A. 卸料装置的结构形式
星型卸来料器的内部结构很简单,星源型卸料器适用于粉状物料和颗料状物料,是除尘设备排灰、送风和其它设备给料的主要设备。
星型卸料器常用在气力输出系统中,对于压力输出系统或负压输出系统, 星型卸料器可以均匀,连续地向输料管供料, 以保证气力输出管内的气、固体比较稳定, 从而使气力输送能正常工作, 同时,又能将卸料器的上、 下部气压隔断而起到锁气作用。
星型卸料器结构紧凑,运转平稳,噪音低,由于轴承、齿箱离开壳体一段距离,对于高温、润滑都有较大改善。按卸料位置分为库侧卸料和库底卸料,库底卸料均化效果好一些。
2、按卸料通风设备分有电动球阀通风卸料和机械回转式通风卸料装置YJD系列星型卸灰阀(星型卸料器),又名电动卸灰阀,它由电机、齿差街上星减速器或针轮摆线减速机与转龙式卸料器三部分组成。本公司卸料器有60种规格,依托泊头铸造名城优异的铸件品质先进的设计理念,在原铸造件的基础增加了检查孔,更便于用户在操作过程中随时观察进灰卸灰情况,保证除尘器卸灰装置正常运行。星型卸料器的进出口法口法兰有方形和圆形法兰两种。可根据客户要求制定各种高温卸灰阀、防腐卸灰阀
B. 常用的卸料装置有哪几种在使用上有何区别
固定卸料和弹性卸料2种。 固定卸料就是卸料板和凹模固定在一起,料冲卸料板和凹模中间的缝穿过。 弹性卸料是卸料板在凸模那边,一般用橡皮垫起来的。
C. 汽车冲压件的设计原则有什么需要注意的
汽车冲压件,顾名思义,就是构成汽车零部件的金属冲压件。在汽车冲压件中,一部分经冲压后直接成为汽车零部件,另一部分经冲压后还需经过焊接、或机械加工、或油漆等工艺加工后才能成为汽车零部件。汽车冲压件品种繁多,如汽车减震器冲压件弹簧托盘、弹簧座、弹簧托架、端盖、封盖、压缩阀盖、压缩阀套、油封座、底盖、防尘盖、叶轮、油筒、支耳、支架等都属于汽车冲压件。各型冲压件的设计原则因其使用范围的不同也有所差异,下面简单介绍下汽车冲压件的设计需要注意哪些问题:
(1)冲压件必须满足产品使用和技术性能,并能便于组装及修配。
(2)冲压件必须有利于提高金属材料的利用率,减少材料的品种和规格,尽可能降低材料的消耗。在质量完全符合标准的情况下采用价格低廉的材料,尽可能使零件做到无废料及少废料冲裁。
(3)冲压件必须形状简单,结构合理以有利于简化模具结构。
(4)冲压件的成型工序简单,减少再用其他方法加工,并有利于冲压操作,便于组织实现机械化与自动化生产,以提高劳动生产率。
(5)冲压件在保证能正常使用情况下,尽量使尺寸精度等级及表面粗糙度等级要求低一些,并有利于产品的互换,减少废品、保证产品质量稳定。
(6)冲压件应有利于尽可能使用现有设备、工艺装备以及工艺流程对其进行加工,并有利于冲模使用寿命的延长。
以上就是汽车冲压件设计的一些需要注意的问题,良好的设计可以在保证工件质量的同时大幅度的降低生产成本。
D. 模具设计总结
1.塑性变形体积不变条件,塑性变形时,物体体积的变化与平均应力成正比。 ,其产生的主应变图可能有三类:1.具有一个正应变及负应变;2.具有一个负应变和两个正应变;3.一个主应变为零,另两个应变之大小相等符号相反。
2.冲裁是利用模具使板料产生分离的一种冲压工序,冲裁是最基本的冲压工序。冲裁是分离工序的总称,她包括落料、冲孔、切断、修边、切舌、弯曲等多种工序。一般来说,冲裁主要是指落料和冲孔工序。
3.冲裁的变形过程:1.弹性变形阶段(变形区内部材料应力小于屈服应力 );2.塑性变形阶段(变形区内部材料应力大于屈服应力);3.断裂分离阶段(变形区内部材料应力大于强度极限) 。
4.冲裁断面可分为明显的四个部分:塌角、光亮、毛面和毛刺。
5.冲裁件质量:指断面状况、尺寸精度和形状误差。在影响冲裁件质量的组成因素中,间隙时主要的因素之一。冲裁件的断面质量主要指塌角的大小、光面约占板厚的比例、毛面的斜角大小及毛刺等。间隙合适时,冲裁时上下刃口处所产生的剪切裂纹基本重合,这时光面约占板厚的1/2~1/3,切断面的塌角、毛刺和斜度均很小,完全基本满足一般冲裁件的要求。间隙过小时,凸模刃口处的裂纹比合理间隙时向外错开一段距离;间隙过大时,凸模刃口处的裂纹比合理间隙时向内错开一段距离,材料的弯曲与拉申增大,拉应力增大,塑性变形阶段较早结束,致使断面光面减小,塌角与斜度增大,形成厚而大的拉长毛刺,且难以去除,同时冲裁件的翘曲现象严重,影响生产的正常进行。(材料的相对厚度越大,弹性变形量越小,因而制件的精度也越高。冲裁件尺寸越小,形状越简单则精度越高。)
凸凹模刃口尺寸计算的依据和计算准则:在冲裁件尺寸的测量和是使用中,都是以光面的尺寸为基准。落料件的光面是因凹模刃口挤切材料产生的,而孔的光面是凸模刃口挤切材料产生的。故计算刃口尺寸时,应按落料和冲孔两种情况分别进行,其原则如下:1.落料:落料件光面尺寸与凹模尺寸相等,故应与凹模尺寸为为基准(落料凹模基本尺寸应去工件尺寸公差范围内的较小尺寸。);2.冲孔:工件光面的孔径与凸模尺寸相等,故应与凸模尺寸为基准。(因冲孔的尺寸会随凸模的磨损而减小,故冲孔凸模基本尺寸应去工件孔尺寸公差范围内的较大尺寸);3.孔心距:当工件上需要冲制多个孔时,孔心距的尺寸精度由凹模孔心距保证。4.冲模刃口制造公差:凸凹模刃口尺寸精度的选择应以能保证工件的精度要求为准,保证合理的凹凸模间隙值,保证模具一定的使用寿命。5.工件尺寸公差与冲模刃口尺寸的制造偏差原则上都应按“入体”原则标注为单向公差。但对于磨损后无变化的尺寸,一般标注双向偏差。
7.冲裁件在条料、带料或板料的布置方法叫排样。冲裁件的实际面积与所用板料面积的百分比叫做材料的利用率,它是衡量合理利用材料的技术经济指标。
8.冲裁所产生的废料可分为两类:一是结构废料,是由冲件的形状特点产生的;二是由于冲件之间和冲件与条料侧边之间的搭边以及料头、料尾和边料而产生的废料,称为工艺废料。
9.排样方法:有废料排样、少废料排样、无废料排样。
10.搭边值的确定:排样时冲裁件之间以及冲裁件与条料侧边之间留下的工艺废料叫做搭边。搭边的有两个作用:一是补偿了定位误差和剪板误差,,确保冲出合格零件;二是可以增加条料刚度,方便条料送进,提高劳动生产率。
11.冲模压力中心的确定:冲压力合力的作用点称为模具的压力中心。模具的压力中心应该压力机滑块的中心线。
12.冲裁模具的分类:1.单工序模:无导向单工序冲裁模,导板式单工序冲裁模,导柱式单工序冲裁模;2.级进模是在压力机一次行程中,在模具的不同位置上同时完成数道冲压工序:固定挡料销和导正销定位的级进模,测刃定距的级进模;3.复合模是在压力机的一次行程中,在一副模具的统一位置上完成数道冲压工序:根据安装位置不同(凸模、凹模)正装式复合模、倒装式复合模;
13. 模具强度对排样的要求:孔距小的冲件,其孔要分步冲出,工位之间凹模壁厚小的,应增设空步,外形复杂的冲件应分步冲出,以简化凸、凹模形状,增强其强度,便于加工和装配,测刃的位置应尽量避免导致凸凹模局部工件而损坏刃口。
14.从正装式和倒装式复合模具结构分析中可以看出,两者各有优缺点。正装式较适用于冲制材料较软的或板料较薄的平直度要求较高的冲裁件,还可以冲制孔边距离较小的冲裁件。而倒装式不宜冲制孔边距离较小的冲裁件,但倒装式复合模结构简单,又可以直接利用压力机的打杆装置进行推荐,卸件可靠,便于操作,并为机械化出件提供有利条件,故应用十分广泛。,总之复合模生产效率高,冲裁件的内孔与外圆的相对位置精度高,板料的定位精度要求比级进模低,冲裁的轮廓尺寸较小。但复合模结构复杂,制造精度要求高,成本高。复合模主要用于生产批量大、精度要求高的冲裁件。
15.始用挡料装置:在级进模中为了解决首件定位问题,需要设置始用挡料装置。
16.卸料装置:1.固定卸料装置;2.弹压卸料装置(卸料及压料作用,冲压质量较好,平直度较高,适用,质量要求要高的冲载和薄板);3.废料切刀装置。
17.弯曲:是将板料、棒料、型材或管料等弯曲一定形状和角度的零件的一种冲压成形工序。
18.应变中性层:在缩短与伸长两变形区域之间,必有一层金属纤维变形前后长度保持不变。
19.弯曲变形区内板料横断面形状变化分为:1.宽板弯曲时,横断面形状几乎不变,仍为矩形;2.窄板弯曲时,原矩形断面变成了扇形。生产中一般为宽板弯曲。
20.r/t称为板料的相对弯曲半径,是表示板料弯曲变形程度的重要参数。相对弯曲半径越小,表示弯曲变形程度越大。
21.板料塑性弯曲的变形特点:1.应变中性层位移的内移;2.变形区内板料的变薄和增长;
3.变形区板料剖面的畸变、翘曲和破裂。
22.最小弯曲半径:在保证弯曲件毛坯外表面纤维不发生破坏的条件下,工件所能弯曲成的内表面最小圆角半径,称为最小弯曲半径。生产中用它来表示材料弯曲时的成形极限。
23.影响最小弯曲半径的因素:1.材料的力学性能;2.零件弯曲中心角的大小;3.板料的轧制方向与弯曲线夹角的关系;4.板料表面及冲裁断面的质量;5.材料的相对宽度;6.板料厚度
24.回弹现象:回弹现象产生于弯曲变形结束后的卸载过程。
25.影响回弹的因素:1.材料的力学性能;2.相对弯曲半径r/t;3.弯曲中心角;4.弯曲方式及校正力大小;5.工件形状;6.模具间隙。
26.拉深:是利用模具将平面毛坯制成开口空心零件的一种冲压工艺方法。
27.起皱和拉裂是影响拉深过程的两个主要因素:
28.起皱:在拉深过程中,毛坯凸缘在切向压应力作用下,可能产生塑性失稳而拱起的现象。
29.起皱的原因:毛坯凸缘的切向压应力过大,最大切向压应力产生在毛坯凸缘外缘处,所以起皱首先在外缘处开始。
30.拉裂:影响摩擦阻力的因素有:1.压边力的影响;2.相对圆角半径的影响;3.润滑的影响;4.凸凹模间隙的影响;5.表面粗糙度的影响。
31.拉深系数:是指每次拉深后圆筒形零件的直径与拉深前毛坯的直径之比,m表示。
32.极限拉深系数:把材料既能拉深成形又不被拉断时的最小拉深系数。
33.影响拉深系数的因素:1.材料力学性能的影响;2.材料相对厚度的影响;3.拉深次数的影响;4.压边力的影响;5.模具工作部分圆角半径及间隙的影响。
34.塑料的分类:1.按照合成树脂的分子结构和受热时的行为分类:热塑性塑料、热固性塑料;2.按塑料应用范围分类:通用塑料、工程塑料、特种塑料。
35.聚合物的热力学性能:聚合物的物理、力学性能与温度密切相关,当温度变化时,聚合物的受力行为发生变化,呈现出不同的力学状态,表现出分阶段的力学性能特点。在温度较低时(低于 温度时)曲线基本水平的,变形量很小。当温度上升时( )曲线开始急剧变化,很快趋于水平。如果温度继续上升,变化迅速发展,弹性模量很快下降,聚合物产生粘性流动,成为粘流态,此时变化是不可逆的物体成为液态。
36.注射工艺过程,注射过程一般包括加料、塑化、注射、冷却和脱模。
37.制品的后处理:塑料制品脱模后常需要进行适当的后处理(退火和调试),以便改善和提高制品的性能和尺寸的稳定性。
38.压力:注射成型过程中的压力包括塑化压力与注射压力两种。塑化压力又称背压,是指注射机螺杆顶部的熔体在螺栓保持不后退时所产生的压力。注射压力:用以克服熔体从料筒流向型腔的流动阻力,提供充模速度及对熔体进行压实等。
39.根据工艺的有关要求,应尽量使制品各部分的壁厚均匀,避免局部太厚与太薄,否则,成型后因收缩不均会使制品变形或产生缩孔、凹陷及填充不足等缺陷。P83
40.注射模由动模与定模两大部分组成。
41.根据模具中各个零件的不同功能,注射模可由以下七个系统和机构组成:1.成型零部件;2.浇注系统;3.导向与定位机构;4.脱模机构;5.侧向分型与抽心机构;6.温度调节系统;7.排气系统。
42.按模具总体结构特征分类:1.单分型面注射模;2.双分型面注射模;3.带有侧向分型与抽心机构的注射模;4.带有活动成型零件的注射模;5.机动脱螺纹的注射模;6.无流道注射模。
43.分型面:是模具上用于取出塑件和浇注系统冷凝料的可分离的接触面。
44.选择分型面的原则:基本原则-分型面应选择在塑件断面轮廓最大的位置,以便顺便脱模。还应考虑因素:1.分型面的选择应便于塑件脱模并简化模具结构;2.分型面的选择应考虑塑件的技术要求;3.分型面应尽量选择在不影响塑件外观的位置;4.分型面的选择应有利于排气;5.分型面的选择应便于模具零件的加工;6.分型面的选择应考虑注射机的技术参数。
45.注射系统的组成及作用:浇注系统是指模具中塑料熔体由注射机喷嘴至型腔之间的进料通道。其作用是将塑料熔体充满型腔并将注射压力传递到型腔的各个部位,以获得组织致密,轮廓清晰,表面光洁、尺寸精确的塑件。
46.浇注系统的组成:主流道、分流道、浇口、冷料穴(它可以设置在主流道的末端,还可以设置在各分流道的转向处,甚至在型腔料流的末端)。
47.流道设计:1.主流道一般设计成圆锥形,其锥角一般在2~4°内壁表面粗糙度为0.4
~0.8um;2.为了保证主流道与注射机喷嘴紧密接触,防止料漏,一般主流道与喷嘴对接处作成球面凹坑,其半径 ,其最小直径 。凹坑深度取h=3~5mm;3.为减少熔体冲模时的压力损失和塑料损耗,应尽量缩短主流道的长度,一般主流道的长度控制在60mm内。
48.凹模的结构设计: 凹模也可以称为型腔、凹模型腔,用以形成塑件的外形轮廓,按结构形式的不同可分为:整体式,整体嵌入式、镶拼组合式和瓣合式四种类型。
49.凸模和型心的结构形式分为:整体式、整体嵌入式、镶拼组合式、活动式等。
50.导向机构的作用:注射模导向与定位机构,主要用来保证动模和定模两大部分和模内其他零件之间的准确配合和可靠的分开,以避免模内各零件发生碰撞和干涉,并确保塑件的形状和尺寸精度。
51.导向机构的设计:导向机构的作用:导向、定位、承受一定的侧压。导柱导向机构是利用导柱与导柱孔之间的间隙配合来保证模具的对合精度,导柱、导套组合形式。
52.脱模机构的分类:1.推杆,推出塑件;2.推杆固定板,固定推杆;3.推板导套,为推板运动导向;4.推板导柱 为推板运动导向;5.拉料杆 使浇注系统凝料从模具中脱出;6.推板;7.支承钉;8.复位杆 使推板在顶出塑件后复位。
53.脱模机构的设计原则:1.脱模机构运动的动力一般来自于注射机的推出机构,故脱模机构一般设置在注射模的动模内;2.脱模机构应使塑件在顶出过程中不会变形损坏;3.脱模机构应能保证塑件在顶出开模过程中留着设置有顶出机构的动模内;4.脱模机构应尽量简单可靠,有合适的推出距离;5.若塑件需留在动模内,脱模机构应设置在定模内。
54.简单脱模机构的形式:推杆推出机构、推管推出机构、推件板推出机构、推块推出机构、联合推出机构、压缩空气推出机构。
55.复位机构的设计:为了进行下一循环的成型,脱模推出机构在完成塑件的顶出动作后必须回到初始位置。常用的复位机构:弹簧复位(在推板与动模支承板之间安装压缩弹簧)和复位杆复位两种。顶出形式:推件板顶出、推杆顶出、推管顶出,一般需要设置复位机构。
56.斜导柱抽芯机构分类:斜导柱在定模、滑块在动模,斜导柱和滑块同在定模,斜导柱在动模、滑块在定模,斜导柱和滑块同在动模。
57.斜导柱的倾斜角:抽拨力Q一定时,倾斜角 减小,倾斜柱所受的弯曲力P也越小;但当导柱的有效工作长度一定时,若倾斜角 减小,抽心距S也将减少,这对抽心不利。故确定斜导柱的倾斜角 时,要兼顾抽心距以及斜导柱所受的弯曲力,通常采用15°~20°,一般不大于25°。
58.压紧块的锲角 ,压紧块的锲角 通常比斜导柱倾斜角 大2°~3°。这样才能保证,模具一开模时压紧块就能和滑块脱开,否则,斜导柱将无法带动滑块作侧抽心动作。
59.先复位装置设计:1.模具设计中的“干涉”现象,在侧向型芯和推杆垂直于开模方向的投影发生重合的情况下,合模时侧向型心芯可能与推杆发生碰撞,这种现象称为磨具设计中的“干涉”现象。
60.避免干涉措施:1.尽量避免把推杆布置在侧向型心在垂直于开模方向平面上的投影范围内。2.使推杆的推出距离小于活动型心最低面,如果结构不允许,应保证h-scot >0.5mm。当h只是略小于scot 时,可通过适当增大 角来避免干涉;3.当以上两点都不能实施时,可采用推杆先复位机构,优先使推杆复位,然后滑块才复位。
61.比较常见的推杆先复位机构有:弹簧先复位机构、三角形滑块先复位机构、杠杆先复位机构和摆杆先复位机构。
1-4说明:作图壁厚不均匀,易产生气泡使塑件变形,右图壁厚均匀,改善了成型工艺条件,有利于保证质量。5说明:平顶塑件,采用侧浇口进料时,为了避免平面上留有熔接痕,必须保证平面进料通畅,故a>b。6说明:壁厚不均匀塑件,可在易产生凹痕表面采用波纹形式或在壁厚处开工艺孔,以掩盖或消除凹痕。
1说明:增设加强肋后,可提高塑件强度,改善料流状况。2.说明:采用加强肋,既不影响塑件强度,又可避免因壁厚不匀而产生缩孔。3说明:平板状塑件,加强肋应与料流方向平行,以免造成充模阻力过大和降低塑件韧性。4.说明:非平板状塑件,加强肋应交错排列,以免塑件产生翘曲变形。5说明:加强肋应设计的矮一些,与支撑面应有大于05mm的间隙。
倒装式复合模
1-打杆2-模3-推板 4-推杆 5-卸料螺钉 6-凸凹模 7-卸料板 8-落料凹模 9-顶件块 10-带肩顶杆 11-冲孔凸模 12-挡料销 13-导料销
正装式复合模
1-导料销2-挡料销3-凹凸模 4-弹压卸料板 5-凹模 6-凸模 7-打杆 8-推板 9-推杆 10-推件板
正装式复合模
E. 压力容器安全装置设置原则和选用要求是什么
应符合《固定式压力容器安全技术监察规程》第8章的要求:
8.2 安全附件装设要求
(1)本规程适用范围内的压力容器,应当根据设计要求装设安全泄放装置(安全阀或者爆破片装置)。压力源来自压力容器外部,且得到可靠控制时,安全泄放装置可以不直接安装在压力容器上。
(2)采用爆破片装置与安全阀装置组合结构时,应当符合GB 150的有关规定,凡串联在组合结构中的爆破片在动作时不允许产生碎片。
(3)对易爆介质或者毒性程度为极度、高度或者中度危害介质的压力容器,应当在安全阀或者爆破片的排出口装设导管,将排放介质引至安全地点,并且进行妥善处理,不得直接排入大气。
(4)压力容器工作压力低于压力源压力时,在通向压力容器进口的管道上应当装设减压阀。如因介质条件减压阀无法保证可靠工作时,可用调节阀代替减压阀,在减压阀或者调节阀的低压侧,应当装设安全阀和压力表。
8.3 安全阀、爆破片
8.3.1 安全阀、爆破片的排放能力
1)安全阀、爆破片的排放能力,应当大于或者等于压力容器的安全泄放量。排放能力和安全泄放量按GB 150的有关规定进行计算。对于充装处于饱和状态或者过热状态的气液混合介质的压力容器,设计爆破片装置应当计算泄放口径,确保不产生空间爆炸。
1) 爆破片的爆破压力允许差值应符合GB 567-1999《爆破片和爆破片装置》规定。
2) 安全阀、爆破片按下列要求进行验收:
安全阀的泄漏(密封)试验压力应当大于管道系统的最大工作压力,爆破片装置的最小标定爆破压力应当大于1.05倍的管道系统最大工作压力。所选用安全阀或者爆破片装置的额定泄放面积应当大于安全泄放量计算得到的最小泄放面积。
4) 爆破片的爆破压力允差按GB 567-1999《爆破片和爆破片装置》表1规定,或者按照设计技术的要求。爆破片的检查、抽样及其爆破试验应当符合GB 567第4.1、4.2条的要求。
5)盛装可燃、有毒介质的压力容器,应当在安全阀或者爆破片装置的排出口装设导管,将排放介质引至集中地点,进行妥善安全处理,不得直接排入大气。
6)爆破片装置产品上应当标有永久性标志,永久性标志至少包括以下内容:
(一)制造单位名称、制造许可证编号和特种设备制造许可标志;
(二)爆破片的批次编号、型号、型式、规格(泄放口公称直径)、材质、适用介质、爆破温度、标定爆破压力或者设计爆破压力、泄放侧方向;
(三)夹持器型号、规格、材质,以及流动方向;
(四)检验合格标志、监检标志;
(五)制造日期。
7)爆破片产品必须附产品合格证和产品质量证明书,产品合格证一般包括产品名称、编号、规格型号、执行标准等。质量证明书除包括产品合格证的内容外,一般还应当包括以下内容:
(一)材料化学成分;
(二)材料以及焊接接头力学性能;
(三)热处理状态;
(四)无损检测结果;
(五)耐压试验结果(适用于有关安全技术规范及其相应标准或者合同有规定的);
(六)型式试验结果;
(七)产品标准或者合同规定的其他检验项目;
(八)外协的半成品或者成品的质量证明。
爆破片装置产品上应当标志下列内容:
(一)永久性标志的内容;
(二)制造依据的标准;
(三)制造范围和爆破压力允差;
(四)检验报告(包括爆破试验报告);
(五)其他特殊要求。
①爆破片装置单独使用时,爆破片装置的入口管需要设置全通径的切断阀,以便更换爆破片用,切断阀在全开启状态锁定或者铅封;
②爆破片装置与安全阀串联使用时,在爆破片与安全阀之间设置压力表或者压力开关,以及放空阀、过流阀或者报警指示器;
③安装爆破片时,采用扭矩扳手,按制造单位安装说明中的安装扭矩数据表,按对角线均匀紧固螺栓;
④未经制造单位同意,不得在爆破片两侧加装垫片、保护膜或者涂层。
8)安全阀安装时,应当满足《安全阀安全技术监察规程》TSG ZF001--2006的规定,
9)安全保护装置的检验检修,应执行定期检验制度。安全保护装置的定期检验按照压力容器定期检验等有关安全技术规范的规定进行。
10)进行安全阀在线检测和压力调整时,使用单位的管道安全管理人员应当到场确认。检测和调整合格的安全阀应当加铅封。检测和调整装置用压力表的量程应当为整定压力的1.5~3.0倍,精度应当不低于1.0级,而且压力表前不得装阻尼器。在检测和调整时,应当有可靠的安全防护措施。
F. 简述弹性卸料装置的工作过程,并说明弹性卸料装置的特点有哪些
简述卸妆工程的说明简单地装被特点也是很高的。
G. 冷作钣金结构的加工有其特殊性,应从那几个方面考虑结构的合理性
设计的冷冲压模具的结构是否合理,是否好用,对能否生产出合格的工件,开发的新产品能否成功,是至关重要的。一套模具,结构简单的不过几十个零部件组成。但是,在刚开始设计时,是选何种模具结构形式,是选正装模具结构(即凹模安装在下模座上)呢?还是倒(反)装模具结构(即凸模安装在下模座上)?是选单工序模具结构呢?还是选复合模具结构?这是一个非常值得深入探讨的话题。
1 何时选用正装模具结构(由于加精度要求不高,生产批量不大的工件,在很多生产企业都普遍存在。故只讨论无导向装置的单工序模)
1.1 正装模具的结构特点
正装模具的结构特点是凹模安装在下模座上。故无论是工件的落料、冲孔,还是其它一些工序,工件或废料能非常方便的落入冲床工作台上的废料孔中。因此在设计正装模具时,就不必考虑工件或废料的流向。因而使设计出的模具结构非常简单,非常实用。
1.2 正装模具结构的优点
(1)因模具结构简单,可缩短模具制造周期,有利于新产品的研制与开发。
(2)使用及维修都较方便。
(3)安装与调整凸、凹模间隙较方便(相对倒装模具而言)。
(4)模具制造成本低,有利于提高企业的经济效益。
(5)由于在整个拉伸过程中,始终存在着压边力,所以适用于非旋转体件的拉抻(参看五金科技,1997;6:42~44)。
1.3 正装模具结构的缺点
(1)由于工件或废料在凹模孔内的积聚,增加了凹模孔内的小组涨力。因此凹必须增加壁厚,以提高强度。
(2)由于工件或废料在凹模孔内的积聚,所以在一般情况下,凹模刃口就必须要加工落料斜度。在有些情况下,还要加工凹模刃口的反面孔(出料孔)。因而即延长了模具的制作周期,又啬了模具的加工费用。
1.4 正装模具结构的选用原则
综上所述可知,我们在设计冲模时,应遵循的设计原则是:应优先选用正装模具结构。只有在正装模具结构下能满足工件技术要求时,才可以考虑采用其它形式的模具结构。
2 何时选用倒(反)装模具结构
2.1 倒装模具的结构特点
倒装模具的结构特点是凸模安装在下模座上,故我们就必须采用弹压卸料装置将工件或废料从凸模上卸下。而它的凹模是安装在模座上,因而就存在着如何将凹孔内的工件或废件从孔中排出的问题。图1这套倒装模是利用冲床上的打料装置,通过打料杆9将工件或废料打下,在打料杆9将工件或废料打下的一瞬间,利用压缩空气将工件或废料吹走,以免落到工件或坯料上,使模具损坏。另外需注意的一点就是,当冲床滑块处于死点时,卸料圈5的上顶面,应比凸模高出约0.20~0.30mm。即必须将坯料压紧后,再进行冲裁。以免坯料或工件在冲裁时移动,达不到精度要求。
H. 简述夹紧装置的设计原则
夹紧装置设计的基本要求是什么?确定夹紧力的方向和作用点的
准则有哪些
要求:工作不移动工作不变形工作不振动安全,省力,方便自动化,复杂化足生产纲领
I. 冲压件设计的五大原则通常有哪些
设计的冲压件必需知足产品使用和技术机能,并能便于组装及修配。
2.设计的冲压件,应有利于尽可能使用现有设备、工艺装备和工艺流程对其进行加工,并有利于冲模使用寿命的延长。
3.设计的冲压件必需外形简朴,结构公道,以有利于简化模具结构、简化工序数目,即用起码、最简朴的冲压工序完成整个零件的加工,减少再用其他方法加工,并有利于冲压操纵,便于组织实现机械化与自动化出产,以进步劳动出产率。
4.设计的冲压件必须有利于提高金属材料的利用率,减少材料的品种和规格,尽可能降低材料的消耗。在允许的情况下采用价格低廉的材料,尽可能使零件做到无废料及少废料仲裁。
5.设计的冲压件,应有利于尽可能使用现有设备、工艺装备和工艺流程对其进行加工,并有利于冲模使用寿命的延长。新乡辉簧弹簧专业生产冲压件30年,欢迎前来洽谈合作。