导航:首页 > 装置知识 > 课程设计垫圈内测装置方案E

课程设计垫圈内测装置方案E

发布时间:2022-02-25 23:38:23

『壹』 机械设计基础课程设计指导书第三版 附录14 设计题目 2 设计输送传送装置。 求设计说明书!!!

3
1
33

『贰』 电能计量装置设计与现场检查 课程设计

一、 计量装置设计
1、计量装置的设置
a) 发电站上网关口计量点一般设在产权分界处,如发电站与电网公司产权分界点在发电站侧的,应在发电站出线侧、发电机升压变高压侧(对三圈变增加中压侧)、启备变高压侧均按贸易结算的要求设置计量点。
b) 局考核所属各供电所供电量的关口点一般设在35kV变电站的主变高压侧;所属各供电所相互间供电量的计量关口点一般设置在产权分界处。
c) 其他贸易结算用计量点,设置在产权分界处。
d)考虑到旁路代供的情况,各关口计量点的旁路也作为关口计量点。
e) 10KV及以上电压供电的用户应配置防窃电高压计量装置,在用电客户配电线路高压计量装置前端T接口装设隔离刀闸,方便外校及处理计量装置的故障。
2、计量方式
对于非中性点绝缘系统的关口电能计量装置采用三相四线的计量方式,对于中性点绝缘系统的关口电能计量装置应采用三相三线的计量方式。
3、电能表的配置
a) 同一关口计量点应装设两只相同型号、相同规格、相同等级的电子式多功能电能表,其中一只定义为主表,一只定义为副表。
b) 安装于局所属变电站内电能表应具有供停电时抄表和通信用的辅助电源。
c) 关口计量点应装设能计量正向和反向有功电量以及四象限无功电量的电能表。
d) 电能表的标定电流值应根据电流互感器二次额定电流值进行选择,电能表的标定电流值不得大于电流互感器二次额定电流值。电能表的最大电流值应选择4倍及以上标定电流值。
e) 10kV及以上贸易结算计量点,应配置具有失压报警计时功能的电能表或失压计时仪。
4、互感器的配置
a) 电压互感器选型应满足《广西电网公司系统主要电气设备选型原则》要求,110kV及以下计量用电压互感器应选用呈容性的电磁式电压互感器。
b) 电压互感器二次应有独立的计量专用绕组。根据需要,宜选用具有四个二次绕组的电压互感器,即:计量绕组、测量绕组、保护绕组和剩余绕组。
c) 电压互感器二次额定容量的选择参考下表选择:
TV二次负荷核算值(VA) 0~10 10~20 20~30 30~50 50~70 70VA以上
TV额定二次负荷取值(VA) 20 30 50 75 100 按1.5倍取
对TV二次负荷处于0~10VA较小值时,考虑到选用过小的额定二次容量,不利于保证电压互感器的产品质量,电压互感器计量绕组的额定负荷宜选择20VA。一般情况下,电压互感器的计量、测量和保护绕组的额定负荷均应不大于50VA,如有充分的证据说明所接的负荷超过此值时,可按实际值确定。
d) 互感器在实际负载下的误差不得大于其基本误差限。
e) 对于非中性点绝缘系统的电压互感器,应采用Y0/y0的连接方式。对于中性点绝缘系统的电压互感器,35kV及以上的应采用Y/y的连接方式;35kV以下的 宜采用V/V的连接方式。
f) 贸易结算用的计量点设置在统调上网电厂侧的,在出线侧及主变高压侧均应安装计量装置。
5、电流互感器配置
a) 电能计量装置宜采取独立的电流互感器,除在局所属35kV仅作为核计损耗电量用的计量点可采用套管式电流互感器外,其他计费用计量点不宜采用主变套管式的电流互感器。
b) 电流互感器应具有计量专用的二次绕组,如果二次绕组具有中间抽头的,每一个抽头的误差都应符合准确度等级要求。
c) 每一个计量绕组只能对应一个计量点。
d) 电流互感器应保证其在正常运行时的实际负荷电流达到额定值的60%左右,至少应不小于20%,否则应更换变比。
e) 对二次额定电流为5A的电流互感器,其计量绕组的额定二次负载下限为3.75VA,额定二次负载最大值应不大于50VA(cosφ=0.8),一般地,当电能表与互感器安装在同一地点时(如开关柜),CT计量二次绕组的额定二次容量选10VA,对于二次绕组有中间抽头的电流互感器,两个抽头的额定二次容量均应满足上述要求。如有充分的证据说明所接的负荷超过以上值时,可按实际值确定。
f) 对于二次绕组有中间抽头的电流互感器,两个抽头的额定二次容量均应满足上述要求。
6、互感器二次回路配置
a) 电压、电流互感器装置端子箱内,以及电能表屏(柜)内电能计量二次回路应安装试验接线盒。
b) 电流和电压互感器二次回路的连接导线宜使用铜质单芯绝缘线,如果使用多股导线时,其连接接头处应烫焊,再使用压接的连接接头。二次回路导线截面的选择,对整个电流二次回路,连接导线截面积应按电流互感器的二次回路计算负荷确定,至少应不小于4.0mm²。对电压二次回路,互感器出线端子至接电能表前接线盒间的连接导线截面应按机械可靠性及允许的电压降计算确定,非就地计量的至少应不小于4mm²,就地计量的至少应不小于2.5mm²。
c) 主、副表应使用同一个电压和电流互感器二次绕组。
d) 计量二次回路应不装设可分离二次回路的插拔式插头接点。35kV以上的电压互感器二次回路宜装设空气开关或熔断器,电压互感器二次回路采用熔断器的,应采用螺栓压接的熔断器。35kV及以下,除局所属变电站外,电压互感器二次回路不得装设任何空气开关、熔断器。
e) 对单母分段、双母带母联接线方式的母线电压互感器,为防止电压反馈,计量用电压二次回路可接入经隔离开关辅助接点重动的继电器切换回路,其他计量二次回路应不装设隔离开关辅助接点。
f) 电压互感器每相二次回路电压降应不得大于其额定二次电压的0.2%。
g) 互感器二次回路上除了装设电能表、电力负荷管理终端和失压计时仪外,原则上不得接入任何与计量无关的其他仪器、仪表等负载。
h) 计量装置二次接线应顺按一次设备所定的正向接线。
i) 互感器二次回路导线(包括电缆芯线)各相必须以不同的颜色进行区分,其中:L1、L2、L3、N相导线分别采用黄、绿、红、黑色,接地线为黄绿双色导线。
j) 电压、电流二次回路的电缆、端子排和端子编号顺序应按正相序自左向右或自上向下排列。
k)高压计量用的电流、电压互感器二次回路应一点接地。电压互感器二次回路接地点一般设在主控室内;就地计量的电流互感器二次回路接地点宜设置在计量柜内的专用接地桩;非就地计量的电流互感器二次回路接地点宜设置在端子箱处
二、电能计量装置的安装
1、电能表的安装
a)电能表应垂直安装在电能计量柜(开关柜、计量屏、计量箱)内,不得安装在活动的柜门上,安装电能表空间应满足要求:电能表与电能表之间的水平间距不应小于80mm,单相电能表相距的最小距离为30mm,电能表与屏边的最小距离应大于40mm,与接线盒垂直间距至少80mm,电能表宜装在对地0.8m~1.8m的高度(表水平中心线距地面尺寸),电能表距地面不应低于600mm。
b)电能表应垂直、牢固安装,电能表所有的固定孔须采用镙栓固定,固定孔应采用螺纹孔或采用其他方式确保单人工作就能在屏柜正面紧固螺栓。表中心线向各方向的倾斜不大于1。
C)安装在计量屏的电能表,应贴“××kV××线路电能表”;设置有主副表的,应以误差较小的电能表设定为主表。
d)对安装于客户端的计量装置,应在其安装位置贴有用电分类的标签。
2、互感器的安装
a)为了减少三相三线电能计量装置的合成误差,安装互感器时,宜考虑互感器合理匹配问题,即尽量使接到电能表同一元件的电流、电压互感器比差符号相反,数值相近;角差符号相同,数值相近。当计量感性负荷时,宜把误差小的电流、电压互感器接到电能表的C相元件。
b)同一组的电流(电压)互感器应采用制造厂、型号、额定电流(电压)变比、准确度等级、二次容量均相同的互感器。
C)除特殊技术要求外,电流互感器一次电流的L1(P1)端、二次K1(S1)端应与所确定的电能计量正向保持一致,即当正向的一次电流自L1(P1)流向L2(P2)端时,二次电流应自K1(S1)端流出,经外部回路流回到K2(S2)端。在影响互感器二次回路查、接线的情况下,可同时调整互感器一次、二次安装方向,确保与所确定的电能计量正向保持一致。同一个计量点各相电流(电压)互感器进线端极性应一致。
3、接线盒的安装
a)计量屏(柜、箱)内各计量点的电能表与联合接线盒相邻上下布置,联合接线盒安装在电能表的下方,且与电能表安装在同一个垂直平面上,每个电能表应对应安装一个接线盒,安装在就地计量柜的接线盒受到空间位置的影响,两个以上的电能表可共用一个接线盒。接线盒应安装端正;接线盒所有的固定孔须采用镙栓固定,固定孔应采用螺纹孔或采用其他方式确保单人工作就能在屏柜正面紧固螺栓。接线盒向各方向的倾斜不大于1。
b)试验接线盒与周围壳体结构件之间的间距不应小于40mm,与电能表垂直间距至少80mm,接线盒下边缘离地面距离不得小于300mm。
4、接线要求
基本要求是按图施工、接线正确;导线无损伤、无裸露、绝缘良好;接线可靠、接触良好;布线要横平竖直,连接到各接线桩处的导线要做弯成一定的弧度,整齐美观,线长充裕,接头处不应受到拉力;各种接线标志齐全、不褪色。
a)引入盘、柜的电缆标志牌清晰,正确,排列整齐,避免交叉,并应安装牢固,不得使所接的接线盒受到机械应力。
b)盘、柜内的电缆芯线,应按垂直或水平有规律地配置,不得任意歪斜交叉连接。备用芯长度应留有适当余量。
c)三相电能表应按正相序接线。
d)用螺丝连接时,弯线方向应与螺钉旋入的方向一致,并应加垫圈。
e)盘、柜内的导线不应有接头,导线芯线应无损伤。
f)经电流互感器接入的低压三线四线电能表,其电压引入线应单独接入,不得与电流线共用,电压引入线的另一端应接在电流互感器一次电源侧,并在电源侧母线上另行引出,禁止在母线连接螺丝处引出。电压引入线与电流互感器一次电源应同时切合。
g) TA装置端子箱内电流回路专用接线盒中电流进线与出线间应不经过电流连接片,采用直通连接方式;计量屏(柜、箱)内,联合接线盒中电流进线和出线间的连接应经过电流连接片。
h)主控室内计量柜上下相邻布置的电能表与接线盒之间导线的连接,应穿过面板上的穿线孔,每个穿线孔为圆形,孔径适宜,与每根连接导线一一对应。穿线孔应打磨钝化,并用塑料套套好,以保护导线不受损伤,塑料套粘贴牢靠,不应脱落。
i)压接电流回路、电压回路导线金属部分的长度为25mm~30mm,确保接线桩的两个螺丝皆能牢靠压接导线且不得外露,各接线头须按照施工图套号编号套,编号套标志应整洁、正确、耐磨、不褪色。
三、电能计量装置的验收和实验
1、验收的技术资料
a) 电能计量装置的计量方式原理接线图,一、二次接线图,设计和施工变更资料。
b) 电能表和电流、电压互感器的安装和使用说明书,出厂检验报告,计量检定机构的检定证书或测试报告。
c) 二次回路导线或电缆的型号、规格及长度。
d) 高压电气设备的接地及绝缘试验报告。
e) 施工过程中需要说明的其他资料。
2、现场核查内容
a) 计量器具型号、规格、计量法定标志、生产厂、出厂编号应与计量检定证书、测试报告和技术资料的内容相符。
b) 产品外观质量应无明显瑕疵和受损。
c) 安装工艺质量应符合有关标准要求。
d) 电能表、互感器及其二次回路接线情况应和竣工图一致。
3、验收实验
a) 电能表
电能表安装前应在试验室进行检定,电能表应满足公司《三相电子式多功能电能表订货及验收技术标准》要求。
b) 电压互感器
电磁式电压互感器可在试验室或现场进行误差测试,电容式电压互感器应在现场进行误差测试。电压互感器在额定负荷和实际负荷时的误差都应合格。
c) 电流互感器
电流互感器可在试验室或现场进行误差测试,电流互感器在额定负荷时和实际负荷时的误差都应合格。
d) 二次回路
应在现场检查电压、电流互感器二次回路接线是否正确;二次回路中间触点、熔断器、试验接线盒的接触情况。
4、验收结果的处理
a) 投产前的试验项目必须合格方能投产,投产后的试验如有不合格的必须在一个月内进行整改。
b) 经验收合格的电能计量装置应由验收人员及时实施封印,并由运行人员或客户对铅封的完好签字认可。封印的位置为互感器二次回路的各接线端子、电能表接线端子、计量柜(箱)门等。
c) 经验收合格的电能计量装置应由验收人员填写验收报告,注明“计量装置验收合格”或者“计量装置验收不合格”及整改意见,整改后再行验收。
d) 验收不合格的电能计量装置禁止投入使用,更改后再进行验收,直至合格。
e) 验收报告及验收资料及时归档以便于管理。

电能计量装置现场检查的意义
供电企业的用电检查人员根据《用电检查办法》到电能计量装置的安装地点进行检查,能及时发现窃电、 电能计量装置接线错误、 缺相 、倍率不符、 电能计量器具故障 、电能计量器具配置不合理等问题。对提高电能计量装置的可靠性 ,减少计量差错,降低线损,维护供电企业和客户的经济效益都具有实际意义,也是对客户负责,优质服务的具体体现。

进行电能计量装置现场检查的准备工作
1.确定检查工作人员,办好必要的手续,带好《用电检查证》;
2.准备好交通工具;
3.带好常用的电工工具,小备件等;并自带简单负荷;
4.带好必需的电工仪表:万用表、钳形电流表、相序测定仪等;
5.带好电表箱锁匙、封表钳、铅封、封表线等;
6.带好《电能计量装置现场检查卡》(包括上次的检查卡)、秒表、手电筒、计算器、记录本、笔等;
7.如果对计量装置计量的正确性有怀疑,先查阅有关资料,并询问有关人员,了解情况;
8.检查期间不要对待检查户停电,联系客户要求其带正常负荷。

电能计量装置现场检查注意事项
1.实施检查时检查人员不得少于二人,检查人员应主动向客户出示《用电检查证》;注意语言文明;
2.把电能表行度记录在《电能计量装置现场检查卡》上;
3.实施检查时要求客户派员观察,协助检查;检查结束请客户在《电能计量装置现场检查卡》客户签名栏上签名,表示对这次检查程序和评价的认可;
4.不得在检查现场替代客户进行电工作业;
5.检查人员不得打开电能表外壳及其铅封,更不能自行调整电能表的误差调整装置;打开按规定可以打开的封印后,应用专门的铅封重新加封,并在《电能计量装置现场检查卡》上记录新封印的号码;
6.注意安全,防止触电;防止误操作引起开关跳闸;一次有电流时电流互感器二次严禁开路,电压互感器二次严禁短路。

电能计量装置现场检查的内容
一、检查外部
1.不应有绕越电能计量装置用电的情况;
2.不应存在影响电能计量装置正确计量的因素。
二、检查封印以及与计量有关的接线
1.电表箱、电能表接线盒、电能表罩壳、电能计量专用接线盒盖、电流互感器箱、电流互感器二次接线端钮封盖等供电部门或计量器具检定部门所加的封印不应有被开启或伪造,所有封印编号应是上次检查或安装时的编号;
2.电能表的进出线不应在表前被短路或被烧焦、破损;电能表接线盒和电能计量专用接线盒应没有被烧焦的痕迹;
3.电能表接线盒内电压连片连接应良好可靠;电能计量专用接线盒内电流、电压连接片的位置应正确并连接良好可靠;
4.经电流互感器接入式电能表的电流二次连线不应在表前被短路或开路,绝缘不应破损,并且与电能表(或电能计量专用接线盒)连接正确良好可靠;
5.低压计量的电压线同电源线接触应良好可靠,不应断线或绝缘破损,连接点所包扎的绝缘应完好;高压计量的二次电压线同接线端子接触应良好可靠;计量电压线同电能表(或电能计量专用接线盒)的连接应正确,良好可靠。
三、检查电能表的外观
1.电能表铭牌上的厂家编号与抄表本上记录的编号应一致;
2.电能表铭牌和玻璃不应有被熏黄的痕迹;
3.电能表外壳不应有变形或损坏;
4.电能表安装的垂直情况应合符要求;
5.电能表不应被私自移动了安装位置。
四、带负荷检查电能表的接线
用万用表测量电能表接线盒内电压接线端的电压,应与电源相应电压(经电压互感器接入式是相应二次电压)相符;用钳形电流表测量进入电能表电流接线端的电流,应与相应负荷电流(经电流互感器接入式是相应二次电流)相符(当客户的负荷太轻或者无负荷时,可以接入自带的简单负荷);电能表的转盘应不停地正向转动。
各种计量方式电能表接线的检查:
1.单相电能表
1)直接接入式单相电能表电源的火线应在接线盒的1孔接入,零线应在接线盒的3孔接入;
2)经电流互感器接入式电能表接线盒1、2孔分别是电流互感器K1、K2的进线,3、4孔分别是计量电压的火线、零线;
3)三块单相电能表计量三相负荷时零线应正确接入电能表;带三相负荷时三块电能表的转盘都应正向不停地转动。(负荷是单相380V电焊机,当功率因数低于0.5时有一个电表计量反转,属正常情况);
2.三相四线有功电能表
1)直接接入式三相四线电能表在带三相负荷时,用断开电压连接片(缺两相)的方法来分相检查每个元件能否使转盘正向不停地转动(负荷是单相380V电焊机,当功率因数低于0.5时有一个元件使转盘反转,属正常情况);
2)经电流互感器接入式的电能表无电压连接片,在带三相负荷时可利用电能计量专用接线盒的电压或电流连接片来分相检查每个元件能否使转盘不停地正向转动;若未装有电能计量专用接线盒时,应拆计量电压线来进行分相检查。
3.三相三线有功电能表
在负荷稳定时,可作以下的检查,若转盘的转向和转速全部符合下列三点预期的情况,就表明电能表的接线正确。
1)转盘应正向转动;
2)用秒表测转盘的转速,缺B相电压时转盘仍应正向转动并且转速是不缺B相电压时的一半;
3)将任两相电压对调时,转盘应不转或微转。
4.三相无功电能表
用相序仪在无功电能表的接线盒测量相序应为正相序,若是逆相序可将任两相(包括电压、电流)的进表线对调就变为正相序了(最好停电后在互感器进电能计量专用接线盒的接线调)。当负荷为感性时(若客户有补偿电容应先把电容退出运行),转盘应正向转动;负荷为容性时转盘会反转,若表内装了止逆器则转盘不转。
在感性负荷稳定时,作以下的检查,若转盘转向和转速全部符合下列预期的情况,就表明电表的接线正确。
1)对于三相四线无功电能表,用秒表测转盘的转速,任意缺一相电压时转盘仍应正向转动并且转速比不缺相时慢一半;将任两相电压对调时,转盘应不转或微转;
2)对于三相三线无功电能表,用秒表测转盘的转速 ,缺C相电压时转盘仍应正向转动并且转速比不缺C相电压时慢一半;将A相电压和B相电压对调时,转盘应不转或微转。
五、检查电能表的运行情况
1.若所带负荷电流达到电能表的起动电流时,电能表转盘应不停地正向转动,不带负荷时转盘转动应不超过一圈;
2.在负荷稳定时用秒表测量转盘的转速来计算电能表计量的平均功率,与实际功率相比较,以估计电表的计量误差。
电能表计量平均功率的计算式:
平均功率=3600×迭定转盘转数×倍率÷电能表常数÷时间
平均功率:单位(千瓦);
迭定转盘转数:根据转盘转速来确定(转);
倍率:电压、电流互感器的合成倍率;
电能表常数:电能表铭牌上已标明(转/千瓦时);
时间:转盘转完迭定转盘转数所需的时间(秒)。
(电能表的误差应由经授权的计量机构检定,现场检查的数据只能作为分析参考。)
3.校核计度器系数
1)计算计度器末位改变一个数字时的转盘转数:
(计算转盘转数)=电能表常数÷计度器小数位数
2)在电能表转盘转动时数转盘转数,当转盘转完(计算转盘转数)时,计度器末位应改变一个数字。
六、检查电流互感器
二次电流线与电流互感器K1、K2端钮接触应良好可靠,并且与电能表及电能计量专用接线盒的连接应正确并接触良好可靠;电流互感器铭牌所标电流比和抄表本上记录的电流比应一致(穿芯式电流互感器还应根据导线穿芯匝数确定电流比);用钳形电流表分别测量电流互感器的一次电流值和二次电流值,以确定电流互感器的倍率(倍率=一次电流值/二次电流值),所确定的倍率应和抄表本所记录的倍率一致。
七、检查电压互感器
八、二次电压线与电压互感器二次端钮(或接线端子)接触应良好可靠,电压互感器铭牌所标电压比和抄表本上记录的电压比应一致。
九、检查电能计量器具容量的配置
检查应在用户带正常负荷时进行,测量进入电能表的电流以确定电能表和电流互感器容量的配置是否合理。《电能计量装置技术管理规程》规定了配置的原则:
1.低压供电,负荷电流为50A及以下时,宜采用直接接入式电能表;负荷电流为50A以上时,宜采用经电流互感器接入式的接线方式;
2.直接接入式电能表的标定电流应按正常运行负荷电流的30%左右进行迭择;
3.进入电能表的电流宜不小于电能表的30%,不大于电能表的额定最大电流
4.经电流互感器接入的电能表,其标定电流宜不超过电流互感器额定二次电流的30%,其额定最大电流应为电流互感器额定二次电流的120%左右;
5.电流互感额定一次电流的确定,应保证其在正常运行中的实际负荷电流达到额定值的60%左右,至少不小于30%.
十、把检查的情况填写在《电能计量装置现场检查卡》上。
对电能计量装置进行现场检查还不只限于以上列举的内容,应根据实际情况采取其它的检查办法。

附:用专用仪器对电能计量装置进行现场检查
对电能计量装置进行现场检查的专用仪器主要有:电能表现场校验仪、电流互感器校验仪、电压互感器二次压降测试仪等。
1.用电能表现场校验仪在电能表接线盒(如果确定了电能表的接线正确,也可以在电能计量专用接线盒)测定进入电能表电压的相序,测量电压、电流以及相位、功率;分析电压、电流相量图,确定电能表接线是否正确;校准电能表的测量误差
2.用电流互感器校验仪测定电流互感器的实际二次负荷,应在25%∽100%额定二次负荷范围内;校准电流互感器带实际二次负载时的比差和角差;
3.用电压互感器二次压降测试仪测定电压互感器二次回路电压降,Ⅰ、Ⅱ类电能计量装置应不大于其额定二次电压的0.2%,其它类电能计量装置应不大于其额定二次电压的0.5%

『叁』 机械设计课程设计的章节目录

?序言
前言
第一章 概述
第一节 课程设计的目的
第二节 课程设计的内容和步骤
第三节 机械设计课程设计任务书
第四节 课程设计应注意的问题
第二章 传动装置的总体设计
第一节 减速器的主要型式、特点及应用
第二节 初步确定减速器结构和零部件类型
第三节 拟定传动方案
第四节 电动机的选择
第五节 确定传动装置的总传动比和分配各级传动比
第六节 传动装置的运动参数和动力参数的计算
第三章 传动零件的设计
第一节 箱外传动件的设计要点
第二节 箱内传动件的设计要点
第三节 轴径初选
第四章 轴系部件设计
第一节 轴承类型的选择
第二节 轴的结构设计及轴、轴承、键的强度校核
第三节 滚动轴承的组合设计
第四节 齿轮结构设计
第五章 减速器的结构
第一节 标准减速器简介
第二节 通用减速器的结构
第三节 减速器箱体的结构设计
第四节 减速器附件设计
第六章 减速器的润滑及密封
第一节 减速器的润滑
第二节 减速器的密封
第七章 减速器的装配图设计
第一节 装配图的设计和绘制
第二节 装配图总成设计的完成
第八章 零件工作图绘制
第一节 概述
第二节 轴类零件
第三节 齿轮类零件
第四节 箱体
第九章 编制设计计算说明书及准备答辩
第一节 设计计算说明书的内容、要求
第二节 准备答辩
第十章 参考图例
一、典型减速器图例
二、零件工作图参考图例
第十一章 一般设计资料
一、常用数据
二、课程设计常用的一般性资料
第十二章 常用材料
第十三章 常用紧固件和联接件
一、螺栓、螺钉、螺柱
二、螺母、垫圈、挡圈
三、螺纹零件的结构要素
四、键联接和销联接
第十四章 滚动轴承
一、常用滚动轴承
二、滚动轴承的配合
第十五章 润滑和密封的标准和规范
一、润滑剂
二、油杯
三、标准密封件
第十六章 联轴器
第十七章 公差与配合
一、公差配合
二、形状和位置公差
三、表面粗糙度
四、渐开线圆柱齿轮精度(GB10095-88)
五、蜗杆传动精度
第十八章 电动机
主要参考文献

『肆』 机械设计基础课程设计指导书——设计带式输送机传动装置课程设计

请问你有答案了吗? 小弟遇到跟你一样的问题,如果有答案请发给我一份1064986475.不胜感激

『伍』 机械设计课程设计---设计盘磨机传动装置!!!

我也在做这个题也 老兄
我只能提供样本给你哈 具体的还是得靠你自己啦
目 录

一 课程设计书 2

二 设计要求 2

三 设计步骤 2

1. 传动装置总体设计方案 3
2. 电动机的选择 4
3. 确定传动装置的总传动比和分配传动比 5
4. 计算传动装置的运动和动力参数 5
6. 齿轮的设计 8
7. 滚动轴承和传动轴的设计 19
8. 键联接设计 26
9. 箱体结构的设计 27
10.润滑密封设计 30
11.联轴器设计 30

四 设计小结 31
五 参考资料 32

一. 课程设计书
设计课题:
设计一用于带式运输机上的两级齿轮减速器.运输机连续单向运转,载荷有轻微冲击,工作环境多尘,通风良好,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速器小批量生产,使用期限10年(300天/年),三班制工作,滚筒转速容许速度误差为5%,车间有三相交流,电压380/220V。
参数:
皮带有效拉力F(KN) 3.2
皮带运行速度V(m/s) 1.4
滚筒直径D(mm) 400

二. 设计要求
1.减速器装配图1张(0号)。
2.零件工作图2-3张(A2)。
3.设计计算说明书1份。
三. 设计步骤
1. 传动装置总体设计方案
2. 电动机的选择
3. 确定传动装置的总传动比和分配传动比
4. 计算传动装置的运动和动力参数
5. 齿轮的设计
6. 滚动轴承和传动轴的设计
7. 键联接设计
8. 箱体结构设计
9. 润滑密封设计
10. 联轴器设计
1.传动装置总体设计方案:
1. 组成:传动装置由电机、减速器、工作机组成。
2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,
要求轴有较大的刚度。
3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。
其传动方案如下:

图一:(传动装置总体设计图)
初步确定传动系统总体方案如:传动装置总体设计图所示。
选择V带传动和二级圆柱斜齿轮减速器。
传动装置的总效率
为V带的传动效率, 为轴承的效率,
为对齿轮传动的效率,(齿轮为7级精度,油脂润滑)
为联轴器的效率, 为滚筒的效率
因是薄壁防护罩,采用开式效率计算。
取 =0.96 =0.98 =0.95 =0.99 =0.96
=0.96× × ×0.99×0.96=0.760;
2.电动机的选择
电动机所需工作功率为: P =P/η =3200×1.4/1000×0.760=3.40kW
滚筒轴工作转速为n= = =66.88r/min,
经查表按推荐的传动比合理范围,V带传动的传动比i =2~4,二级圆柱斜齿轮减速器传动比i =8~40,
则总传动比合理范围为i =16~160,电动机转速的可选范围为n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。
综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,
选定型号为Y112M—4的三相异步电动机,额定功率为4.0
额定电流8.8A,满载转速 1440 r/min,同步转速1500r/min。

方案 电动机型号 额定功 率
P
kw 电动机转速

电动机重量
N 参考价格
元 传动装置的传动比
同步转速 满载转速 总传动 比 V带传 动 减速器
1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90

3.确定传动装置的总传动比和分配传动比

(1)总传动比
由选定的电动机满载转速n 和工作机主动轴转速n,可得传动装置总传动比为 =n /n=1440/66.88=17.05
(2)分配传动装置传动比
= ×
式中 分别为带传动和减速器的传动比。
为使V带传动外廓尺寸不致过大,初步取 =2.3(实际的传动比要在设计V带传动时,由所选大、小带轮的标准直径之比计算),则减速器传动比为
= =17.05/2.3=7.41
根据展开式布置,考虑润滑条件,为使两级大齿轮直径相近,查图得高速级传动比为 =3.24,则 = =2.29

4.计算传动装置的运动和动力参数
(1) 各轴转速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.29=84.38 r/min
= =84.38 r/min
(2) 各轴输入功率
= × =3.40×0.96=3.26kW
= ×η2× =3.26×0.98×0.95=3.04kW
= ×η2× =3.04×0.98×0.95=2.83kW
= ×η2×η4=2.83×0.98×0.99=2.75kW
则各轴的输出功率:
= ×0.98=3.26×0.98=3.19 kW
= ×0.98=3.04×0.98=2.98 kW
= ×0.98=2.83×0.98=2.77kW
= ×0.98=2.75×0.98=2.70 kW
(3) 各轴输入转矩
= × × N•m
电动机轴的输出转矩 =9550 =9550×3.40/1440=22.55 N•m
所以: = × × =22.55×2.3×0.96=49.79 N•m
= × × × =49.79×3.24×0.96×0.98=151.77 N•m
= × × × =151.77×2.29×0.98×0.95=326.98N•m
= × × =326.98×0.95×0.99=307.52 N•m
输出转矩: = ×0.98=49.79×0.98=48.79 N•m
= ×0.98=151.77×0.98=148.73 N•m
= ×0.98=326.98×0.98=320.44N•m
= ×0.98=307.52×0.98=301.37 N•m
运动和动力参数结果如下表
轴名 功率P KW 转矩T Nm 转速r/min
输入 输出 输入 输出
电动机轴 3.40 22.55 1440
1轴 3.26 3.19 49.79 48.79 626.09
2轴 3.04 2.98 151.77 148.73 193.24
3轴 2.83 2.77 326.98 320.44 84.38
4轴 2.75 2.70 307.52 301.37 84.38
5.齿轮的设计
(一)高速级齿轮传动的设计计算
1. 齿轮材料,热处理及精度
考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮
(1)齿轮材料及热处理
① 材料:高速级小齿轮选用45#钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =24
高速级大齿轮选用45#钢正火,齿面硬度为大齿轮 240HBS Z = ×Z =3.24×24=77.76 取Z =78.
② 齿轮精度
按GB/T10095-1998,选择7级,齿根喷丸强化。

2.初步设计齿轮传动的主要尺寸
按齿面接触强度设计

确定各参数的值:
①试选 =1.6
查课本 图10-30 选取区域系数 Z =2.433
由课本 图10-26

②由课本 公式10-13计算应力值环数
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25为齿数比,即3.25= )
③查课本 10-19图得:K =0.93 K =0.96
④齿轮的疲劳强度极限
取失效概率为1%,安全系数S=1,应用 公式10-12得:
[ ] = =0.93×550=511.5

[ ] = =0.96×450=432
许用接触应力

⑤查课本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.设计计算
①小齿轮的分度圆直径d

=
②计算圆周速度

③计算齿宽b和模数
计算齿宽b
b= =49.53mm
计算摸数m
初选螺旋角 =14
=
④计算齿宽与高之比
齿高h=2.25 =2.25×2.00=4.50
= =11.01
⑤计算纵向重合度
=0.318 =1.903
⑥计算载荷系数K
使用系数 =1
根据 ,7级精度, 查课本由 表10-8得
动载系数K =1.07,
查课本由 表10-4得K 的计算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查课本由 表10-13得: K =1.35
查课本由 表10-3 得: K = =1.2
故载荷系数:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按实际载荷系数校正所算得的分度圆直径
d =d =49.53× =51.73
⑧计算模数
=
4. 齿根弯曲疲劳强度设计
由弯曲强度的设计公式

⑴ 确定公式内各计算数值
① 小齿轮传递的转矩 =48.6kN•m
确定齿数z
因为是硬齿面,故取z =24,z =i z =3.24×24=77.76
传动比误差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允许
② 计算当量齿数
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初选齿宽系数
按对称布置,由表查得 =1
④ 初选螺旋角
初定螺旋角 =14
⑤ 载荷系数K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齿形系数Y 和应力校正系数Y
查课本由 表10-5得:
齿形系数Y =2.592 Y =2.211
应力校正系数Y =1.596 Y =1.774
⑦ 重合度系数Y
端面重合度近似为 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因为 = /cos ,则重合度系数为Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系数Y
轴向重合度 = =1.825,
Y =1- =0.78
⑨ 计算大小齿轮的
安全系数由表查得S =1.25
工作寿命两班制,8年,每年工作300天
小齿轮应力循环次数N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齿轮应力循环次数N2=N1/u=6.255×10 /3.24=1.9305×10
查课本由 表10-20c得到弯曲疲劳强度极限
小齿轮 大齿轮
查课本由 表10-18得弯曲疲劳寿命系数:
K =0.86 K =0.93
取弯曲疲劳安全系数 S=1.4
[ ] =
[ ] =

大齿轮的数值大.选用.
⑵ 设计计算
① 计算模数

对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =2mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =51.73 来计算应有的齿数.于是由:
z = =25.097 取z =25
那么z =3.24×25=81
② 几何尺寸计算
计算中心距 a= = =109.25
将中心距圆整为110
按圆整后的中心距修正螺旋角
=arccos
因 值改变不多,故参数 , , 等不必修正.
计算大.小齿轮的分度圆直径
d = =51.53
d = =166.97
计算齿轮宽度
B=
圆整的

(二) 低速级齿轮传动的设计计算
⑴ 材料:低速级小齿轮选用45钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =30
速级大齿轮选用45钢正火,齿面硬度为大齿轮 240HBS z =2.33×30=69.9 圆整取z =70.
⑵ 齿轮精度
按GB/T10095-1998,选择7级,齿根喷丸强化。
⑶ 按齿面接触强度设计
1. 确定公式内的各计算数值
①试选K =1.6
②查课本由 图10-30选取区域系数Z =2.45
③试选 ,查课本由 图10-26查得
=0.83 =0.88 =0.83+0.88=1.71
应力循环次数
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由课本 图10-19查得接触疲劳寿命系数
K =0.94 K = 0.97
查课本由 图10-21d
按齿面硬度查得小齿轮的接触疲劳强度极限 ,
大齿轮的接触疲劳强度极限
取失效概率为1%,安全系数S=1,则接触疲劳许用应力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查课本由 表10-6查材料的弹性影响系数Z =189.8MP
选取齿宽系数
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 计算圆周速度
0.665
3. 计算齿宽
b= d =1×65.71=65.71
4. 计算齿宽与齿高之比
模数 m =
齿高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 计算纵向重合度

6. 计算载荷系数K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系数K =1
同高速齿轮的设计,查表选取各数值
=1.04 K =1.35 K =K =1.2
故载荷系数
K= =1×1.04×1.2×1.4231=1.776
7. 按实际载荷系数校正所算的分度圆直径
d =d =65.71×
计算模数
3. 按齿根弯曲强度设计
m≥
一确定公式内各计算数值
(1) 计算小齿轮传递的转矩 =143.3kN•m
(2) 确定齿数z
因为是硬齿面,故取z =30,z =i ×z =2.33×30=69.9
传动比误差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允许
(3) 初选齿宽系数
按对称布置,由表查得 =1
(4) 初选螺旋角
初定螺旋角 =12
(5) 载荷系数K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 当量齿数
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由课本 表10-5查得齿形系数Y 和应力修正系数Y

(7) 螺旋角系数Y
轴向重合度 = =2.03
Y =1- =0.797
(8) 计算大小齿轮的

查课本由 图10-20c得齿轮弯曲疲劳强度极限

查课本由 图10-18得弯曲疲劳寿命系数
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
计算大小齿轮的 ,并加以比较

大齿轮的数值大,选用大齿轮的尺寸设计计算.
① 计算模数

对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =3mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =72.91 来计算应有的齿数.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
计算中心距 a= = =102.234
将中心距圆整为103
修正螺旋角
=arccos
因 值改变不多,故参数 , , 等不必修正
分度圆直径
d = =61.34
d = =143.12
计算齿轮宽度

圆整后取

低速级大齿轮如上图:

齿轮各设计参数附表
1. 各轴转速n
(r/min)
(r/min)
(r/min)
(r/min)

626.09 193.24 84.38 84.38

2. 各轴输入功率 P
(kw)
(kw)
(kw)
(kw)

3.26 3.04 2.83 2.75

3. 各轴输入转矩 T
(kN•m)
(kN•m)
(kN•m)
(kN•m)

49.79 151.77 326.98 307.52

6.传动轴承和传动轴的设计
1. 传动轴承的设计
⑴. 求输出轴上的功率P ,转速 ,转矩
P =2.83KW =84.38r/min
=326.98N.m
⑵. 求作用在齿轮上的力
已知低速级大齿轮的分度圆直径为
=143.21
而 F =
F = F
F = F tan =4348.16×0.246734=1072.84N
圆周力F ,径向力F 及轴向力F 的方向如图示:
⑶. 初步确定轴的最小直径
先按课本15-2初步估算轴的最小直径,选取轴的材料为45钢,调质处理,根据课本 取

输出轴的最小直径显然是安装联轴器处的直径 ,为了使所选的轴与联轴器吻合,故需同时选取联轴器的型号
查课本 ,选取

因为计算转矩小于联轴器公称转矩,所以
查《机械设计手册》
选取LT7型弹性套柱销联轴器其公称转矩为500Nm,半联轴器的孔径
⑷. 根据轴向定位的要求确定轴的各段直径和长度
① 为了满足半联轴器的要求的轴向定位要求,Ⅰ-Ⅱ轴段右端需要制出一轴肩,故取Ⅱ-Ⅲ的直径 ;左端用轴端挡圈定位,按轴端直径取挡圈直径 半联轴器与 为了保证轴端挡圈只压在半联轴器上而不压在轴端上, 故Ⅰ-Ⅱ的长度应比 略短一些,现取
② 初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承.参照工作要求并根据 ,由轴承产品目录中初步选取0基本游隙组 标准精度级的单列角接触球轴承7010C型.

D B

轴承代号
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 从动轴的设计
对于选取的单向角接触球轴承其尺寸为的 ,故 ;而 .
右端滚动轴承采用轴肩进行轴向定位.由手册上查得7010C型轴承定位轴肩高度 mm,
③ 取安装齿轮处的轴段 ;齿轮的右端与左轴承之间采用套筒定位.已知齿轮 的宽度为75mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 . 齿轮的左端采用轴肩定位,轴肩高3.5,取 .轴环宽度 ,取b=8mm.
④ 轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定) .根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离 ,故取 .
⑤ 取齿轮距箱体内壁之距离a=16 ,两圆柱齿轮间的距离c=20 .考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离 s,取s=8 ,已知滚动轴承宽度T=16 ,
高速齿轮轮毂长L=50 ,则

至此,已初步确定了轴的各端直径和长度.
5. 求轴上的载荷
首先根据结构图作出轴的计算简图, 确定顶轴承的支点位置时,
查《机械设计手册》20-149表20.6-7.
对于7010C型的角接触球轴承,a=16.7mm,因此,做为简支梁的轴的支承跨距.

传动轴总体设计结构图:

(从动轴)

(中间轴)

(主动轴)
从动轴的载荷分析图:

6. 按弯曲扭转合成应力校核轴的强度
根据
= =
前已选轴材料为45钢,调质处理。
查表15-1得[ ]=60MP
〈 [ ] 此轴合理安全
7. 精确校核轴的疲劳强度.
⑴. 判断危险截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B无需校核.从应力集中对轴的疲劳强度的影响来看,截面Ⅵ和Ⅶ处过盈配合引起的应力集中最严重,从受载来看,截面C上的应力最大.截面Ⅵ的应力集中的影响和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同时轴径也较大,故不必做强度校核.截面C上虽然应力最大,但是应力集中不大,而且这里的直径最大,故C截面也不必做强度校核,截面Ⅳ和Ⅴ显然更加不必要做强度校核.由第3章的附录可知,键槽的应力集中较系数比过盈配合的小,因而,该轴只需胶合截面Ⅶ左右两侧需验证即可.
⑵. 截面Ⅶ左侧。
抗弯系数 W=0.1 = 0.1 =12500
抗扭系数 =0.2 =0.2 =25000
截面Ⅶ的右侧的弯矩M为
截面Ⅳ上的扭矩 为 =311.35
截面上的弯曲应力

截面上的扭转应力
= =
轴的材料为45钢。调质处理。
由课本 表15-1查得:


经插入后得
2.0 =1.31
轴性系数为
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以

综合系数为: K =2.8
K =1.62
碳钢的特性系数 取0.1
取0.05
安全系数
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右侧
抗弯系数 W=0.1 = 0.1 =12500
抗扭系数 =0.2 =0.2 =25000
截面Ⅳ左侧的弯矩M为 M=133560
截面Ⅳ上的扭矩 为 =295
截面上的弯曲应力
截面上的扭转应力
= = K =
K =
所以
综合系数为:
K =2.8 K =1.62
碳钢的特性系数
取0.1 取0.05
安全系数
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
8.键的设计和计算
①选择键联接的类型和尺寸
一般8级以上精度的尺寸的齿轮有定心精度要求,应用平键.
根据 d =55 d =65
查表6-1取: 键宽 b =16 h =10 =36
b =20 h =12 =50
②校和键联接的强度
查表6-2得 [ ]=110MP
工作长度 36-16=20
50-20=30
③键与轮毂键槽的接触高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
两者都合适
取键标记为:
键2:16×36 A GB/T1096-1979
键3:20×50 A GB/T1096-1979
9.箱体结构的设计
减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,
大端盖分机体采用 配合.
1. 机体有足够的刚度
在机体为加肋,外轮廓为长方形,增强了轴承座刚度
2. 考虑到机体内零件的润滑,密封散热。
因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm
为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为
3. 机体结构有良好的工艺性.
铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.
4. 对附件设计
A 视孔盖和窥视孔
在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固
B 油螺塞:
放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。
C 油标:
油标位在便于观察减速器油面及油面稳定之处。
油尺安置的部位不能太低,以防油进入油尺座孔而溢出.
D 通气孔:
由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.
E 盖螺钉:
启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。
钉杆端部要做成圆柱形,以免破坏螺纹.
F 位销:
为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.
G 吊钩:
在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.
减速器机体结构尺寸如下:

名称 符号 计算公式 结果
箱座壁厚

10
箱盖壁厚

9
箱盖凸缘厚度

12
箱座凸缘厚度

15
箱座底凸缘厚度

25
地脚螺钉直径

M24
地脚螺钉数目
查手册 6
轴承旁联接螺栓直径

M12
机盖与机座联接螺栓直径
=(0.5~0.6)
M10
轴承端盖螺钉直径
=(0.4~0.5)
10
视孔盖螺钉直径
=(0.3~0.4)
8
定位销直径
=(0.7~0.8)
8
, , 至外机壁距离
查机械课程设计指导书表4 34
22
18
, 至凸缘边缘距离
查机械课程设计指导书表4 28
16
外机壁至轴承座端面距离
= + +(8~12)
50
大齿轮顶圆与内机壁距离
>1.2
15
齿轮端面与内机壁距离
>
10
机盖,机座肋厚

9 8.5

轴承端盖外径
+(5~5.5)
120(1轴)125(2轴)
150(3轴)
轴承旁联结螺栓距离

120(1轴)125(2轴)
150(3轴)
10. 润滑密封设计
对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.
油的深度为H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化学合成油,润滑效果好。
密封性来讲为了保证机盖与机座联接处密封,联接
凸缘应有足够的宽度,联接表面应精创,其表面粗度应为
密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太
大,国150mm。并匀均布置,保证部分面处的密封性。
11.联轴器设计
1.类型选择.
为了隔离振动和冲击,选用弹性套柱销联轴器.
2.载荷计算.
公称转矩:T=9550 9550 333.5
查课本 ,选取
所以转矩
因为计算转矩小于联轴器公称转矩,所以
查《机械设计手册》
选取LT7型弹性套柱销联轴器其公称转矩为500Nm

『陆』 机械设计课程设计 设计带式输送机传动装置中的-装备图

哇,你有点诚意好不好啊,把那个发给你,就相当于给你设计出来了啊

『柒』 求:机械设计课程设计--胶带输送机卷筒传动装置

OPQ汇总的1000份机械课设毕设,都是别人做好的,给个采纳哦R

阅读全文

与课程设计垫圈内测装置方案E相关的资料

热点内容
手机仪表盘怎么设置 浏览:944
创意运动装置设计图 浏览:369
磁性锁暖气阀门 浏览:917
电器仪表at什么意思 浏览:592
魅族系统自带工具箱图标消失 浏览:283
车载功放怎么把低音调到仪表台 浏览:776
多种液体自动混合装置结论 浏览:862
铸造用脱模剂什么好用 浏览:587
宿舍污水处理设备哪里卖 浏览:765
山东户外健身器材哪里有 浏览:350
几百吨的钢桶是怎么铸造的 浏览:314
永康金指数五金机电 浏览:492
设备出的烟怎么处理 浏览:210
机械零是什么 浏览:62
复合板设备要多少钱 浏览:189
球上的轴承怎么分 浏览:785
朋克机械键盘乱码怎么修复 浏览:55
煤气灶有自动锁装置吗 浏览:291
机械设备台账包括哪些内容 浏览:266
换挡传动装置的作用 浏览:717