出了单神经元自适应智能控制策略。这种单神经元自适应智能控制系统不仅具有良好的静、动态性能,而且还具有令人满意的鲁棒性与自适应性。
(4)、模糊控制方法。该方法对模糊控制理论在小惯性系统上对其应用进行了尝试。经1.5kw电机实验证明,模糊控制理论可以用于直流并励电动机的限流起动和恒速运行控制,并能获得理想的控制曲线。
上诉的控制方法仅是直流电机调速系统应用和研究的一个侧面,国内外还有许多学者对此进行了不同程度的研究。
1.2.2 国外发展概况
随着各种微处理器的出现和发展,国外对直流电机的数字控制调速系统的研究也在不断发展和完善,尤其80年代在这方面的研究达到空前的繁荣。大型直流电机的调速系统一般采用晶闸管整流来实现,为了提高调速系统的性能,研究工作者对晶闸管触发脉冲的控制算法作了大量研究,提出了内模控制算法、I-P控制器取代PI调节器的方法、自适应和模糊PID算法等等。
目前,国外主要的电气公司,如瑞典ABB公司,德国西门子公司、AEG公司,日本三菱公司、东芝公司、美国GE公司等,均已开发出数字式直流调装置,有成熟的系列化、标准化、模版化的应用产品供选用。如西门子公司生产的SIMOREG-K 6RA24 系列整流装置为三相交流电源直接供电的全数字控制装置,其结构紧凑,用于直流电机电枢和励磁供电,完成调速任务。设计电流范围为15A至1200A,并可通过并联SITOR可控硅单元进行扩展。根据不同的应用场合,可选择单象限或四象限运行的装置,装置本身带有参数设定单元,不需要其它任何附加设备便可以完成参数设定。所有控制调节监控及附加功能都由微处理器来实现,可选择给定值和反馈值为数字量或模拟量。
1.2.3 总结
随着生产技术的发展,对直流电气传动在起制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面都提出了更高的要求,这就要求大量使用直流调速系统。因此人们对直流调速系统的研究将会更深一步。
1.3 本课题研究目的及意义
直流电动机是最早出现的电动机,也是最早实现调速的电动机。长期以来,直流电动机一直占据着调速控制的统治地位。由于它具有良好的线性调速特性,简单的控制性能,高效率,优异的动态特性,现在仍是大多数调速控制电动机的最优选择。因此研究直流电机的速度控制,有着非常重要的意义。
随着单片机的发展,数字化直流PWM调速系统在工业上得到了广泛的应用,控制方法也日益成熟。它对单片机的要求是:具有足够快的速度;有PWM口,用于自动产生PWM波;有捕捉功能,用于测频;有A/D转换器、用来对电动机的输出转速、输出电压和电流的模拟量进行模/数转换;有各种同步串行接口、足够的内部ROM和RAM,以减小控制系统的无力尺寸;有看门狗、电源管理功能等。因此该实验中选用Cygnal公司的单片机C8051F020。
通过设计基于C8051F020单片机的直流PWM调速系统并调试得出结论,在掌握C8051F020的同时进一步加深对直流电动机调速方法、PI控制器的理解,对运动控制的相关知识进行巩固。
1.4 论文主要研究内容
本课题的研究对象为直流电动机,对其转速进行控制。基本思想是利用C8051F020自带的PWM口,通过调整PWM的占空比,控制电机的电枢电压,进而控制转速。
系统硬件设计为:以C8051F020为核心,由转速环、显示、按键控制等电路组成。
具体内容如下:
(1)、介绍直流电动机工作原理及PWM调速方法。
(2)、完成以C8051F020为控制核心的直流电机数字控制系统硬件设计。
(3)、以该系统的特点为基础进行分析,使用PWM控制电机调速,并由实验得到合适的PI控制及相关参数。
(4)、对该数字式直流电动机调速系统的性能做出总结。
第二章 直流电动机调速器工作原理
2.1 直流电机调速方法及原理
直流电动机的转速和各参量的关系可用下式表示:
由上式可以看出,要想改变直流电机的转速,即调速,可有三种不同的方式:调节电枢供电电压U,改变电枢回路电阻R,调节励磁磁通Φ。
3种调速方式的比较表2-1所示.
表2-1 3种电动机调速方式对比
调速方式和方法 控制装置 调速范围 转速变化率 平滑性 动态性能 恒转矩或恒功 率 效率
改变电枢电阻 串电枢电阻 变阻器或接触器、电阻器 2:1 低速时大 用变阻器较好
用接触器、电阻器较差 无自动调节能力 恒转矩 低
改变电枢电压 电动机-发电机组 发电机组或电机扩大机(磁放大器) 10:1~20:1 小 好 较好 恒转矩 60%~70%
静止变流器 晶闸管变流器 50:1~100:1 小 好 好 恒转矩 80%~90%
直流脉冲调宽 晶体管或晶闸管直流开关电路 50:1~100:1 小 好 好 恒转矩 80%~90%
改变磁通 串联电阻或可变直流电源 直流电源变阻器 3:1
~
5:1 较大 差 差 恒功率 80%~90%
电机扩大机或磁放大器 好 较好
晶闸管变流器 好
由表2-1知,对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最佳,而变电枢电压调速方法亦是应用最广的调速方法。
2.2直流电机PWM(脉宽调制)调速工作原理
在直流调速系统中,开关放大器提供驱动电机所需要的电压和电流,通过改变加在电动机上的电压的平均值来控制电机的运转。在开关放大器中,常采用晶体管作为开关器件,晶体管如同开关一样,总是处在接通和断开的状态。在晶体管处在接通时,其上的压降可以略去;当晶体管处在断开时,其上的压降很大,但是电流为零,所以不论晶体管导通还是关断,输出晶体管中的功耗都是很小的。一种比较简单的开关放大器是按照一个固定的频率去接通和断开放大器,并根据需要改变一个周期内“接通”和“断开”的相位宽窄,这样的放大器被称为脉冲调制放大器。
PWM脉冲宽度调制技术就是通过对一系列脉冲的宽度进行调制,来等效地获得获得所需要波形(含形状和幅值)的技术。
根据PWM控制技术的特点,到目前为止主要有八类方法:相电压控制PWM、线电压控制PWM、电流控制PWM、非线性控制PWM,谐振软开关PWM、矢量控制PWM、直接转矩控制PWM、空间电压矢量控制PWM。
利用开关管对直流电动机进行PWM调速控制原理图及输入输出电压波形如图2-1、图2-2所示。当开关管MOSFET的栅极输入高电平时,开关管导通,直流电动机电枢绕组两端由电压。秒后,栅极输入变为低电平,开关管截止,电动机电枢两端电压为0。秒后,栅极输入重新变为高电平,开关管的动作重复前面的过程。这样,对应着输入的电平高低,直流电动机电枢绕组两端的电压波形如图2-2所示。电动机的电枢绕组两端的电压平均值为:
式2-1
式中 ——占空比,
占空比表示了在一个周期里,开关管导通的时间与周期的比值。的变化范围为0≤≤1。由式2-1可知,当电源电压不变的情况下,电枢的端电压的平均值取决于占空比的大小,改变值就可以改变端电压的平均值,从而达到调速的目的,这就是PWM调速原理。
在PWM调速时,占空比是一个重要参数。以下是三种可改变占空比的方法:
(1)、定宽调频法:保持不变,改变,从而改变周期(或频率)。
(2)、调宽调频法:保持不变,改变,从而改变周期(或频率)。
(3)、定频调宽法:保持周期(或频率)不变,同时改变、。
前2种方法由于在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此应用较少。目前,在直流电动机的控制中,主要使用第3种方法。
图2-1 PWM调速控制原理
图2-2 输入输出电压波形
产生PWM控制信号的方法有4种,分别为:
(1)、分立电子元件组成的PWM信号发生器
这种方法是用分立的逻辑电子元件组成PWM信号电路。它是最早期的方式,现在已经被淘汰了。
(2)、软件模拟法
利用单片机的一个I/O引脚,通过软件对该引脚不断地输出高低电平来实现PWM信号输出。这种方法要占用CPU大量时间,需要很高的单片机性能,易于实现,目前也逐渐被淘汰。
(3)、专用PWM集成电路
从PWM控制技术出现之日起,就有芯片制造商生产专用的PWM集成电路芯片,现在市场上已有许多种。这些芯片除了由PWM信号发生功能外,还有“死区”调节功能、保护功能等。在单片机控制直流电动机系统中,使用专用PWM集成电路可以减轻单片机负担,工作也更可靠。
(4)、单片机PWM口
新一代的单片机增加了许多功能,其中包括PWM功能。单片机通过初始化设置,使其能自动地发出PWM脉冲波,只能在改变占空比时CPU才进行干预。
其中常用后两中方法获得PWM信号。实验中使用方法(4)获得PWM信号。
2.3 转速负反馈单闭环直流调速系统原理
2.3.1 单闭环直流调速系统的组成
只通过改变触发或驱动电路的控制电压来改变功率变换电路的输出平均电压,达到调节电动机转速的目的,称为开环调速系统。但开环直流调速系统具有局限性:
(1)、通过控制可调直流电源的输入信号,可以连续调节直流电动机的电枢电压,实现直流电动机的平滑无极调速,但是,在启动或大范围阶跃升速时,电枢电流可能远远超过电机额定电流,可能会损坏电动机,也会使直流可调电源因过流而烧毁。因此必须设法限制电枢动态电流的幅值。
(2)、开环系统的额定速降一般都比较大,使得开环系统的调速范围D都很小,对于大部分需要调速的生产机械都无法满足要求。因此必须采用闭环反馈控制的方法减小额定动态速降,以增大调速范围。
(3)、开环系统对于负载扰动是有静差的。必须采用闭环反馈控制消除扰动静差
为克服其缺点,提高系统的控制质量,必须采用带有负反馈的闭环系统,方框图如图2-3所示。在闭环系统中,把系统输出量通过检测装置(传感器)引向系统的输入端,与系统的输入量进行比较,从而得到反馈量与输入量之间的偏差信号。利用此偏差信号通过控制器(调节器)产生控制作用,自动纠正偏差。因此,带输出量负反馈的闭环控制系统能提高系统抗扰性,改善控制精度的性能,广泛用于各类自动调节系统中。
❸ 直流电机调速系统的设计
网络文科就有嘛,http://wenku..com/view/a2594ad9ad51f01dc281f145.html
❹ 求设计一个直流电动机的调速电路
首先得知道风扇的具体参数,没有参数怎么设计?起码早知道额定功率是多大吧!过载了容易烧,电流小了吧又带不动!想要改变电机转速就需要通过可调电阻来改变三极管的基极电流再改变集电极电流!这是最简单的调速方法!还有一种能耗更低的方法就是通过pwm输出,随便找个运放或555都可以做到!
❺ 直流电机调速装置(蓄电池供电)系统设计
直流电机调速有两种方法,一种是可控硅调速,还一种是电阻降压调速。你要那一种。
❻ 请教直流电机PWM调速系统设计论文
评论 ┆ 举报
最佳答案此答案由提问者自己选择,并不代表网络知道知识人的观点
回答:orange
学妹
4月26日 10:28 系统设计过程与实施过程相反,是从输出设计到输入设计,即先确定要得到哪些信息,再考虑为了得到这些信息,需要准备哪些原始资料作为输入。
揪错 ┆ 评论 ┆ 举报
❼ 直流电机脉宽调速系统的设计
L298N是专用驱动集成电路,属于H桥集成电路,与L293D的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受MCU控制。
L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,当驱动直流电机时,可以直接控制两路电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。其引脚排列如图1中U4所示,1脚和15脚可单独引出连接电流采样电阻器,形成电流传感信号。L298可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。1298的逻辑功能如表1所列。
ENA(B)INl(IN3)IN2(IN4)电机运行情况
HHL正转
HLH反转
H同IN2(IN4)同INl(IN3)快速停止
LXX停止
表11298N的逻辑功能
PWM驱动电路原理图如图6
直流电动机的PWM调速原理,为了获得可调的直流电压,利用电力电子器件的完全可控性,采用脉宽调制技术,直接将恒定的直流电压调制成可变大小和极性的直流电压作为电动机的电枢端电压,实现系统的平滑调速,这种调速系统就称为直流脉宽调速系统。
脉宽调制的基本原理,脉宽调制(PulseWidthMolation),是利用电力电子开关器件的导通与关断,将直流电压变成连续的直流脉冲序列,并通过控制脉冲的宽度或周期达到变压的目的。所采用的电力电子器件都为全控型器件,如电力晶体管(GTR)、功率MOSFET、IGBT等。通常PWM变换器是用定频调宽来达到调压的目的PWM变换器调压与晶闸管相控调压相比有许多优点,如需要的滤波装置很小甚至只利用电枢电感已经足够,不需要外加滤波装置;电动机的损耗和发热较小、动态响应快、开关频率高、控制线路简单等。
PWM的占空比决定输出到直流电机的平均电压.PWM不是调节电流的.PWM的意思是脉宽调节,也就是调节方波高电平和低电平的时间比,一个20%占空比波形,会有20%的高电平时间和80%的低电平时间,而一个60%占空比的波形则具有60%的高电平时间和40%的低电平时间,占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高.如果占空比为0%,那么高电平时间为0,则没有电压输出.如果占空比为100%,那么输出全部电压.所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节.PWM信号是一个矩形的方波,他的脉冲宽度可以任意改变,改变其脉冲宽度控制控制回路输出电压高低或者做功时间的长短,实现无级调速。
❽ 直流电机变速控制系统设计
基于场效应管的直流电机驱动控制电路设计
游志宇,杜杨,张洪,董秀成
(1.西华大学 电气信息学院,四川 成都 610039;
2.中国科学院光电技术研究所,四川 成都 610209)
1 引言
长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET、IGBT等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。
2 直流电机驱动控制电路总体结构
直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H桥功率驱动电路等四部分,其电路框图如图1所示。
由图可以看出,电机驱动控制电路的外围接口简单。其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号Brake,Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。
在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H桥的上下臂。由于H桥由大功率N沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H桥功率驱动电路来驱动直流电机。
3 H桥功率驱动原理
直流电机驱动使用最广泛的就是H型全桥式电路,这种驱动电路方便地实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。H桥功率驱动原理图如图2所示。
H型全桥式驱动电路的4只开关管都工作在斩波状态。S1、S2为一组,S3、S4为一组,这两组状态互补,当一组导通时,另一组必须关断。当S1、S2导通时,S3、S4关断,电机两端加正向电压实现电机的正转或反转制动;当S3、S4导通时,S1、S2关断,电机两端为反向电压,电机反转或正转制动。
实际控制中,需要不断地使电机在四个象限之间切换,即在正转和反转之间切换,也就是在S1、S2导通且S3、S4关断到S1、S2关断且S3、S4导通这两种状态间转换。这种情况理论上要求两组控制信号完全互补,但是由于实际的开关器件都存在导通和关断时间,绝对的互补控制逻辑会导致上下桥臂直通短路。为了避免直通短路且保证各个开关管动作的协同性和同步性,两组控制信号理论上要求互为倒相,而实际必须相差一个足够长的死区时间,这个校正过程既可通过硬件实现,即在上下桥臂的两组控制信号之间增加延时,也可通过软件实现。
图2中4只开关管为续流二极管,可为线圈绕组提供续流回路。当电机正常运行时,驱动电流通过主开关管流过电机。当电机处于制动状态时,电机工作在发电状态,转子电流必须通过续流二极管流通,否则电机就会发热,严重时甚至烧毁。
4 直流电机驱动控制电路设计
由直流电机驱动控制电路框图可以看出驱动控制电路结构简单,主要由四部分电路构成,其中光电隔离电路较简单,在此不再介绍,下面对直流电机驱动控制电路的其他部分进行详细介绍。
4.1 H桥驱动电路设计
在直流电机控制中常用H桥电路作为驱动器的功率驱动电路。由于功率MOSFET是压控元件,具有输入阻抗大、开关速度快、无二次击穿现象等特点,满足高速开关动作需求,因此常用功率MOSFET构成H桥电路的桥臂。H桥电路中的4个功率MOSFET分别采用N沟道型和P沟道型,而P沟道功率MOSFET一般不用于下桥臂驱动电机,这样就有两种可行方案:一种是上下桥臂分别用2个P沟道功率MOSFET和2个N沟道功率MOSFET;另一种是上下桥臂均用N沟道功率MOSFET。
相对来说,利用2个N沟道功率MOSFET和2个P沟道功率MOSFET驱动电机的方案,控制电路简单、成本低。但由于加工工艺的原因,P沟道功率MOSFET的性能要比N沟道功率MOSFET的差,且驱动电流小,多用于功率较小的驱动电路中。而N沟道功率MOSFET,一方面载流子的迁移率较高、频率响应较好、跨导较大;另一方面能增大导通电流、减小导通电阻、降低成本,减小面积。综合考虑系统功率、可靠性要求,以及N沟道功率MOSFET的优点,本设计采用4个相同的N沟道功率MOSFET的H桥电路,具备较好的性能和较高的可靠性,并具有较大的驱动电流。其电路图如图3所示。图中Vm为电机电源电压,4个二极管为续流二极管,输出端并联一只小电容C6,用于降低感性元件电机产生的尖峰电压。
4.2 电荷泵电路设计
电荷泵的基本原理是通过电容对电荷的积累效应而产生高压,使电流由低电势流向高电势。最早的理想电荷泵模型是J.Dickson在1976年提出的,当时这种电路是为可擦写EPROM提供所需电压。后来J.Witters,Toru Tranzawa等人对J.Dickson的电荷泵模型进行改进,提出了比较精确的理论模型,并通过实验加以证实提出了相关理论公式。随着集成电路的不断发展,基于低功耗、低成本的考虑,电荷泵在电路设计中的应用越来越广泛。
简单电荷泵原理电路图如图4所示。电容C1的A端通过二极管D1接Vcc,电容C1的B端接振幅Vin的方波。当B点电位为0时,D1导通,Vcc开始对电容C1充电,直到节点A的电位达到Vcc;当B点电位上升至高电平Vin时,因为电容两端电压不能突变,此时A点电位上升为Vcc+Vin。所以,A点的电压就是一个方波,最大值是Vcc+Vin,最小值是Vcc(假设二极管为理想二极管)。A点的方波经过简单的整流滤波,可提供高于Vcc的电压。
在驱动控制电路中,H桥由4个N沟道功率MOSFET组成。若要控制各个MOSFET,各MOSFET的门极电压必须足够高于栅极电压。通常要使MOSFET完全可靠导通,其门极电压一般在10 V以上,即VCS>10 V。对于H桥下桥臂,直接施加10 V以上的电压即可使其导通;而对于上桥臂的2个MOSFET,要使VGS>10 V,就必须满足VG>Vm+10 V,即驱动电路必须能提供高于电源电压的电压,这就要求驱动电路中增设升压电路,提供高于栅极10 V的电压。考虑到VGS有上限要求,一般MOSFET导通时VGS为10 V~15 V,也就是控制门极电压随栅极电压的变化而变化,即为浮动栅驱动。因此在驱动控制电路中设计电荷泵电路,用于提供高于Vm的电压Vh,驱动功率管的导通。其电路原理图如图5所示。
电路中A部分是方波发生电路,由RC与反相施密特触发器构成,产生振幅为Vin=5 V的方波。B部分是电荷泵电路,由三阶电荷泵构成。当a点为低电平时,二极管D1导通电容C1充电,使b点电压Vb=Vm-Vtn;当a点为高电平时,由于电容C1电压不能突变,故b点电压Vb=Vm+Vin-Vtn,此时二极管D2导通,电容C3充电,使c点电压Vx=Vm+Vin-2Vtn;当a点再为低电平时,二极管D1、D3导通,分别对电容C1、C2充电,使得d点电压Vd=Vm+Vin-3Vtn;当a点再为高电平时,由于电容C2电压不能突变,故d点电压变为Vd=Vm+2Vin-3Vtn,此时二极管D2、D4导通,分别对电容C3、c4充电,使e点电压Ve=Vm+2Vin-4Vtn。这样如此循环,便在g点得到比Vm高的电压Vh=Vm+3Vin-6tn=Vm+11.4 V。其中Vm为二极管压降,一般取0.6 V。从而保证H桥的上臂完全导通。
4.3 电机驱动逻辑与放大电路设计
直流电机驱动电机驱动电路中电机驱动逻辑及放大电路主要实现外部控制信号到驱动H桥控制信号的转换及放大。控制信号Dir、PWM、Brake经光电隔离电路后,由门电路进行译码,产生4个控制信号M1'、M2'、M3'、M4',然后经三极管放大,产生控制H桥的4个信号M1、M2、M3、M4。其电路原理图如图6所示。其中Vh是Vm经电荷泵提升的电压,Vm为电机电源电压。
电机工作时,H桥的上臂处于常开或常闭状态,由Dir控制,下臂由PWM逻辑电平控制,产生连续可调的控制电压。该方案中,上臂MOSFET只有在电机换向时才进行开关切换,而电机的换向频率极低,低端由逻辑电路直接控制,逻辑电路的信号电平切换较快,可以满足不同频率要求。该电路还有一个优点,由于上臂开启较慢,而下臂关断较快,所以,实际控制时换向不会出现上下臂瞬间同时导通现象,减小了换向时电流冲击,提高了MOSFET的寿命。
5 直流电机PWM调速控制
直流电动机转速n=(U-IR)/Kφ
其中U为电枢端电压,I为电枢电流,R为电枢电路总电阻,φ为每极磁通量,K为电动机结构参数。
直流电机转速控制可分为励磁控制法与电枢电压控制法。励磁控制法是控制磁通,其控制功率小,低速时受到磁饱和限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大动态响应较差,所以这种控制方法用得很少。大多数应用场合都使用电枢电压控制法。随着电力电子技术的进步,改变电枢电压可通过多种途径实现,其中PWM(脉宽调制)便是常用的改变电枢电压的一种调速方法。
PWM调速控制的基本原理是按一个固定频率来接通和断开电源,并根据需要改变一个周期内接通和断开的时间比(占空比)来改变直流电机电枢上电压的"占空比",从而改变平均电压,控制电机的转速。在脉宽调速系统中,当电机通电时其速度增加,电机断电时其速度减低。只要按照一定的规律改变通、断电的时间,即可控制电机转速。而且采用PWM技术构成的无级调速系统.启停时对直流系统无冲击,并且具有启动功耗小、运行稳定的特点。
设电机始终接通电源时,电机转速最大为Vmax,且设占空比为D=t/T,则电机的平均速度Vd为:
Vd=VmaxD
由公式可知,当改变占空比D=t/T时,就可以得到不同的电机平均速度Vd,从而达到调速的目的。严格地讲,平均速度与占空比D并不是严格的线性关系,在一般的应用中,可将其近似地看成线性关系。 在直流电机驱动控制电路中,PWM信号由外部控制电路提供,并经高速光电隔离电路、电机驱动逻辑与放大电路后,驱动H桥下臂MOSFET的开关来改变直流电机电枢上平均电压,从而控制电机的转速,实现直流电机PWM调速。
6 结束语
以N沟道增强型场效应管为核心,基于H桥PWM控制的驱动控制电路,对直流电机的正反转控制及速度调节具有良好的工作性能。实验结果表明,直流电机驱动控制电路运行稳定可靠,电机速度调节响应快。能够满足实际工程应用的要求,有很好的应用前景。
❾ 直流电机PWM调速系统的设计与仿真
有的话分享给我,这一阵正研究这个呢。
❿ 有没有关于直流电机调速的设计与实现方面的资料
基于ARM的直流电机调速系统的设计与实现
作者:赵庆松 苏敏 来源于:微计算机信息
摘要:阐述了基于ARM的嵌入式智能小车系统中的直流电机调速子系统,此调速系统主要由S3C44B0X处理器和L298N电机驱动芯片构成,主要功能是驱动小车的两个车轮,调节小车的行驶速度和方向。文中详细介绍了S3C44B0X处理器中的相关寄存器设置及工作方式,给出了系统硬件设计原理图和软件程序代码。
关键词:S3C44B0X; L298N; 嵌入式; 直流电机
引言
在智能小车的研制开发中,很重要的一部分就是智能小车要能根据周围障碍物的情况自主的调节行驶速度和行驶方向。本文中所设计的直流电机调速系统是智能小车的一个重要组成部分,直流电机调速系统主要由S3C44B0X处理器和电机驱动芯片L298N构成,主要功能是驱动小车的两个车轮,调节小车的行驶速,通过改变两个车轮的转速差调节行驶方向。
1 硬件设计
由ARM公司设计的采用RISC架构的ARM处理器性能强,功耗低,体积小,支持Thumb(16位)/ARM(32位)双指令集,指令执行速度快。目前ARM系列微处理器在32位RISC嵌入式产品中已经占据75%以上的市场份额。尤以ARM7TDMI系列应用最广,其性价比也是最高。
1.1 S3C44B0X简介
S3C44B0X是由Samsung公司推出的基于ARM7TDMI核的16/32位RISC处理器。此款处理器提供了丰富的通用的片上外设,大大减少了系统电路中除处理器以外的元器件配置。S3C44B0X具有6个16位定时器,每个定时器可以按照中断模式或DMA模式运行。定时器0,1,2,3,4具有PWM功能,定时器5是一个内部定时器。定时器0和1,2和3,4和5分别共享一个8位的预分频器(Prescaler),预分频值的范围为0—255,通过寄存器TCFG0设定这三个预分频器的值;定时器0,1,2,3还各拥有一个具有5个不同分频信号(1/2,1/4,1/8,1/16,1/32)的时钟分割器(Divider),定时器4和5则各具有一个包含4个分频信号(1/2,1/4,1/8,1/16)的时钟分割器。这6个定时器的分割值通过寄存器TCFG1设定。
定时器输入时钟频率=MCLK/Prescaler/Divider。其中MCLK=60MHz是系统的主频。
1.2 硬件实现
为提高系统效率、降低功耗,功放驱动电路采用基于双极型H桥型脉宽调制方式(PWM)的集成电路L298N。L298N是SGS公司的产品,内部包含二个H桥的高电压大电流桥式驱动器,接收标准TTL逻辑电平信号,可驱动46伏、2安培以下的电机,工作温度范围从-25度到130度。其内部的一个H桥原理图如图1所示。EnA是控制使能端,控制OUTl和OUT2之间电机的停转, IN1、IN2脚接入控制电平,控制OUTl和OUT2之间电机的转向。当使能端EnA有效,IN1为低电平IN2为高电平时,三极管2,3导通,1,4截止,电机反转。当IN1和IN2电平相同时,电机停转。表1是其使能引脚,输入引脚和输出引脚之间的逻辑关系。
图1. H桥原理图
表1.电机运行逻辑关系
另一个H桥的工作原理同上。由EnB控制OUT3和OUT4之间电机的停转,根据IN3、IN4脚的输入电平情况控制OUT3和OUT4之间电机的转向。
由于S3C44B0X本身就带有5个PWM输出口,直接输出控制信号到L298N即可,无须另加电路。系统原理框图如图2所示。系统中选用了工作在中断模式下的定时器1和2作为产生PWM的定时器。通过编程设定I/O口PE4和PE5作为定时器1,2输出PWM的端口,接入L298N的EnA和EnB端口,根据定时器1,2输出的PWM频率分别控制两个直流电机的转速。 PE6设定为输出端口连接IN1并通过一反向器连接IN2;同样,PE7也设为输出端口,接入IN3并经一个反向器接入IN4。通过接入反向器,IN1和IN2,IN3和IN4就不会同时处于高电平或低电平,即不会因为IN1和IN2,IN3和IN4电平相同而使电机停止转动。电机的停止操作可以通过调制脉冲宽度为0即占空比为0或者关闭定时器的使能位实现。这样只需一路信号PE6就可控制IN1和IN2的状态,PE7控制IN3和IN4的状态,从而使得系统的控制信号得到减少,在一定程度上简化了系统。为保证L298N驱动芯片正常工作,还要在其与直流电机之间加入四对续流二极管用以将电机中反向电动势产生的电流分流到地或电源正极,以免反向电动势对L298N产生损害。