A. 学校要求我去做个科学实验的演示,弄表面张力的,压力大死了,还要有互动,请高手指教
器材:蓝色不透明杯子一个、曲别针或大头针若干枚、红色水若干
步骤:内
1.向玻璃杯内注满水。容
2.向玻璃杯内小心地放入一只只曲别针,仔细观察杯子口的水位变化。
随后会发现水位高出了杯子口,可没有溢出。这就是证明水有表面张力的实验。
B. 拉环法测液体的表面张力的实验中为确保实验准确应注意什么
需要注意以下方面:
1.
铂金环和玻璃杯进行清洗时,确保去除掉污垢和杂质;
2.
测量时拉环过程中,尽可能均匀、轻轻地让环移动,一定注意避免液面的振动;
3.
界面张力仪放在平稳、且不会发生振动的地方,注意一定调整到水平状态,之后测定过程中不能移动仪器;
4.
溶液浓度要配制的精确。
以上几个方面是保证测定数据准确,非常关键的地方。
第一次使用或使用一段时间后可对张力仪进行满量程校正,这主要是矫正仪器使用过程中导致的偏差,以确保测定的准确性。
C. 测溶液的表面张力有哪些方法用最大气泡法测定表面张力实验原理
若读中间某个压力差值,不能保证每次读压力差对应大小相同气泡。
D. 液体表面张力的试验举例
液体的表面张力是表征液体性质的一个重要参数.测量液体的表面张力系数有多种方法,拉脱法是测量液体表面张力系数常用的方法之一.该方法的特点是,用秤量仪器直接测量液体的表面张力,测量方法直观,概念清楚.用拉脱法测量液体表面张力,对测量力的仪器要求较高,由于用拉脱法测量液体表面的张力约在1×10-3~1×10-2 N之间,因此需要有一种量程范围较小,灵敏度高,且稳定性好的测量力的仪器.新发展的硅压阻式力敏传感器张力测定仪正好能满足测量液体表面张力的需要,它比传统的焦利秤、扭秤等灵敏度高,稳定性好,且可数字信号显示,利于计算机实时测量,为了能对各类液体的表面张力系数的不同有深刻的理解,在对水进行测量以后,再对不同浓度的酒精溶液进行测量,这样可以明显观察到表面张力系数随液体浓度的变化而变化的现象,从而对这个概念加深理解。
[实验目的]
1.用拉脱法测量室温下液体的表面张力系数
2.学习力敏传感器的定标方法
[实验原理]
测量一个已知周长的金属片从待测液体表面脱离时需要的力,求得该液体表面张力系数的实验方法称为拉脱法.若金属片为环状吊片时,考虑一级近似,可以认为脱离力为表面张力系数乘上脱离表面的周长,即
F=α·π(D1十D2 ) (1)
式中,F为脱离力,D1,D2分别为圆环的外径和内径,α为液体的表面张力系数.
硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥,当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正此,即
△U=KF (2)
式中,F为外力的大小,K为硅压阻式力敏传感器的灵敏度,△U为传感器输出电压的大小。
[实验装置]
图14-1为实验装置图,其中,液体表面张力测定仪包括硅扩散电阻非平衡电桥的电源和测量电桥失去平衡时输出电压大小的数字电压表.其他装置包括铁架台,微调升降台,装有力敏传感器的固定杆,盛液体的玻璃皿和圆环形吊片,实验证明,当环的直径在3cm附近而液体和金属环接触的接触角近似为零时.运用公式(1)测量各种液体的表面张力系数的结果较为正确。
图14-1 液体表面张力测定装置
[实验内容]
一、必做部分
1、 力敏传感器的定标
每个力敏传感器的灵敏度都有所不同,在实验前,应先将其定标,步骤如下:打开仪器地电源开关,将仪器预热。(2)在传感器梁端头小钩中,挂上砝码盘,调节电子组合仪上的补偿电压旋钮,使数字电压表显示为零。(3)在砝码盘上分别如0.5g、1.0g、1.5g、2.0g、2.5g、3.0g等质量的砝码,记录相应这些砝码力F作用下,数字电压表的读数值U.(4)用最小二乘法作直线拟合,求出传感器灵敏度K.
2、 环的测量与清洁
(1)用游标卡尺测量金属圆环的外径D1和内径D2 (关于游标卡尺的使用方法请阅实验1)
(2)环的表面状况与测量结果有很大的关系,实验前应将金属环状吊片在NaOH溶液中浸泡20-30秒,然后用净水洗净。
3、液体的表面张力系数
(1)将金属环状吊片挂在传感器的小钩上,调节升降台,将液体升至靠近环片的下沿,观察环状吊片下沿与待测液面是否平行,如果不平行,将金属环状片取下后,调节吊片上的细丝,使吊片与待测液面平行。
(2)调节容器下的升降台,使其渐渐上升,将环片的下沿部分全部浸没于待测液体,然后反向调节升降台,使液面逐渐下降,这时,金属环片和液面间形成一环形液膜,继续下降液面,测出环形液膜即将拉断前一瞬间数字电压表读数值U1和液膜拉断后一瞬间数字电压表读数值U2。
△U=U1-U2
(3)将实验数据代人公式(2)和(1),求出液体的表面张力系数,并与标准值进行比较。
二、选做部分
测出其他待测液体,如酒精、乙醚、丙酮等在不同浓泄劲时的表面张力系数
三、实验数据和记录
1、传感器灵敏度的测量
表14-1 砝码/g 0.500 1.000 1.500 2.000 2.500 3.000 电压/mV 经最小二乘法拟合得K=_______mV/N,拟合的线性相关系数r=__________
2、水的表面张力系数的测量
金属环外径D1=_________cm,内径D2=_______ cm, 水的温度:θ=________τ.
表14-2 编号 U1/mV U2/mV △U/mV F/N α/N·mˉ1 ; 平均值:α =_______N/m
附:水的表面张力系数的标准值: 水温t/℃ 10 15 20 25 30 α/N.m-1 0.074 22 0.073 22 0.072 25 0.071 79 0.071 18
E. 测定表面张力的方法有哪些
一、 测定方法
液体表面张力的测定方法分静态法和动态法。
静态法,有毛细管上升法、DuNouy吊环法、Wilhelmy盘法、旋滴法、悬滴法、滴体积法、最大气泡压力法;动态法有旋滴法、震荡射流法和悬滴法等。其中毛细管上升法和最大气泡压力法不能用来测液-液界面张力。Wilhelmy 盘法,最大气泡压力法,振荡射流法可以用来测定动态表面张力。
静态法测定表面张力
1、 滴重法
滴重法也叫做滴体积法,这种反分法比较精确而且简便。其基本原理是:自一毛细管滴头滴下液体时,液滴的大小与液体的表面张力有关,即表面张力越大,滴下的液滴也越大,二者存在关系式:
W=2πRγf (1)
γ=W/(2πRf} (2)
式中,W为液滴的重量;
R为毛细管的滴头半径,其值的大小由测量仪器决定;
f为校正系数。一般实验室中测定液滴体积更为方便,
因此式(2)又可写为:
γ=(Vρg/R)×(1/2πf) (3)
式中,V为液滴体积;ρ为液体的密度;f为校正因子。
对于特定的测量仪器和被测液体,R和ρ是固定的,在测量过程中,只要测出数滴液体的体积, 就可计算出该液体的表面张力。
2、毛细管上升法
将一支毛细管插入液体中,液体将沿毛细管上升,升到一定高度后,毛细管内外液体将达到平衡状态,液体就不再上升了。此时,液面对液体所施加的向上的拉力与液体总向下的力相等。则
γ=1/2 ρl−ρg ghrcosθ (1)
式中γ为表面张力;r为毛细管的半径;h为毛细管中液面上升的高度;ρl为测量液体的密度;ρg为气体的密度(空气和蒸气;g为当地的重力加速度;θ为液体与管壁的接触角。若毛细管管径很小,而且θ=0时,则上式(1)可简化为
γ=12ρghr (2)
F. 研究《水的表面张力》实验材料是什么实验方法是什么
实验名称抄:研究水有表面张力
实验材料:若干回形针、玻璃杯、水
实验方法:把回形针一个一个从杯子边缘慢慢放入装满水的杯子里,试一试在水溢出来之前能放多少回形针。
我的发现:杯子里可以放入很多回形针,而且水面鼓起来,像个小馒头,但水没溢出来。
结 论:水有表面张力。
G. 表面张力实验的表面吸附量的求法
正丁醇浓度c的变化导致正丁醇表面张力σ变化。你不是已测得c对应的σ了吗,那就作σ-c曲线(大致形状是单调减,凹)。在横坐标c上去几个值,保证间隔相等。在这几个值对应的曲线上的点处,作曲线的切线。求切线斜率即为该温度下的(dσ/dc)。
有吉布斯吸附方程
Γ= -c(dσ/dc)/(RT)
求得各浓度c对应的 Γ 。
作Γ-c图 处理方法我记得和上一步差不多,我就不细说了,具体由饱和吸附量与浓度的函数关系式决定,书上一般有这个公式,这个我没记清,就不写出来了。
然后由第二个图求出饱和吸附量。实验就完成啦!条件允许的话,最好用软件作图,手工作图压力很大,误差也大。
H. 关于表面张力的实验
1,是表面张力。2,表面张力是液体整个表面受力达到了一个力的平横,如果局部瞬间受力过大,力的作用没来及传达到整个液体的表面,张力就会被破坏,这就是往水面放东西是要慢和轻的道理;表面张力是受力小于液体整个表面的张力物体会浮在上面,大于了张力就会小沉。
I. 急求大学物理实验“液体表面张力系数测定仪”的实验报告!
“液体表面张力系数测定仪”实验报告如下:
一、【实验目的】
(1) 掌握力敏传感器的原理和方法。
(2)了解液体表面的性质,测定液体表面张力系数。
二、【实验原理】
液体具有尽量缩小其表面的趋势,好像液体表面是一张拉紧了的橡皮膜一样。这种沿着表面的、收缩液面的力称之为表面张力。
测量表面张力系数的常用方法:拉脱法、毛细管升高法和液滴测重法等,此试验中采用了拉脱法。
假如在液体中浸入一块薄钢片,则钢片表面附近的液面将高于其它处,如图1所示。
(9)表面张力实验装置使用方法扩展阅读:
实验所需要的器材有:DH4607型液体表面张力系数测定仪;力敏传感器;0.0005kg砝码(7个) ;镊子;砝码盘;圆形吊环;玻璃皿。
实验采用的拉脱法是直接测定法,通常采用物体的弹性形变(伸长或扭转)来量度力的大小。
液体表面层内的分子所处的环境跟液体内部的分子不同。液体内部的每一个分子四周都被同类的其他分子所包围,他所受到的周围分子合力为零。
由于液体上方的气象层的分子很少,表层内每一个分子受到的向上的引力比向下的引力小,合力不为零。
这个力垂直于液面并指向液体内部。所以分子有从液面挤入液体内部的倾向,并使得液体表面自然收缩,直到处于动态平衡。