1. 海底管道维修技术
目前,国际常用的海底管道维修技术,主要有水下干式维修法和水下湿式维修法。该项目重点研制适合渤海大油田海底管道维修作业的水下干式管道维修系统:其最大作业水深为60m;干式舱内可容纳3~5人作业;能够在水质混浊的海区对6″~24″的海底管道进行干式高压焊接维修或其他机构连接器维修。
整个水下干式管道维修系统主要包括:水下干式压力维修作业舱、甲板吊放回收系统、潜水作业支持系统和舱内管道维修设备及工具。图15-28为系统作业示意图。
一、水下干式维修舱
(一)总体设计
按照课题任务要求,参考国外相应系统结构型,水下干式舱系统总体结构参照SPAR/UWH架舱一体形式,基架和舱体为一体结构,干式舱安装于基架内,位置可在基架内进行调节,实现舱管微调对中。基架二端装有机械手,用于管提升、对中和固定。系统配置先进的水下监视、检测、定位、控制和显示等技术。整个系统包括如下子系统:①水下干式舱架结构系统;②舱体调位液压系统;③水下干式舱供电系统;④水下干式舱供配气系统;⑤水下干式舱综合监控系统;⑥水下干式舱内生命支持系统。
(二)高压干式工作舱
水下干式压力维修作业舱由以下系统组成:干式舱基架就位及管子提升系统、干式舱对中移动系统、管子提升系统、舱内生命支持系统、人员运送舱及对口系统、维修舱的吊放及水下就位系统、供气系统、维修监视系统、通讯及信息传输系统等。
图15-31深潜系统主要配置
二、密封技术
单层管结构的海底管道采用国外管道封堵技术(集成),同时,研究双气囊内涨式管道封堵技术。
双层管结构的海底管道将借鉴国外单层管开口封堵技术,研发双层管环行空间开孔封堵技术,实现在干式舱内的实际应用。
三、水下高压干式焊接技术
目前在国外海底管道维修实际作业中,主要采用高压轨道TIG焊接系统进行水下干式焊接,如Aberdeen Subsea Offshore Ltd的OOTO系统、Comex公司的THOR-1系统、STATOIL的IMT系统。
本课题将借鉴国外成熟的水下干式焊接技术,研发高压TIG和高压MMA焊接的焊接工艺和专用焊接设备及消耗材料等等。
2. 高三化学 利用Y型管与其它仪器组合可以进行许多实验(固定装置略)。分析并回答下,谢谢
(1)黄色沉淀 稀释H2SO4
(2)BaSO3 NH4Cl+Ca(OH)2 这题应该还有其他答案
(3)CaC2+2H2O=Ca(OH)2+C2H2 吸收H2S MnO4-/H+(溴水应该也可以吧)
(4)把水准管往上拉(可能还要打开塞子,平衡下压强) 61.54%
水平有限,仅供参考!
3. 海洋石油环境条件观测技术
海洋石油环境条件就是海洋石油生存发展的自然环境条件,按需要可分为工作环境条件、工程设计环境条件及灾害环境条件。工作环境条件,指海洋石油勘探开发生产作业所需要的环境条件。工程设计环境条件,是海上平台、钻井船、输油管道、系泊装置及油气处理终端等各项工程设计环境参数(包括极端环境条件和作业环境条件);灾害环境条件,是海洋石油生产作业区所能遭遇的严重海冰、热带气旋(台风)、风暴潮、灾害地质、地震海啸等自然灾害。这些环境条件,是一项扎实的基础工作,是工程设计的科学依据和海上安全生产的重要保障,更与海洋石油的生存、发展紧密相关。海洋石油环境条件,是应运而生的一门新的学科,随着海洋石油生产的发展,科学技术的不断进步,其实用性和社会效益尤为显著。
一、海上固定平台水文气象自动调查系统
在我国南海西部海域,由于特殊的地理条件,强热带风暴、强冷空气大风、强对流灾害性天气和土台风(即“三强一土”)一直影响着海上油气田的勘探开发正常运行。近年统计,受其影响涠洲油田每年要停产25天左右,钻井作业要停止约550h。为了保证海上油气田建筑设施和工作人员安全,保证在恶劣天气下油气田正常生产,以及检验、修订外载荷的计算公式,提高结构物设计水平,必须掌握海上气象水文要素的时空变化规律,这就需要进行长期、连续的气象水文观测。
要获得海上恶劣天气下的气象水文实测资料,是一项艰巨的任务。过去曾以投放浮标的手段获取气象水文观测;而在平台进行人工操作的观测方法,一但碰到恶劣天气(台风等),操作人员必须撤离平台,难以捕捉到台风完整资料。为了解决以上问题,从20世纪90年代中期开始,中国海油在具有代表性的海区平台上,研究建立了一套自动化程度高的气象水文综合观测系统,使用国外先进的气象水文传感器,研制数据自动采集及通过卫星进行发射、接受系统,配备应急电源设备,使之在恶劣天气下观测到的气象水文资料,能通过卫星及时传递到岸站。岸站具有自动化程度较高的接收功能,经计算机处理,随时能提供给工程设计和生产作业部门。
(一)测量项目与技术指标
主要测量项目有13项,其中气象有风速、风向、气压、气温、湿度;水文测量项目有波高、波周期、波向、(多层)流速、(多层)流向、水位、水温、盐度。另外还设有非工程所需的辅助测量项目,如平台经纬度、系统工作电压、故障报警等,待增测量项目有多层风、腐蚀、环保、浊度等。
1.传感器选择
根据需要确定各种传感器的测量范围及测量精度:①气象传感器引进自动气象站,包括风速、风向、气压、气温、湿度等传感器;②水文传感器引进浪流潮温盐测量仪,包括波高、波周期、波向、流速、流向、水位、水温、盐度等传感器;③多层海浪流测量仪引进可测量流速剖面的声学多普勒剖面海流仪。
2、传感器在生产平台上的安装
传感器在生产平台上的安装方案,是为了保证系统在无人值守情况下长期安全地工作,因此应遵守以下原则:①不影响生产平台作业;②所测到资料的质量能得到保障;③在气象水温要素达到极限时能得到完整资料;④保证仪器不丢失等。
(二)资料采集与设定
1.气象资料
气象资料每整点观测一次,每1´记录一组数据,如风速等,同时记录年、月、日、时、分、1"最大风速、3"最大风速、1´最大风速、2´最大风速、10´最大风速、30´最大风速和60´平均风速、整点前2´最大风速、整点前2´平均风速、整点前2´最大风向、整点前2´内3´最大风速、整点前2´内1´最大风速、整点前10´最大风速、整点前10´平均风速、整点前10´内3´最大风速、整点前10´内1´最大风速、整点前10´内2´最大风速、整点前10´平均风向、整点前10´平均气温、整点前10´平均相对湿度、整点前10´平均气压。以上共16项,利用风速记录的多余通道比原定方案增加u项,更便于计算阵风因子。所谓3"最大风速是指1小时内每3秒取为一组数,求其平均值,共1200个,取其最大者;所谓整点前2´内3´最大风速是指整点前2´内共120个数,每三个一组,取平均值,共40个,挑其最大者,其余类推。
2.浪流潮温盐资料
浪流潮温盐资料一般在平均海平面下8m处左右观测,实际深度需在有观测资料后依资料计算而得,海浪资料为每3h观测一次,每0.2s取一个离散值,每次记录2048个波浪离散值。当2´最大风速大于10.8m/s或有效波高Hs≥4.0m时,改为每小时观测一次;每10min记录一次表层流速、流向、水位、水温和盐度值。
3.多层流观测
多层流观测时仪器探头置于平均海平面下10m左右直到海底,每隔2m观测一层流速、流向。整点后每隔10min记录一次。
(三)微机数据采集与控制
采集好的数据处理后,每天02、05、08、11、14、17、20、23时共8次通过卫星通信发送到岸站。同时,采集原始数据存入固态存储器,容量为存储半年以上的数据。
当2´最大风速大于10.8m/s或有效波高Hs>4.0m时,系统超限自动加密,将数据卫星传输改为每小时一次,超限值也可自动或人工设置。
1.卫星数据传输
海上石油平台与岸站之间采用INMARSAT-C卫星通信,传输平台测量到的各种要素,通信距离可以满足我国任意海域的海洋石油平台与我国任意地点岸站间的数据传输。平台测量数据平均有效接收率不小于90%。INMARSAT-C卫星收发信系统选用美国进口设备。
2.数据接收岸站
①石油平台数据卫星接收岸站设在南海西部石油公司总部;②岸站具有自动接收海上平台发射来的信号并处理打印各种数据的功能;③岸站接收到的数据除打印外还存入硬盘中,以利定期拷贝、存档;④一套岸站设施能够完成多个石油平台发送来的数据接收处理。
3.交直流电源及应急供电系统
配备一套由交流转换成直流供电系统工作的电源以及在台风时平台无人值守情况下,也能使系统正常工作的自动切换控制系统。
4.岸站资料处理软件系统
岸站资料处理软件系统可将岸站接收到的信息打印成报表并绘成时间过程线。
现场试验表明:
a.气象资料由于传感器安装较高,很安全,极少外界干扰,只发生一次受渔网缠断S4电缆影响造成串口被烧,使气象资料记录中断的事故。但这不是气象传感器本身原因所致。
b.S4资料的中断,两次受鱼钩影响,一次受渔网影响,也不是S4仪器本身问题所致。但资料中盐度数据不稳定,资料不好,可能是传感器有故障,已整机送回厂家检修,后重上平台安装使用。
c.ADCP资料,开始受安装条件限制,有资料,但有5层左右受桩腿影响,流的资料不好。后将ADCP外移解决了上述问题,但发生丢失事故。后经改装仪器支架,使仪器外伸约70cm,资料大为好转,现基本不受桩腿影响。
d.岸站工作比较正常,只有受太阳活动等因素影响,气象资料误码2次,共7.9天,误码率为2%~3%,完好率为97.7%,远远超过合同书90%以上的要求。
(四)仪器
主要有:①YOUNG-4X自动气象站一套(包括主机及显示器1件,风速、风向传感器1件,气温、湿度传感器1件,百叶箱1件);②S4ADW浪潮仪1件;③300kHz多普勒剖面海流仪1件;④数据采集仪1件;⑤应急电源1件;⑥卫星发射天线1件;⑦锚碇系统1套;⑧电缆及附件1套。
本项目经3年半的调研、选择传感器、研制数据采集处理系统、研究安装、锚碇方案以及室内试验、近岸试验等各种科研工作,自1999年3月将全套仪器安装到W11-4采油平台上进行现场试验,至2000年11月7日止,共测气象资料18个月;S4资料9.2个月;ADCP资料6.7个月,岸站接收气象资料11.3个月。
二、海底泥温调查
海底泥温调查是一项开创性的工作。穿过几十米乃至几百米的海水探测海床的温度,这在中国海洋调查史上从来没有先例,渤海“JZ20-2海底管线和SZ36-1油田的海底泥温、水温、气温的调查”是第一次尝试。它是为了提供真实的海底泥温设计参数(以往工程设计都将冰底水温假定为海底泥温)。调查结果发现真实的最低海底泥温比冰底水温要低4~6℃,大大地降低工程成本,其经济效益和社会效益十分显著。
(一)秦皇岛(QHD)32-6油田平台场址和海底管道路由海域海底泥温、水温观测
1.调查概况
观测时间为1998年11月10~22日,在QHD32-6油田平台场址和海底管道路由海域共设置海底泥温水温观测点17个。
水温设表、中、底三层观测(表层:0~1m;中层:0.6H;底层:距海底0~1m),泥温观测分为表层0.5、1.O、2.O、3.Om共五层。
2.结果分析
通过对现场实测资料及历史资料进行统计、计算,报告中给出了泥温、水温的统计参数,同时还推算出多年一遇的泥温极值(表17-1)。
表17-1多年一遇的泥温极值(℃)
表17-4不同重现期的最低泥温(℃)
4. 我国海洋石油储运技术是什么
一、海底管道
在我国近40年海上油气田开发中,从最初的油气田内部短距离海底管道发展到各类长距离平台至陆地海底管道,海底管道设计、施工技术都有了长足发展。目前,我国海上油气田的开发工程模式也本上是全海式与半海半陆式。
我国海洋石油工业起步于20世纪60年代,在改革开放前的20多年中,海洋石油人自力更生;改革开放后的30多年中,通过对外合作,引进、吸收国外先进技术与管理经验,中国海洋石油工业实现了跨越式发展,先后在渤海、东海、南海发现并开发了30多个油气田,年产油气当量已超过5000万吨。伴随着海洋石油工业的发展,海洋油气储运事业也得到了长足发展。20多年来,中国海洋石油总公司在我国渤海、东海以及南海先后建设了各类平台60余座,浮式生产储油装置11艘,海底管道2000多千米,陆上油气处理终端6座。可以说,经过20多年来的引进、学习与实践,目前,我国工程技术人员已基本掌握了百米水深以内的海洋油气储运工程技术,并且形成了一些有中国近海特色的专有技术与能力。但是,尽管我国海上已铺设了两千余千米海底管道,但国内设计、施工能力及水平与国际先进水平相比还有很大差距。工程设计方面,国外公司已形成水深近3000米,恶劣海况与复杂海底地貌及地质情况下的设计技术;而国内设计单位仅能涉足百米水深、常规环境下的海管设计;工程施工方面,国内只有两条铺管船,铺设水深百米以内,工程检测与维修方面更是相形见绌。
我国第一条海底输油管道是中日合作开发的埕北油田内部海管。该海管为保温双重管,内管直径6分米,外管直径12分米,长1.6千米。该管道由新日铁公司设计,采用漂浮法施工,1985年建成投产,至今仍在生产。我国第一条长距离油气混输海底管道是1992年建成投产的锦州20-2天然气凝析油混输管道;该管道直径12分米,长48.6千米。这是国内第一条由国内铺管船铺设的海底管道。我国迄今为止最长的海底管道是1995年底建成投产的由南海崖13-1气田至香港的海底输气管道,管道直径28分米,长度787千米,年输气量29亿立方米。由美国JPKenny公司设计,意大利Seipem公司铺设。我国第一条长距离稠油输送海底管道是2001年建成投产的绥中36-1油田中心平台至绥中陆上终端海底管道,该管道长70千米,为双重保温管,内管直径20英寸,外管直径26英寸,年输油量500万吨;所输原油密度0.96克/立方厘米。该管道完全由海总工程公司设计并铺设。它是在总结绥中36-1试验区海管输送的经验基础上建设的。在1987年发现该油田后,在进行油田工程方案可行性研究中曾探讨铺设50千米海底管道将海上原油输送上岸。最后经过国内权威专家及国外公司研究评估认为,该油田所产原油密度高、黏度高,且当时国内外尚无长距离海底管道输送稠油的先例,技术风险大。特别是油田处在辽东湾,冬季气温低,停输再启动风险更大。随即启动了试验区方案,通过1993—1998近5年的生产试验,认为采用双层保温管长距离输送高黏原油是可行的。该长输管道自2001年油田投产以来系统运转正常。可以说,绥中长距离海底输油管道填补了国内外海底长距离输送高黏原油的空白。目前我国海上开发的天然气田,均采用了半海半陆式模式。东海的平湖气田以及南海的崖13-1气田、东方1-1气田等气田生产的天然气在海上平台完成气液分离及天然气脱水后,均通过长输海底管道输送到陆上油气终端进行处理后销给陆上用户(或工业用或民用)。渤海以及南海开发的大部分油田基本上用了全海式工程模式,如渤海的秦皇岛32-6油田、南海的惠州油气田等。在平台生产的油气通过海底管道混输到海式生产储油装置上进行处理、储存、外销。近年来渤海及北部湾油田群的开发也开始采用半海半陆式形式,如渤海的绥中36-1油田、南海的涠洲油田。这些油田生产的油气在平台上进行油气分离及脱水后,通过长距离海管将原油输送到陆上终端处理、储存,并通过码头或单点外销。
此外,中国近海铺设了多条长距离海底管道,如表37-1所示。
表37-2主要长距离管道
此外,我国海底管道技术也取得了长足的进步,其中许多都达到了国际领先水平。这方面尤以海底管道多相混输等新技术的研究特别突出,相信在未来的世界海洋石油储运中,我国将会有更大的发展。多相混输技术在我国具有广阔的市场应用前景,制约多相混输技术应用的主要因素体现在技术本身的不完善和适用程度。我国石油工业迫切需要一整套完善的、适用性强的长距离多相混输技术,以提高海洋油田、滩海油田、沙漠油田和边远外围油田开发的经济效益,从而为石油工业实施低成本战略提供技术支持。
二、浮式生产储油装置
自1986年第一艘海上浮式生产储油装置希望号在南海涠10-3投入使用至今,在海上油气田开发中,先后有11条各类浮式生产储油装置投入使用;1989年在渤海BZ28-1由田投入使用的友谊号浮式生产储油装置是国内设计、建造的第一条海上储油装置。浮式生产储油装置由单点系统系泊在海上,它是在油轮基础上演变过来的。井口平台生产的油气由海底管道输送到单点装置后进入浮式生产储油装置上处理并定期外销。渤海使用的四条浮式生产储油装置,均为国内设计、建造;1989—1992年投产的3条装置储油量在5万~7万吨,2002年秦皇岛油田投产的世纪号储油量达到15万吨。渤海地区应用的浮式生产储油装置的系泊装置均为软刚臂系泊系统,这种设计主要是针对渤海海域水浅,冬季海面有流冰的特殊情况。而南海使用的六条浮式生产储油装置中有五条是由外国公司由旧油轮改造而成的;2002年南海文昌油田投入使用的南海奋进号是由国内设计、建造的15万吨浮式生产储油装置,该装置系泊采用了内转塔式系统,南海使用的浮式生产储油装置基本上采用了类似的系泊装置:浮式生产储油装置是一种简便可靠的海上装置,它集油气处理、成品油储存外输、人员生活居住为一体;1997年投产的陆丰油田采用水下井口系统与浮式生产储油装置组合,实现了一条船开发油田的设想。
2009年6月,我国最大的海上浮式生产储油装置“海洋石油117号”在蓬莱19-3油田投产。该装置又名“渤海蓬勃号”,船体尺寸为323米×63米×32.5米,是全球最大的浮式生产储油装置之一。
三、油轮
在国家能源运输安全战略导向之下,到2010年实现中国油轮船队承运中国年进口原油量50%的目标,中国油轮船队运力需从目前的约900万载重吨迅速扩充到1600万载重吨,因此建造中国自己的远洋运油船队乃至“超级船队”势在必行。
分析师认为,一个国家打造一支自己的超级油轮船队是一项十分庞大、复杂的工程,须由政府主管部门进行政策引导,同时需要航运、石化、造船、金融等相关行业的协作配合。目前,国内几大航运巨头基本都与中国石化集团、中化集团等中国最大的原油进口商之间建立了战略合作关系,签订了长期运输合同。
中国共有七家油运企业,中远集团、中海集团、招商局集团、中国对外贸易运输集团、长江航运集团是“国家五巨头”,民营企业有两家,河北远洋和大连海昌集团。还有一个比较特别的是泰山石化,该公司属于内地起家、境外注册的民营企业。
油轮的建设更涉及我国深水油气田的开发。
深水油气田的开发正在成为世界石油工业的主要增长点和世界科技创新的热点,是世界海洋石油的发展趋势,世界上钻井水深已达2967米,海管铺设水深已达2150米,油田作业水深已达1853米;据有关资料介绍,2000—2004年,世界上新建114座深水设施,深水钻完井1400口;安装水下采油装置1000多套,铺设深水海底管道与立管12000千米;世界各大石油公司对深水油田勘探开发的投入达566亿美元,深水产能提高1倍。严格说,我国尚不具备独立自主开发深水油田的能力。20多年来,我国通过对外合作已基本掌握了开发200米水深以内各类油气田的工程技术。我国最深的海上油田流花油田水深为330米,是1996年由美国阿莫科石油公司开发的。该生产系统由一艘半潜式生产平台与一艘浮式生产储油装置组成,采用了许多当时世界上最先进的技术组合。世界目光已转向深海,西非、巴西外海及墨西哥湾已开始采油,中国油气前景亦寄希望于深水。我国南海有着丰富的油气资源,预计的南海大气田区水深范围在200~300米,海洋石油对外招标区块水深均在300~3000米,因此,走向深水既是世界海洋石油发展趋势,也是中国海洋石油战略目标所在。深水开发不同于浅海,需要更多先进的技术与技术组合;常规的平台及浮式装置深水海管铺设无论技术上还是经济上均已不再适应新的环境,过去的海上作业装置与技术需要更先进的动力定位、ROV等先进装备配合才能完成。
我国大型油轮船队经营正处于起步阶段,绝大部分船公司目前主要致力于加快船队规模的发展,而在安全管理方面,与国际知名公司相比,则处于相对滞后的状态。
对单壳油轮航行,我国海域未做出明确的限制性规定,而我国目前还没有限制单壳船进港,这无疑增加了我国海上溢油事故的隐患,使我国沿海海域面临更大的油污风险。
对于管道和管线系统,水越深,水压越大,立管系统响应越大;而水压越大,海底管道屈曲传播加剧。更严重的是,深水的海管和立管比浅水的重得多,其连接、牵引和安装比浅水域困难得多。
深水温度比较低(3~4℃),油气管道容易形成钠化物结晶和水合物,给管道流动保障带来严重挑战;而高温输送带来的热应力是管道整体屈曲(主要是侧向的蛇形屈曲)的主要原因。
四、发展趋势
国内海上油田的发展有两个趋势,一是向偏远边际小油田发展,二是向更深的水域发展。一些新技术的开发和推广应用将在开发偏远边际油田上起着十分关键的作用,这些新技术代表了海上油田技术发展的趋势。
(1)研究和推广多相流技术。利用多相泵和多相混输,可以扩大集输半径,使边际油田纳入已建的集输系统,充分利用现有已建设施来减少投资和操作费用,使边际小油田开发变得经济有效。目前多相泵在陆地应用已逐步推广,但还未应用于滩海油田建设中。随着计量技术的不断发展,传统的分离计量装置将会逐渐被不分离计量装置所替代。目前,国外已有几十套商业性产品应用于海上油田,而我国在此方面目前正处于研制和试验阶段。
(2)研制轻小高效型设备。由于受海上平台面积和质量的限制,一些轻小高效型设备将会越来越多地应用于海上油田。虽然我国在液液旋流设备研制上取得了一定进展,但与国外水平相比仍有较大差距,因此,轻小高效型设备的研制仍是海上油田技术发展的一个趋势。
(3)平台结构多样化和轻小型化。平台建造在海上油田开发中占有相当大的投资比重,国内外都在致力于开发轻型平台技术以降低投资费用,这是平台建造技术的发展趋势。
(4)海底管道技术及其他配套技术。海底管道敷设技术和单壁管输送技术的推广应用,以及立管技术、水下回接技术、安全与环保等配套技术等是未来降低海上油田开发成本的技术发展趋势。
(5)海洋平台振动及安全分析研究。这也是轻型平台发展需要完善的基础理论研究。
(6)深海油田开发工程配套技术研究。水下连接技术、多相流技术等是深海油田开发技术的发展趋势。
(7)深海油田越来越多地采用FPSO进行海上油田开发。在海上油田偏远的较深水域内采用FPSO进行油田开发,可能是将来开发边际油田的一种选项和趋势。
我国与国外合作开发的油田技术起点高,处于同期国外先进水平。但从整体上来讲,由于我国海洋石油工业起步较晚,与国外先进水平相比,仍有相当大的差距。如深海油田的水下处理技术及设备(如立管技术、水下生产设施)主要依赖进口,设备的高效化、小型化、橇装化与国外相比仍需做进一步的改进,在平台结构形式多样化、简易平台技术发展上还不成熟等,这些都是今后科研工作需要努力的方向。在我国科研经费投入相对不足的情况下,新技术开发应树立有所为、有所不为的思想,积极稳妥地采用新技术、新设备。有所为就是开发一些投入小、效益高、现场较为急需的项目,如轻型平台技术,小型化、高效化和撬装化设备的研制,多相流技术等:有所不为并不是指无所作为,一些投入高、风险大,且国外发展较成熟,技术水平领先的技术,如水下回接技术、水下生产设施、多管径智能清管器技术、腐蚀监控技术、井下分离回注技术等,可以走通过项目引进与合作开发的路子,缩短研制周期,尽快缩小与国外先进水平的差距。如我国的FPSO制造技术,就是通过引进国外先进技术,加以消化吸收,为己所用,迅速达到世界先进水平的典型例子。
从技术发展与生产实际相结合的要求出发,现阶段的技术发展应着重解决以下几个技术问题:
(1)在海上边际油田和已建油田的集输流程改造中,积极推广应用混输泵技术,提高海上油田的集输半径,将一些边际油田纳入已建的集输系统,使边际油田得以经济有效地开发。
(2)加速多相流混相输送和不分离计量技术的研究和应用试验,尽早在海上油田建设中得到应用。
(3)开发和推广应用具有储油能力的小型钢筋混凝土平台和可重复利用桶形基础平台。
(4)参考国外在轻小型平台开发边际油田方面的经验,结合我国情况开发研究适合我国海上油田建设条件的轻小型平台,包括:开展轻型平台风险评估的研究,编制与轻型平台设计相适合的设计规范,提高设计人员素质。
(5)借鉴国外工艺设备轻小型化、一体化特点,进一步开发研制更适合我国海上油田建设特点的轻小型化、一体化高效设备。
5. 高中防倒吸装置图及原理
上小下大,气体能充分吸收,但下面大,液体吸不上。
有缺陷,离水面一段距离液内体吸不上,但气体会污染空气。
下面小管容会吸液体,但吸到烧瓶后由于进气管在上方,不会影响进。
原理类似C,液体之多吸到烧瓶钟。
进气后会被吸收,右边保持内外压强相等,能进气,如果左边进气快后,内部压强增大,液体会被压入右边
原理与类似。
剩下没标字母的原理都类似,但最后个注意下,气体通入后,开始不会吸收也不倒吸,但气体出了CCL4,到水中被吸收,但由于与导管不接触。
6. 总体开发方案(ODP)
一、及时开展现场工程项目调查与评价,为钻完井和海上工程设计提供设计依据
在可行性研究阶段提出了通过优化的油气田开发可行性方案,这个方案构成了ODP的基本框架,在总体开发方案研究阶段一般不会变,实际上也不允许有大变化。比如生产平台数量和位置、油气集输方式、建成的生产规模等。因为有些与此有关的工程项目需要在ODP立项后及时开展,而这些项目将要发生相当的费用。
(一)环境影响评价报告
环评报告是海洋油气田总体开发方案向国家申报时的必备文件。报告由经国家环保局认证的具有环境影响评价证书的部门撰写,其目的旨在查明油田海区的环境质量现状;预测油田开发各阶段所产生的废弃物对海洋环境的影响;分析发生事故性溢油的可能性及对海洋环境的可能影响;分析减缓不利影响措施的有效性和可行性,以便从环境保护角度论证开发项目的可行性,为油气田各开发阶段的环境保护和管理提供依据。这是一项专业性甚强而且工程量很大的工作,需要委托海洋系统知名单位承担。
通常评价范围限于海上结构物周围和海管周围几公里,需要发生近百万元的费用,周期要几个月。为了不影响ODP进度,有时这项工作在可行性研究阶段就已经开始,因此方案的框架是不容改变的。
(二)平台场址及海底管道路由的工程地质勘察
海上油气田ODP立项后,必须对平台场址、海底管道进行工程地质和工程物探调查。其目的是查明作业海区内海底地形、地貌形态,探明中浅地层结构、构造及潜在的各种灾难性地质现象,为桩基平台和海底管道路由提供工程设计、海管铺设、平台安装所需要的土质参数和设计资料。对于平台需要提供以平台为中心500~800m半径范围内与海上工程施工与平台安装有关的地质条件;对于路由区主要对海管中心线300~500m的条带状范围的水深、地貌及0~25m深度内的地层特征加以解释和分析。另外还要对作业海区内的环境参数进行调查。这项工作由于工程量大、周期长,因此费用较高。根据调查后得到的信息,除非万不得已不会对方案进行改变。
(三)海管登陆点与油气集输终端场址的工程地质勘察
半海半陆式的集输方式选择的登陆点和陆上终端,一般是在港口或有利于建设码头的区域,通过登陆点和终端场地的地形地貌、构造、场地地层、水文地质状况勘查,对工程地质做出评价,为陆上终端提供必要的设计参数。因为这项工作也要有一定的野外作业量,因此在立项后应立即进行。
二、专业紧密衔接与配合,提高总体开发方案的质量
油气田总体开发方案描述了油气资源从地下到地面直到形成商品的完整过程,各个专业之间的关系是很紧密的,在项目运行中不仅要考虑本专业的技术和经济问题,也要全面考虑与其他专业相互沟通,及时调整思路和方案,只有这样才能全面提高ODP质量。
a.选定的油气藏方案向钻完井和海上工程提供有关的设计参数,如井数、井位、层位、开采方式、建设规模、预测的生产指标、投产程序、开采过程中的调整等,给出开发方案的风险分析,提出实施要求。
b.钻完井及采油工艺以油藏方案为基础,充分考虑油藏对钻完井的实施要求,以采用先进技术和节省为准则优化钻井设计、选择完井方式、确定生产方式、计算生产井井口参数以及采用机械采油和人工注水的用电量、选择修井机类型等。向海上工程提供设计参数,并作出钻完井费用估算,提供给经济专业。
c.海上工程的概念设计主要是确认设计依据和基础资料,工艺系统(中心平台和井口平台)流程设计及物热平衡计算,公用系统(海水系统、淡水系统、发电机电力系统、消防救生系统、燃料系统、排放系统、通信系统、仪表控制及火灾探测系统等)流程设计及设施选型计算,海管工艺计算及结构设计,导管架、组块、生活模块、单点等海上工程结构设计,浮式生产储油装置主要尺度性能论证,单点形式论证及选择,陆地终端的初步设计并作出投资估算,提供给经济专业。
d.生产作业安排确定海上平台及陆上终端生产组织机构和人数,提供给工程设计,确定住房规模,描述各岗位工作职责,提出操作要点和安全管理要点等。
e.安全分析的主要内容是审查项目使用的各种规范是否具有权威性,对生产设施可能造成危害的因素、后果及对策进行研究,对生产设施生存条件及作业条件进行分析,提出安全保护系统、消防救生系统和救护医疗设施设置并予以说明(提供给工程设计人员进行平台布置),安全设施对人员的技术要求,最终要提出存在的问题和建议等。
f.项目设计必须遵循国家对海洋石油勘探开发的海洋环境保护法规、标准。ODP中的海洋环境保护主要描述污染源和主要污染物(钻井阶段、海底管线铺设阶段、平台就位/安装/调试阶段、生产阶段),对环境污染进行风险分析(溢油或溢气),并提出防范措施,提出控制与治理污染的初步方案,作出环境保护的投资估算,提供给经济评价。
g.经济评价主要审查和汇总各个专业提供的投资估算,清查有无漏项、重复或预算过高;确定开发期间的年度操作费;对于可形成商品部分的油气预测价格变化;研究货币比价和利率;研究勘探费用的分配和开发费用的回收方式等与经济评价有关的内容。根据逐年开发指标和操作费找出盈亏平衡点,确定经济开采年限和油气田的经济采收率,计算投资回收期和投资回报率,通过各种重要参数的敏感性分析研究方案的抗风险能力。
h.最后要编制出开发工程进度计划表。包括从基本设计开始直到平台投产各个实施阶段衔接的时间安排,包括海上设施(平台、管线、平台上部设施)的采办、建造、安装、调试及钻井、完井、平台投产等。定出关键的时间点,以保证油气田的准时投产。
三、进行方案全方位优化,降低开发投资
相对于项目实施阶段的投资预算和决算而言,ODP编制阶段对投资的预测称为估算。由于在总公司内部方案一旦经审查通过并决定实施,此ODP就有“法律”效应,在实施过程中方案不容随意修改,投资不容突破,所以技术上要考虑全面,投资估算要有相当的准确度,既不要由于投资估计过高而减低了项目的经济性,甚至使本来有效益的项目无法启动,也不能由于投资估计太低而使项目启动后无法操作。想方设法降低投资估算是油气田开发取得较高回报率的基础,因此每一个专业在自己的研究领域内不仅要考虑技术先进性、可行性和实用性,更重要的要考虑经济性。经验告诉我们,只有在每一环节都注意到节省投资,才能使整个项目获得最好的经济效益,因此在研究ODP时各个专业都必须不断进行技术和经济之间的平衡,反复优化方案。
(一)油藏方案
油藏方案是油气田开发的基础,在海上一个好的油藏方案,首先应当是地下资源尽量多采出,其次就是要为节省投资创造条件。海上油藏方案历来着重研究如何在较少井数情况下获得高产。井数少可使钻井投资少、平台结构规模小、采油设施装备少,使工程建设投资减少;油气田投产后操作费少;追求初期产量高可以提高投资回收率,缩短投资回收期,有效缩短开发年限。因此海上油气田开发的油藏方案应突破一些传统的观念。
1.立足于少井高产
海上已投产的油气田生产井井网密度都很小,单井控制储量都很大,已投产和正在建设的5个重质油油田平均每平方公里只有3.46口生产井(包括注水井),单井控制储量平均127.5×104t;23个轻质油油田统计井网密度只有1.35口/km2,单井控制储量平均146×104t;5个气田统计井网密度0.122口/km2、单井控制储量平均为43.8×108m3。
在如此的井网密度下设计的采油速度和实际的油田高峰年产量都远远大于陆上同类油气田。统计已投产和待投产的重质油油田平均采油速度2.09%,轻质油田采油速度平均6.12%,最高的达到13%以上。大气田的采气速度也很高,南海西部崖城13-1气田采气速度高达6%以上。少井高产的实现,除了得天独厚的地质条件外,重要的是对油气田开发某些问题观念的转变。
少井高速度是海上油气田的开发原则。对于采油速度与稳产期关系的理解也是在开发实践中不断改变着人们的认识的。南海东部20世纪90年代初期投产的几个高速开采油田,实际的采油速度都比方案设计的高。实践证明,高速开采并没有降低原油采收率,而使开发年限缩短、投资尽早回收,从而获得非常好的经济效益。到90年代中期,投产的油气田从编制开发方案开始,就将少井高产作为海上油气田的开发原则,基本改变了过去油气田开发始终追求“长期稳产高产”的开发方针。
2.一套井网开采多套油层,减少生产井数
多油层油田开发历来的做法是,针对储层的非均质性,采用多套井网细分开发层系。这当然是解决层间矛盾最好和最有效的办法,但另一方面势必要增加很多井数。海上油田基本上是采用一套井网开采多套油层,在开发程序和采油工艺上,想办法减缓由于一套井网带来的采收率损失。位于南海东部的惠州26-1油田用一套井网、20口开发井,分3个阶段(单层开采、分层系开采和跨层系混采阶段),利用补孔技术实现了含油井段长635m、9套储层的分采。经9年开采,采出程度为35.2%,其中主力层高达40%以上。位于渤海的绥中36-1重质油油田,也是用一套350m井距的反九点井网,合采了含油井段长达400m包括14油层组的两大套储层物性和流体特性均有较大差别的油藏。由于储层岩性疏松无法分阶段补孔,采用分3段防砂、每段之间用滑套控制,实现分3段开采,生产试验区7年采出程度达到102%。
油气田开发过程中的调整是改善开发效果不可缺少的重要手段。海上油气田在开发过程中由于条件所限不允许大批量补充钻井,原因之一是平台不能为调整井的钻井、投产预留出足够的空间,包括足够的井槽和扩容设备的安装场地,平台结构不能承受由于井数的增加带来的载荷太大增加;其二是钻井困难,因为调整井井位位于初期井网的生产井之间,而海上油气田钻井轨迹设计必须与初期井网同时进行,尽管如此,在实施调整井钻井作业时钻头在丛式井中间安全穿行也是相当困难的,钻井费用也会大大增加。因此,海上油气田要做到经济有效地开发,必须立足于一次井网。立足于一次井网不等于开发过程中不做任何调整。随着钻井和采油技术的不断发展,海上油气田的开发调整措施以在原井眼进行为主,主要是利用无价值生产井侧钻或平台上的预留井槽钻个别补充井。海上油气田非常重视一次井网的部署,基本思路是,在保证主力油层储量得到充分动用的前提下,尽量照顾非主力油层的开发,对于一次井网不好控制的地区和储层,要考虑为将来使用的措施创造条件。对于产量低的低效井,在井网优化过程中坚决去掉。厚度薄、储量丰度小的地区,一次井网不布井。
例如,渤海的重质油油田绥中36-1、锦州9-3、秦皇岛32-6等储量比较大的油田,在油田边部油层厚度小于15m的地区都没有布井,准备后期利用边部井向外侧钻水平井或大角度斜井增加动用储量。南海东部的惠州26-1油田共有独立的9套储层,开发方案设计15口采油井和5口注水井,初期动用5套主力储层,储量占74%。1991~1992年陆续投产,通过生产认识到油藏水驱能量充足,不需要注水,20口井全部为生产井。油田最高采油速度6%,5%以上的采油速度维持了将近4年。1996年油田含水上升到大约60%,利用高含水的老井眼侧钻了5口水平井,配合补孔进行开发层系的调整,在没有增加井口的情况下,使动用储量达到了100%,有效地改善了开发效果,采油速度始终稳定在4%左右。截止到2000年底,全油田采出程度达到39.48%、综合含水74.2%。
3.人工举升增大生产压差,提高采油速度
对于有自喷能力的井,过去的做法是尽量保持自喷。而海上油田开发采用机械采油,不仅仅是因为油井停喷,一个非常重要的原因是为了增大生产压差达到提高单井产量的目的。南海惠州油田群产能高、边水和底水的能量充足,但在制定开发方案时,为了达到单井高产,还是设计了气举采油(实施时为自喷、气举、泵抽并举),开发初期平均单井产油量达到300~400t/d。渤海的绥中36-1、锦州9-3、歧口18-1等油田,油井都具有一定的自喷能力,为了达到较高的采油速度,开发方案都设计为机械采油。
4.充分合理利用天然能量,节省投资
海上油田开发考虑尽量不使天然能量浪费掉。例如惠州油田群除利用边水、底水能量驱油外,还利用位于油藏上部的气藏作为气源进行气举采油;绥中36-1油田、秦皇岛32-6油田,利用位于东营组油藏上部的馆陶组水藏作为注水水源进行人工注水;平台产出的溶解气用于发电和其他平台自用;多余的产出气通过经济评价,有条件的可以作为商品销售(渤海歧口18-1油田群产出溶解气向天津市供应)。
5.油田的联合群体开发
油田联合群体开发使不能单独启动的小型油田创造了非常好的经济效益。在评价阶段,特别注意被评价油气田周围的小构造,可以建议优先勘探,或在开发过程中兼探,一旦有所发现,它们可以作为群体共用一套生产设施,将大大改善这些油气田的经济效益。比如惠州21-1油田,编制开发方案时按可采储量所做的经济评价结果属于边际油田,当时为了使其经济可行,除采用了高速开采、生产井合采的措施外,还将生产设施放置于油轮上以减少平台的体积与重量,就是这一点为联合开发创造了条件。在惠州21-1油田投入开发之后,在其周边又发现了惠州26-1、惠州32-2、惠州32-3、惠州32-5、惠州26-1北油田,其中除惠州26-1外均无单独开采价值,但由于有惠州21-1现存的生产油轮、公用系统生产装置和管线等,使这些油田在投入非常少的情况下很快投入开发并很快收回投资。
(二)钻井、完井、采油工艺
钻完井和采油工艺设计是总体开发方案的第二项重要内容,也是估算投资的开始。海上油气田一般钻完井及采油工艺费用要占总投资的1/3~1/2,因此要在尽量满足油藏要求的前提下,千方百计地降低钻完井成本,促进设备器材国产化。降低成本有两个含义:一是降低初期的一次投资;另外还要考虑投产后的二次或多次投资,即考虑工程质量和设备寿命,因为海上油气田修井的费用要比陆地高得多。
钻井方面由于全部为定向井或水平井,因此设计上要优化钻井轨迹、优化井身结构,以节省管材和减少钻井难度,为优质快速创造条件。
完井方面主要是对需要特殊完井工艺的油气井进行专项研究,特殊完井工艺比正常的套管射孔完井技术上要复杂、费用上要增加,专项研究的目的是确定特殊完井工艺的必要性。由于海上油气井完井的任何措施必须在投产前全部完成,没有办法投产后补救,所以这种专项研究尤为重要。比如东方1-1气田,气体组分中含有CO2,编制ODP时对生产气井的防腐问题进行了专门研究,通过多种井下防腐方法对比研究,认为采用防腐管材及井下工具是惟一的方法。根据NACE(美国全国防腐工程师协会)制定的标准和日本 NKK公司的研究结果,确定6口井井下装置和流道部分采用Cr13合金钢,其余井采用1Y80材质,这样不同井不同对待比全部采用Cr13要节省很多费用。该气田气井测试时没有明显的出砂现象,但从岩石结构上看,在高速开采条件下可能出砂,为此进行了出砂预测研究,并请美国 AR-CO公司和英国EPS公司做了气井的出砂预测。结果表明,水平井下割缝管完井出砂的临界生产压差大约是常规井套管射孔的2倍,生产过程中生产井设计的生产压差远远小于临界压差,因此水平井产层部分采用裸眼加割缝管及盲管完井,有一定的防砂功能,这样使完井费节省了几百万美元。
采油工艺设计方面,既要考虑设备长期的实用性,也要考虑设备的寿命,因为采油是一个漫长的过程,即便在海上也要15~20年,所以要选择性能好、已经成熟的工艺技术,虽然一次投资较大,但后期投资小且能降低操作费,费用多些也不为过。
(三)海上工程概念设计
海上工程概念设计是开发项目中主要的投资对象,一个大项目的工程投资要占总投资的1/2~2/3,由于内容多、涉及的专业多,所以必须本着少花钱多办事和办好事的原则来优化每一项设计。要点是定准设计基础,选好设计参数,正确理解和使用规范,优化设计、减少设施,简化流程、优化布置,推进设备国产化。平台、FPSO和海管是海上油气田开发的3大主体工程,影响它们结构设计基础的首先是所处海域的环境条件,而环境条件是会随时间变化的,有一定的规律性也有一定的偶然性。如海况中的海流、波浪,气象中的风速等,都有不同年份(5年、10年,直到100年)的重现期,我们要从这些大量统计数据分析中,选好合适的设计参数,这对结构设计是很重要的。海上油气田通过多年开发实践认识到,像平台、海管这样的永久性装置,只要在生产期限内满足生产要求并保证安全就可以了,因此根据所处海域实际情况合理慎重选用设计参数,可以大量节省投资。当外界自然条件对这些永久性装置的定量影响确定之后,余下的就是根据油气田开发本身的参数来进一步优化结构设计了。概念设计要执行国家和中国海油企业有关的法律、法规,以及结构、机械设施、电气、仪表、消防、通讯等的国际标准、国家标准和企业标准。特别是环保和安全要严格按照国家的法律与法规执行,因为概念设计是基本设计的基础,项目的基本设计要通过国际或国内知名船级社的审核,油气田投产前要通过国家环保局和国家安全办公室审查,如果没有达到标准将需要进行整改,以致油气田无法按时投产,这将会在经济上造成不必要的损失。
在概念设计阶段除永久性结构物设计外,降低投资的途径主要是优化平台设施,包括集输方式的优化、总系统工程优化、公用系统优化、平台设施平面布置优化、工艺流程优化等。比如绥中36-1油田二期工程,在概念设计时对集输方式是采用全海式还是半海半陆式进行了反复优化。全海式对于绥中36-1油田,我们有试验区近5年开发的成功经验,半海半陆式对于离岸不算太远、储量规模几亿吨的大型重质油油田来说是有许多好处,但要涉及许多过去没有碰到的问题,像登陆点问题、终端问题、征地问题、码头改造问题、重质油的长输管线问题、近海岸线的排污问题以及与地方行政的关系等都必须重新研究。为此组织力量对多个问题同时开展研究,在确认了技术上可行之后,硬是在总体投资上做到与全海式大致相当,但从长远利益考虑节省了海上部分的操作费,总体经济效益要好于全海式。目前该油田已按半海半陆的集输方式于2000年底顺利投产。
海上油气田总体开发方案研究是一项系统工程,涉及多个专业、多个工种、多项高新技术,过程中需要多次平衡优化,目的是达到油气田的高效和高速开发。
7. 海底管道如何设计
在海底铺设输送石油和天然气管道的工程。海洋管道包括海底油、气集输管道,干线管道和附属的增压平台,以及管道与平台连接的主管等部分。其作用是将海上油、气田所开采出来的石油或天然气汇集起来,输往系泊油船的单点系泊或输往陆上油、气库站。海洋油、气管道的输送工艺与陆上管道相同。海洋管道工程在海域中进行,工程施工的方法则与陆上管道线路工程不同。
沿革 20世纪50年代初期,人们开始在浅海水域中寻找石油和天然气。随着海洋油气田的开发,首先出现了海洋输气管道。天然气必须依靠海洋管道外输,浅海中采出来的原油则可由生产平台直接装入油船。在深海中采出来的原油,大型油船停靠生产平台会威胁到平台安全,因此出现了海中专用于停靠大型油船的单点系泊。这样,就要有连接各生产平台与单点系泊之间的输油管道。70年代,在海域中开发了大型油气田以后,开始建设了大型海洋油气管道,把开采的油气直接输往陆上油气库站。
特点 主要特点是:①施工投资大。在一般海域中铺设一条中等口径的海洋管道需要一支由铺管船、开沟船和10余只辅助作业的拖船组成庞大的专业船队。此外,还需要供应材料、设备和燃料的船只等。租用专业船队的费用是海洋管道施工中的主要费用,由于这一费用较高,致使海洋管道施工费用比陆上同类管道要高1~2倍。②施工质量要求高。不论是在施工期间或投产以后,海洋管道若发生事故,其维修比陆上管道维修困难得多,因此,海洋管道施工要确保质量。③施工环境多变。海况变化剧烈而迅速,如风浪过大,施工船队难以保持稳定。在这种情况下,往往须将施工的管道下放到海底,待风浪过后再恢复施工。④施工组织复杂。海洋管道施工中,管道的预制,船队的配件、燃料和淡水的供应等,都需要依靠岸上的基地;船队位置和移动方向的确定,也是依靠岸上基地的电台给予紧密配合。因此海洋管道施工具有海陆联合组织施工的特点。
勘察 包括路由选择和勘测、海浪和水流调查。
路由选择和勘测 寻找一条较平坦、地质条件又稳定的海下走廊是保证管道长期稳定的基础。首先是在详细的海图上选出几条走向。其次沿着各条走向用声纳测深仪实测海底地形;用覆盖层探测仪和侧向声纳扫描仪,描绘出几十米深的纵断面工程地质图,探明海底泥层的构成、岩性、断层位置以及有无埋设其他管道等。然后将所取得的几条走向资料进行对比,以确定最优的路由。路由确定后,沿着确定的路由从海底中取出土样,测定土壤的抗剪切力、致密度和比重等,以便用这些数据来确定管道施工方案。
海浪和水流调查 海洋管道施工受到海浪的直接干扰,因此,必须详细勘察施工海域内不同季节海浪的发生周期、持续时间、方向、浪高、波长以及频率等;并须取得多年的资料作为选择施工用的船型、安排施工季节和进度的依据。海浪勘测可采用海浪记录仪。
水流会影响管道施工时的安全和管道投产后的稳定性。施工前应沿着路由实测海水流速的垂直分布和流向等,并收集多年各季度的实测资料,从而对管道的稳定性、振动进行核算。管道在水下承受多种作用力,尤其是水流的作用力,其中包括水平推力和上举力。在垂直方向上,只有管道的重量大于上举力和浮力时,管道才能稳定。当管道裸露铺设在起伏不平的海床上,水流流过管道的悬空段时,管道容易产生振动,甚至导致断裂。测出海底处海水流速,就可以计算出最大允许悬空段的长度。增加管道重量仍难克服水流对管道的作用力时,应采取开沟埋设或其他稳管措施。
施工作业 海洋管道施工包括海上定位、铺设管道和开沟等项作业。
海上定位 指导铺管船沿着路由方向移动和确定在海域中施工船队位置的作业。海上定位的方法是在岸上设置两座以上已知其经纬度的定向电台,定向电台发射微波定向信号。作业船上安装有无线电定向仪,可以精确地测定船与岸上各电台间的夹角,从而准确地测出船所在的位置。在近海作业时可以用微波发射信号;在远海作业时一般用 200米的无线电长波发射信号。这两种方法均能达到铺管作业定位所需要的精度。
铺管作业 海洋管道铺设作业是由陆上管道穿越河流、湖泊水域的施工方法发展起来的。铺管作业主要有三种方法:铺管船铺设、牵引法铺设和用卷筒船铺设。作业过程中选择何种方法是根据管径大小、海水深浅、海况和距岸远近等条件确定的。近年来海洋油气田探勘接近千米深的海域,海洋管道施工技术正向这一深度发展。70年代末期已能在600米深的海域中铺设管道。
①铺管船铺设。这种方法最为常用。50年代在开发浅海区油气田时,多采用人工开出一条能通行浅水船的河道,并在一种用浮箱拼装而成的铺管驳船上,把管子组装起来,当驳船向后移动时,焊接好的管段即滑入水中。这种铺管驳船逐步发展成为大型铺管船。1956年第一艘较大型的铺管船投入使用。船上可以堆放管材,设有吊运管子的起重设备和管段的组装线,还有托管架作为管段下海的滑道。这种铺管船锚定技术较完善,可在30米深的海域作业。此后,铺管船不断地发展,出现了具有自航能力,可铺设更大口径的管道,能在较深的海域作业的自航式铺管船。1965年在开发大西洋的北海油气田时,这种类型的铺管船因抗风浪能力差,不能适应北海区的海况,作业经常被中断,经过改革船体结构,制成半潜式铺管船,加强了抗风浪能力。70年代初期“乔克陶Ⅰ”号半潜式铺管船在澳大利亚的巴斯海峡投入使用,证明半潜式铺管船稳定性好,并能在120~180米深海中进行铺管作业。1979年半潜式“卡斯特罗”号铺管船,在建设由非洲阿尔及利亚经突尼斯穿过突尼斯海峡通向欧洲意大利的输气管道时,成功地在608米深的海域中铺设了500毫米管径的管道。
铺管作业过程是将管子经陆上预制厂加上水泥加重层后,用船运到铺管船上,将管子逐段组装焊接,焊好的管段在铺管船向前移动时,从船尾部的托管架上滑入海中。整个铺管作业的过程中,管段下滑的长度必须与船的位移量同步,同时,铺管船必须处于较稳定的状态。为此,在铺管船的前后左右布置有4~6个船锚,调节锚缆的松紧可稳定船只;调节锚缆的长短可移动船位。管段自托管架的尾部滑向海底时,悬吊在海水中形成一个由上拱弯转为下弯曲的S形,使管段受到复杂的弯曲应力的作用,此外,还受到浪涌和水流的冲击力的作用。为了使管段不产生永久变形,须用托管架保持上拱弯尽可能大的弯曲半径,并使下弯曲处处于容许弯曲应力的范围以内。因此船上有能力足够的张力机夹住管段,使之不能自由滑动,并且使管段下滑同船的位移距离一致。