⑴ 急求电子信息工程专科毕业论文题目
提供一些电子信息工程专科毕业论文的题目,供参考。
精密检波器的设计
简易电子血压计的设计
电子听诊器的设计
简易数码相机的设计
直流电机转动的单片机控制
高频功率合成网络的研究
多功能气体探测器
车用无线遥控系统
家用门窗报警器
智能型全自动充电器
医用病房多路呼叫系统
多功能数字钟
数字电压表的设计与仿真
虹膜识别技术的认识及其在电子学科的发展探讨
基于Orcad的电子线路特性分析及优化设计
恒温热熔胶枪的设计
步进电机的数字控制器设计
虹膜图像的预处理(算法分析及探讨)
四位密码电子锁的设计
旋转LED屏的制作
基于PC机的LCD实时显示控制系统设计(pc机部份)
基于PC机的LCD实时显示控制系统设计(单片机部份)
ICL7135的串行采集方式在单片机电压表中的应用
用89C51和8254-2实现步进式PWM输出
桌面行走智能小车
双音频电话信息传输系统
车库控制管理系统(基于PC机)
车库控制系统车位识别(基于PC机)
数控音频功率放大电路
刚体转动实验平台的改进设计
谐振频率测试仪
高频宽带放大器的制作
高频窄带放大器的设计
宽带功率放大器的设计
程控滤波器的设计
高频电压测试棒的制作
基于TMS320VC5402的DSP创新试验系统
U-BOOT在ARM9(AT91RM9200)上的移植
ARM9(AT91RM9200)启动过程的研究与启动代码的设计
基于ARM9(AT91RM9200)的嵌入式Linux移植调试环境的研究与建立
嵌入式Linux在ARM9(AT91RM9200)上的移植
ARM9(AT91RM9200)简易JTAG仿真器设计
基于单片机的电动机测速系统
基于单片机的单元楼门铃及对讲系统
基于单片机的自来水管的恒流控制
基于单片机的电子脉搏测量仪
基于单片机的自来水水塔控制系统
洗衣机控制系统设计
基于力敏传感器的压力检测
湿敏传感器应用电路系统设计
基于气敏传感器的大气环境测量系统设计
基于光敏传感器的机器人控制电路设计
基于温敏传感器的应用电路设计
基于磁敏传感器的检测电路设计
超声波传感器在倒车雷达系统中的应用
温度传感器在现代汽车中的应用
电子秤中的应变片传感器
光电开关在自动检测的应用
热释电传感器的应用
浅谈各种接近开关
基于单片机的自行车码表设计
基于单片机的图形温度显示系统
基于单片机的自动打铃器设计
基于EDA技术的自动打铃器设计
通用示波器字符(图案)显示电路设计
基于EDA技术的时钟设计
用matlab实现数字电子技术数据传输电路设计
在matlab环境下实现同步计数器电路仿真
锂电池充电器的设计与实现
脉冲调宽(PWM)稳压电源作光源的设计与实现
压电式传感器的应用
矩形脉冲信号发生器的设计
可编程交通控制系统设计
多功能数字钟
实用电子称
多点温度检测系统
可编程微波炉控制器系统设计
智能型充电器显示的设计
电子显示屏
电源逆变器
数字温度计
简易数字电压表
声光双控延迟照明灯
可遥控电源开关
无刷直流电机控制装置整流电路的设计
PLC控制系统与智能化中央空调
PLC在电梯变频调速中的应用
PLC在输电线路自动重合闸的应用
异步电机变频调速系统的设计
电机故障诊断系统的设计
数控稳压源
4-20mA电流环设计
单总线多点温度检测系统
单片机控制的手机短信发送设备
简易恒温浸焊槽设计
单片机控制的手机短信发送设备
基于MATLAB的IIR数字滤波器设计与仿真
基于MATLAB的FIR数字滤波器设计与仿真
平稳随机信号功率谱估计及在MATLAB中的实现
智能红外遥控电风扇的设计
单片机控制的消毒柜
数字秒表的设计
基于VGA显示的频谱分析仪设计
基于FPGA红外收发器设计
基于FPGA 的FSK调制器设计
基于FPGA的多频电疗仪的设计
基于FPGA幅度调制信号发生器设计
基于FPGA全数字锁相环设计
单片机之间的串口数据通信
微机与单片机间的串口数据通信
模型自适应系统控制器设计
神经网络PID控制器设计
带误差补偿环节的PID控制系统
具有模糊系统控制的PID控制系统
限电自动控制器
单片机实现三位电子秒表
开关稳压电源设计
新型锂电池充电器
自制温度检测报警器
限流直流稳压电源设计
微波测速计
自由落体实验仪
风力发电机转速控制
风力发电电池组运行状态检测
光伏电能的储存及合理应用控制装置
车库门自动开闭
小功率风力发电机研制
利用车内电源(12V)给笔记本电脑供电电源(19V)
基于PWM控制的七彩灯设计
红外遥控电风扇
基于串口通信的GPS定位系统
数控电压源
20mA电流环模块设计
基于GSM的汽车防盗系统的设计
⑵ 电气设备在线检测的论文
自动化在线检测仪表在污水处理中的应用
摘要:结合南宁市琅东污水处理厂的运行情况,介绍自动化在线检测仪表的组成和在污水处理中的应用情况,并分析总结了自控仪表达标管理中应注意的问题和操作规程。
关键词:自动化 在线检测仪表
自动化检测仪表是自控系统中关键的子系统之一。一般的自动化检测仪表主要由三个部分组成:①传感器,利用各种信号检测被测模拟量;②变送器,将传感器所测量的模拟信号转变为4~20 mA的电流信号,并送到可编程序控制器(PLC)中;③显示器,将测量结果直观地显示出来,提供结果。这三个部分有机地结合在一起,缺少其中的任何一部分,则不能称为完整的仪表。自动化检测仪表以其测量精确、显示清晰、操作简单等特点,在工业生产中得到了广泛的应用,而且自动化检测仪表内部具有与微机的接口,更是自动化控制系统中重要的部分,被称为自动化控制系统的眼睛。
���随着科学技术的发展,自动化检测技术也得到了很大的发展,自动化检测仪表在污水处理中也得到广泛的应用,使污水处理厂不仅节约了大量的人力、物力,更重要的是可以及时对工艺进行调整。本文将以南宁市琅东污水处理厂为例介绍自动化检测仪表在污水处理中的应用。
1 工程概述
��南宁市琅东污水处理厂工程1993年底立项,1997年11月27日正式开工建设;1999年9月28 日通水试运行,2000年2月满负荷正常运转。
��南宁市琅东污水处理厂,一期工程设计一级污水处理能力24 万m3/d,二级污水处理能力10 万m3/d。设计服务范围30.5 km2,规划服务人口34.3万人。�经过琅东污水处理厂净化后的清洁水,一部分直接排入竹排冲,一部分用于南湖回灌水,以改善南湖的水污染问题。
2 处理工艺
��南宁市琅东污水处理厂全套引进国外最先进的水处理工艺设备,采用二级生物处理工艺的传统活性污泥法,并针对南宁市污水水质污染物浓度低的特点,在其核心部分--曝气的工艺中采用OOC工艺。该工艺具有能耗低、运行费用少、出水水质好、管理简便、运行稳定等优点。
��从厂外污水干管收集到琅东污水处理厂的污水,首先进行预处理。在进水泵房经过粗格栅,去除污水中较大的垃圾、漂浮物;通过5台大型污水泵将污水提升到细格栅,将较小的漂浮物去除;在曝气沉砂池去除污水中的砂粒和油类;然后进入计量槽,计量污水处理量。预处理后的污水在初沉池进行一级处理,去除约30%的有机物;初沉池出水进入二级处理,先在生物处理工艺的核心部分--曝气池,进行生物降解有机物;曝气池的混合液输送到二沉池进行沉淀,泥水分离。上层澄清液作为净化后的清洁排放水;沉淀下来的污泥一部分回流曝气池后再生利用,一部分作为剩余污泥回流到初沉池。初沉池的污泥用泵输送到污泥浓缩池,进一步浓缩池,通过污泥处理系统,把泥浆态的污泥脱水、压滤,形成干污泥饼。
3 主要应用仪表介绍
3.1 超声波液位计、液位差计、流量计�
��(1)格栅运行控制。粗格栅、细格栅各安装了1台超声波液位差计,通过格栅前后的液位差来反映格栅阻塞程度,并传输到PLC控制器,进行分析计算。当液位差超过预设的数值,控制格栅运行,清除垃圾,保障正常过水,且合理的减少了设备磨损。�
��(2)提升泵运行控制。为实现进水提升泵的自动控制,在进水泵井处安装了2台超声波液位计,用以测量泵井的水位,实时传输到PLC控制器及上位机,进行系统分析。根据测量值对应控制程序,自动控制提升泵的运行组合。这样可以根据厂外来水量准确及时地调整泵运行状态,减少设备疲劳;同时可以取消传统泵站三班倒的人力资源耗费。
��(3)流量及处理量实时监测。对于污水处理厂的运行管理,水量是一个重要的控制参数。准确及时地掌握进水量,对工艺控制及提高污水厂抵抗水力负荷冲击能力有重要作用。传统的水量测量采用堰板或文丘里流量槽等,都存在着不能实时监测、实时显示的缺点。琅东污水处理厂计量槽采用超声波流量计结合文丘里槽,能在现场和上位机实时显示流量及累计处理量,达到了准确计量处理水量,以及为运行管理提供实时流量的目的。
3.2 溶解氧计、氧化?还原电位计、污泥浓度计�
��(1)曝气池溶解氧控制。南宁市琅东污水处理厂采用的是传统活性污泥法的OOC改良工艺在4 个圆型曝气池内圈好氧区,分别安装了测量范围是0.05~10 mg/L的溶解氧计,实时监控溶解氧浓度,传输到PLC及上位机。当实测浓度小于设定浓度时,自动控制系统启动鼓风机,给曝气池充氧;相反地,当氧气充足时,就会停止运行鼓风机。通过溶解氧计控制鼓风机可以精确地根据好氧菌群对溶解氧的需求控制鼓风机的启动和停止,在保证了菌群良好生化能力的同时节约了能耗,保护了设备,增强了好氧菌群的分解能力。�
��(2)曝气池好氧段与缺氧段的控制。在每个曝气池的外圈的好氧区与缺氧区的临界面都安装了测量范围是-500~500 mV的氧化?还原电位计,通过测量的氧化 ?还原电位可以控制鼓风机的高速运行,给外圈供氧,形成强好氧曝气阶段和缺氧阶段的交替,进而提高处理工艺中除磷脱氮的能力。如果没有安装氧化?还原电位计。那么鼓风机的运行只能通过时间控制,这样一来就会明显降低除磷脱氮的效果。�
��(3)曝气池污泥浓度控制。曝气池的污泥浓度是一个重要工艺参数。在传统的污水处理厂,污泥浓度依靠实验室使用旧的试验方法进行监测,在数据提供的及时性和精确性上,存在很大的缺陷。难以及时进行回流污泥和剩余污泥量的工艺调整,就造成时间上和准确度上的误差。南宁市琅东污水处理厂在每个曝气池上都安装了一个测量范围是为0.5~10 g/L 在线污泥浓度测量计,很好地解决了这个问题。安装污泥浓度计可以随时根据精确测量的污泥浓度,适时地调整曝气池的工艺,同时减轻了实验室工作人员的劳动强度。
3.3 电磁流量计、气体流量计
��在回流污泥管道和剩余污泥管道中南宁市琅东污水处理厂安装了5台测量范围是0~1 200 m3/h的电磁流量计测量回流污泥和剩余污泥的流量。�安装流量计后,值班人员可以根据显示的流量是否正确,从而判断回流污泥泵和剩余污泥泵工作是否正常,解决了潜水泵无法简单判断工作是否正常的难题,而且电磁流量计还具有安装方便,维护简单的特点。
��鼓风机与曝气池间的空气管道上直接安装的4台测量范围0~4000 m3/h(标准状况)的气体流量计。气体流量计的安装可以使值班人员随时了解鼓风机向曝气池提供气体的量。
4 运行管理体会
4.1 运行管理经验
��南宁市琅东污水处理厂自2000年2月正式运行,在两年多的运行管理中,总结了保证自动化检测仪表正常运行几点经验如下:�
��(1)保持自动化检测仪表传感器的清洁。定期专人清洗探头,保证数据采集准确性。因为仪表在污水环境中工作,所以仪表的清洁工作就显得尤为重要,特别是直接与污水接触的溶解氧计、氧化?还原电位计及污泥浓度测量计等分析仪表,为了保证仪表的正常工作,我们定期由专人清洗,每7天就全面清洗1次仪表,清洗时要求使用柔软的材料,以免损坏仪表。
��� (2)定期校正各种仪表。仪表在长期运行过程中难免会产生测量误差,这就需要定期校正,以保证仪表测量的准确性,对分析仪表我们制订了每两月定期校正1次;而且要求实验室工作人员利用分析方法分析对应的检测项目,并与现场仪表监测结果比较,如果偏差太大,那么应适时对仪表进行校正,确保准确。�(3)保证仪表供电电压的稳定性,延长仪表的使用寿命。瞬间的高电压冲击往往使仪表很容易烧坏。南宁市琅东污水处理厂运行过程中,就发生了多次因供电电压不稳定,而使超声波液位差计和超声波液位计的变送器损坏,从而影响了自控系统的正常工作的情况。南宁市琅东污水处理厂正进行技术改造避免供电电压不稳定对仪表造成的损坏,降低运行成本,提高经济效益。
4.2 几点体会
��在运行过程中,我们还有以下体会:�
��(1)要提高污水处理厂的经济效益和管理水平仅有以上这些仪表是不够的,还应增加鼓风机出口压力计、初沉池污泥泵出口流量计等监测仪表,对大鼓风机出口压力和浓缩池进口流量等参数进行监测和调节。
��(2)进口仪表的备件、部件昂贵而且购买困难,影响仪表的使用、维修。例如,一个因供电电压不稳定而损坏的超声波液位差计变送器维修费需8000多元,更换新变送器需15000多元;更换一个氧化?还原电位计电极需2000多元,而且氧化?还原电位计电极使用期限一般为两年;一般的企业很难长期支付这一昂贵费用。进口仪表的标准化校对困难,一般的质量检验部门都不接收污水处理仪表的检测。国产仪表的普及仍跟不上,价格优势不能很好的体现,一定程度上影响了自动化检测仪表在污水处理厂中的应用。
��总体来讲,自动化检测仪表在污水处理厂的应用中发挥很大作用,但在实际应用中仍存在一些问题,我们相信今后自动化检测仪表将会为中国的环保事业发挥更大的作用。
仅供参考,请自借鉴。
希望对您有帮助。
⑶ 有关正弦信号发生器的毕业论文
基于EDA的信号发生器与数字滤波器设计
班级: 姓名: 学号:
摘 要:使用直接驱动的直线电机,能把控制对象和电机做成一体化结构,在精度、快速性、耐久性等方面具有明显的优势。用DSP作为控制器对纺织机械电子横移系统的电子凸轮机构进行实用设计,采用电流环、速度环的双闭环控制电极位置和速度,用先进的SVPWM控制算法对参数进行反复优化,使伺服系统达到更好的效果和更高的性价比。
关键词:电子凸轮;DSP控制;直线电机;PWM
0 引言
改进纺织机械电子横移系统的直线进给控制可采用电子凸轮系统,而通常直线运动是由交流旋转电机和传动带、齿条及齿轮机构组合来完成的。使用直接驱动的直线电机,能把控制对象和电机做成一体化结构,这与普通的旋转电机相比,在精度、快速性、耐久性等方面具有明显的优势。直线伺服电机是将输入信号电压转变为动子的位移或速度的输出,动子的行程方向和速度的大小随信号电压的方向和大小的变化而变化,并能带动一定大小的负载[1]。永磁同步直线电机的速度与PWM的频率始终保持准确的同步关系,控制PWM的频率就能控制电机的速度。选用DSP控制能使伺服系统达到更好的效果和更高的性价比,对电子凸轮的进给伺服系统进行研究与设计具有很好的实用价值。
1 系统结构设计
系统结构设计以DSP为核心其框图如图1所示。
图1 系统结构框图
Fig.1 Architecture chart of system
以DSP控制为核心构成三相同步直线电机控制系统。采用双闭环空间矢量控制达到伺服系统高精度、高速度、高响应的要求[2]。直线电机电枢电流通过霍尔电流传感器检测,经过电流反馈处理电路后,送入DSP的ADC转换口;利用光栅尺输出两路相位相差90°的正交信号到QEP,通过对两路信号的上升沿和下降沿检测生成四倍频信号,从四倍频信号的频率得到直线电机的速度。速度给定值与速度反馈值的偏差作为数字速度控制器的输入,经过运算处理后得到电流给定电压,再与电流反馈产生的反馈电压作偏差,得到差值作为数字电流控制器的输入,经过运算处理后得到控制电压。由软件来生成六路带死区的SPWM信号,经过光电隔离整形电路,分别加到功放前置驱动芯片的高低输入端。然后驱动桥式逆变电路中三组IGBT管,产生有规律的单极性电压,加在三相直线电动机线圈上,通过调节PWM占空比,从而控制直线电机的位移与速度。
2 控制系统的硬件实现
2.1 电机供电电路实现
直线同步电动机采用哈尔滨泰富电气有限公司的XY1809B-4.5扁平型直线电机。电机供电采用交-直-交电压型PWM逆变器,将三相交流(380V,50Hz)经整流与逆变后供给直线电机。整流器采用集成的三相全波二极管整流桥模块,逆变器所用的电子开关采用全控型电力电子器件。其整流逆变电路如图2所示。
图2 三相整流桥式逆变电路
Fig.2 bridge inverter circuit of three-phase rectifier
2.2 电机位置检测实现
系统使用直线光栅传感器进行电机位置检测,采用德国JENA公司生产的JENA LIE52PLXFDO 型光栅尺,其测量精度为1μm,速度为4.8m/s,直线电机的同步速度为4.5m/s。光栅位置检测装置由光源、两块光栅(长光栅、短光栅)和光敏元件等组成,它是通过将长光栅和短光栅之间的位移放大为莫尔条纹的移动来进行检测的。将长光栅安装在直线电动机的次级上作为标尺光栅,短光栅装在直线电机的初级作为指示光栅,两块光栅互相平行并保持一定的间隙(如0.05mm或0.1mm等),而两块光栅的刻线密度相同。
如果将指示光栅在其自身的平面内转过一个很小的角度θ,这样两光栅的刻线机交,则在相交处出现黑色条纹,称为莫尔条纹[3]。由于两块光栅的刻线密度相等,即栅距W相等,而产生的莫尔条纹的方向和光栅刻线方向大致垂直,所以当θ很小时,其条纹间距B和光栅栅距W及2条光栅刻线夹角关系为:
(1)
当光栅相对移动时,莫尔条纹将沿着刻线方向移动。光栅移动一个栅距,莫尔条纹也移动一个间距B,同时,在指示光栅上的光敏元件接收到一次光脉冲的照射,并相应输出1个电脉冲。通过计数电脉冲的数目,就可以测量标尺光栅的位移x,即:
(2)
式中 i—— 脉冲个数,因此检测实际上就是对光栅输出的脉冲个数进行计数。
TMS320LF2407A有两个事件管理器模块,每个事件管理器模块都有一个正交编码脉冲(Quadrature Encoded Pulses,QEP)电路[4]。该电路被使能后,可以对引脚CAP1/QEP1和CAP2/QEP2(对于EVA模块)或CAP4/QEP3和CAP5/QEP4(对于EVB模块)上输入的正交编码脉冲信号进行译码和计数。正交编码脉冲电路用于连接光栅尺输出的正交编码脉冲信号,实现对直线电动机的位移快速可靠地进行检测。
其位移信号检测电路如图3所示。
图3 直线位移检测电路
Fig.3 displacement detection circuit of linear
2.3 电流检测实现
采用维博电子有限责任公司的WBI414电流传感器作为电流检测装置,由于三相绕组采用的是星形连接,中点悬空,也就是说,电流的3个变量不完全独立,只要知道其中两个,设为Ia和Ib,另一个变量Ic就可以算出:
(3)
因而实现电动机相电流的精确检测,只需两路检测电路,将Ia和Ib的电流值经转换后分别送往DSP的ADCIN0和ADCIN1,其绕组相电流检测电路如图4所示。
图4绕组相电流检测电路
Fig.4 current detection circuit of winding phase
3 控制系统的软件实现
在软件上系统采用了交流电动机常用的空间矢量控制算法,利用DSP的高速数字处理能力产生SVPWM波形,包含系统主程序、相电流检测模块、CLARKE变换模块、电流环的PI控制模块、速度环的PI控制模块、PARK变换、PARK逆变换、光栅尺脉冲计数模块、旋转角度正弦函数表、空间矢量SPWM波的发生模块。
系统首先对DSP控制系统进行初始化工作;然后设置允许中断INT1、INT2和INT3,其中INT1只在PDPINT有效时被激活,INT3响应光栅传感器的零标记脉冲,INT2在Timer1计数溢出时响应,执行系统的进给控制模块;此外还要进行一些运行参数和控制循环的标记的设置;最后就进入后台等待状态,随时响应各中断,运行中断服务程序。
DSP控制器中的全比较单元将负责产生控制脉冲信号,并送到电动机驱动模块上。以10KHz的频率产生对称SPWM波,以TIMER1作为时基,采样时间T设为100μs。用到两个中断:一个为T1的下溢中断,另一个为CAP/QEP中断。电流采样频率为10kHz,速度采频率为1kHz,DSP外围设备为Timer1、Timer2、ADC(2通道)、PWM1~6、Capture3、QEP。其控制系统主程序流程图如图5所示。
Fig.5 Flow chart of control system main program
(软件源程序及仿真)
4 结束语
本文以TI公司生产的TMS320LF2407A作为DSP控制器,对纺织机械电子横移系统的电子凸轮机构进行了实用设计。系统充分利用直线电机的优点,采用电流环、速度环的双闭环控制电极的位置和速度,先进的SVPWM控制算法对参数进行反复优化,使系统达到预期的位移控制精度和频率响应,并且在纺织机械电子横移系统上运行可靠。
参考文献:
[1] 朱成庆,伍宗富等.机电一体化概论[M].太原:山西科学技术出版社,2003.
[2] 钱平.伺服系统[M].北京:机械工业出版社,2005.
[3] 秦继荣,沈安俊. 现代直流伺服控制技术及其系统设计[M]. 北京: 机械工业出版社,1993
[4] 刘和平,严利平,张学锋,卓清锋. TMS320LF240XDSP结构、原理及应用[M] . 北京:北京航空航天大学出版社, 2002.
⑷ 如何将压电薄膜产生的电流信号记录
抄只需要接对正极和负极即可。
传感器(英文名称:transcer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。
⑸ 关于电气类的毕业论文上哪个网站找的好
你具体也没有说你的要求,以下给你提供几个相关的题目和内容,你可以作为参考,希望会对你有所帮助。 10kV输电线接地故障仿真平台 电梯控制系统设计 福佳商城1号楼电气照明设计 锦州6×200MW火电厂一期工程电气部分初步设计 微机无功补偿装置设计 60KV降压变电站设计 辽宁工业大学变电所电气部分设计 医疗呼叫系统设计 河东降压变电所电气部分设计 110kV/35kV变电站电气主接线设计 ........................ 范例:介质损耗角检测系统的研究与设计 摘要:电力系统中检测高压设备的运行可靠性和发现电气绝缘方面缺陷,介质损耗角的测量必不可少。介质损耗角是一项反映 高压电气设备 绝缘性能的重要指标。本文介绍了介质损耗角的基本概念和其意义,简单分析了 介质损耗角检测系统 的传统方法,详细介绍了测量介损角的数字测量方法——基波相位分离法。提出了一种非同步采样条件下采用基波相位分离法的补偿算法,即采用等时间间隔电压、电流信号进行采样,同时对信号周期波动产生的误差进行补偿。基于该算法合理配置测量系统的硬件实现方案。采用美国国家仪器公司(NI)研制开发的实验室虚拟仪器工程平台LabVIEW,对其进行仿真和试验。仿真和试验结果表明该算法在增加较少运算量的同时提高了介质损耗角的测量精度。开发出的测量系统很好的实现了电容型设备介质损耗角的在线检测,它突破了传统检测方法在数据处理、显示等方面的限制,并具备很高的智能度和性价比。 关键词:介质损耗角;虚拟仪器;labVIEW;非同步采样算法 Research and design of measurement system of dielectric loss angle Abstract :It is indispensable to measure the dielectric loss angle in the process of measuring the working security of electric equipment and discovering the defect of electrical insulation in the system of electric power. The dielectric loss plays an important role to reflect the insulated property of high voltage electric equipment. The concept and significance of dielectric loss angle is introced in this paper. The traditional methods and a digital method called fundamental harmonic phase separation of measurement of dielectric loss angle is analyzed. An algorithm for fundamental harmonic phase separation under asynchronous sampling is gave that the voltage and current signals were sampled by equal time intervals and errors caused by the signal period fluctuation were compensated. The hardware implementation for a measuring system based on the algorithm was described in this paper. The scheme is simulated and tested by LabVIEW(Laboratory Virtual Instrument Engineering Workbench), which is invented by NI co. The results of simulation and tests show that measuring system invented implement measurement of electric capacity equipment on line. It breaks the limit of handling and showing data in the traditional measurement, which has higher intelligent ability and ratio between property and price. Key words: dielectric loss angle; virtual instruments; LabVIEW ; asynchronous sampling 1 绪论 1.1 电气设备的绝缘故障及其危害性 电气设备是组成电力系统的基本元件,是保证供电可靠性的基础[1]。无论是大型关键设备如发电机、变压器,还是小型设备如电力电容器、绝缘子等,一旦发生失效,必将引起局部甚至全部地区的停电。而导致设备失效的主要原因是其绝缘性能的劣化。绝缘劣化有很多原因,不仅电应力可引起绝缘劣化,导致绝缘故障,而且机械力或热的作用,或者和电场的共同作用,最终也会发展为绝缘性故障。例如,变压器短路故障产生的巨大电磁力会引起绕组变形,使绝缘受损而导致发生匝间击穿;变压器内局部过热可导致油温上升,使绝缘过热而发生裂解,最后发展为放电性绝缘故障。鉴于绝缘故障在电力故障中所占的比重及其后果的严重性,电力运行部门历来十分重视电气设备的绝缘监督。 1.2 目前在线监测绝缘状况在国内外发展及趋势 20世纪60年代,美国最先开发监测和诊断技术,成立了庞大的故障研究机构。在20世纪60年代初,美国即已使用可燃气体总量(TCG)检测装置,来测定变压器储油柜油面上的自由气体,以判断变压器的绝缘状态,但这种装置对潜伏性故障无能为力。针对这一局限性,日本等国研究使用气相色谱仪,在分析自由气体的同时,分析油中溶解气体,有利于发现早期故障。但其主要缺点是要取油样,需要在实验室进行分析,试验时间长,故不能在线连续监测。20世纪70年代中期,能使油中气体分离的高分子塑料渗透膜的发明和应用,解决了在线连续监测问题。20世纪70年代以来,前苏联的在线监测技术发展也很快,特别是电容性设备绝缘监测和局部放电的在线监测。自20世纪80年代,我国在线监测技术也得到了迅速发展,各省电力部门都研制了电容性设备的监测装置,主要监测电力设备的介质损耗、电容值、三相不平衡电流[2]。从国内外发展状况的总体来看,目前多数监测系统的功能还比较单一。今后在线监测技术的发展趋势应是: (1)多功能多参数的综合监测和诊断,即同时监测能反映其电气设备绝缘多个特征 参数。 (2)对电站或变电站的整个电气设备实行集中监测和诊断,形成一套完整的分布式 在线监测系统。 (3)不断提高监测系统的可靠性和灵敏度。 (4)在不断积累监测数据和诊断经验的基础上,发展人工智能技术,建立人工神经 网络专家系统,实现绝缘诊断的自动化。 目录 摘要…………………………………………….……………………………….………Ⅰ ABSTRACT…………………………………………………………………………..….Ⅱ 1 绪论………………………………………………………………….………..……..……..1 1.1 电气设备的绝缘故障及其危害性……………………………………………………. 1 1.2 在线监测绝缘状况在国内外的发展及趋势……………………………………………1 1.3 介质损耗及介质损耗角…………………………………………………………………2 1.3.1 介质损耗的概念…………………………………………………………………. 2 1.3.2 介质损耗的基本形式…………………………………………………………… .2 1.3.3介质损耗角………………………………………………………………………..2 1.4介质损耗检测的意义及其注意问题.…………………….……………………………3 2 虚拟仪器简介 5 2.1虚拟仪器概述…………………………………………………………………………...5 2.2 虚拟仪器的特点 5 2.3 虚拟仪器技术的发展 6 2.4 虚拟仪器的分类……………………………………………………………………….6 2.5 虚拟仪器的应用 8 2.6 虚拟仪器技术的三个组成部分……………………………………………………….8 2.7 虚拟仪器技术的四大优势. ………………………………………………………….9 3 LABVIEW开发平台 11 3.1 LABVIEW 的发展 11 3.2 LABVIEW的结构 11 3.3 LabVIEW的优势……………………………………………………………………..13 4 介质损耗检测方法 15 4.1 电桥法 15 4.2 伏安法 16 4.3 自由轴法 17 4.4 相位差法 17 4.5 过零点电压比较法…………………………………………………………………..18 4.6 基波相位分离法……………………………………………………………………..19 4.7 介质损耗角的异频检测……………………………………………………………..20 5 基于基波相位分离法的非同步采样补偿算法 21 6基于非同步采样补偿算法的在线检测VI设计 23 6.1 虚拟信号发生器的设计 23 6.2 虚拟正弦电压、电流信号设计 24 6.3 波形采样和测量模块 27 6.4 公式运算模块 28 6.5 程序线路连接图 29 6.6介质损耗角的仿真测量 32 7 介质损耗角检测系统的设计……………………………………….……………. 33 7.1 系统的总体结构……………………………………………………………………. 33 7.2 信号采集……………………………………………………………………………. 33 7.3 信号处理……………………………………………………………………………. 33 7.4信号传输与通信…………………………………………………………………….. 34 7.5数据分析与判断和数据显示………………………………………..……..…….. 34 结论………….……….……………………………………………………………….……..35 致谢………………………….………….…………………………………….……………..36 参考文献 37 参考文献 [1]王昌长,李福棋,高胜友.电力设备的在线监测与故障诊断[M].北京:清华大学出版社,2006:4-6. [2]屠志健,张一尘.电气绝缘与过电压[M].北京:中国电力出版社2005:11-14. [3]叶逢春,丁晖.虚拟介质损耗角在线检测仪的研制[J].西北电力技术,2001,18(1):8-11. [4]M.A.akhmametev and S.M.Kazakov.AUTOMATIC MEASUREMENT OF DIELECRIC CONTANT AND LOSS ANGLE OVERA CONTINUOUS PREQUENCY RANGE[J]. Izvestiya VUZ.Fizika.1969(5):15-20. [5]张宪起.虚拟仪器在自动测试领域中的应用[J].集成电路通讯.2006,24(2):12-17. [6]白格平,杨文丽.高压电气设备介质损耗测量方法分析[J].洛阳师专学报,1999,18(2):29-35. [7]马为民,吴维韩.电源谐波对介质损耗测量的影响[J].清华大学学报(自然科学版),1997,37(1):12-17. [8]陈楷,胡志坚,王卉,张承学.介损角的非同步采样算法及其应用[J].电网技术,2004,28(18):58-61. [9]王瑞明,董连文,曹庆文.电容型设备介损检测仪的设计[J].高压电器,2003,39(3) 42-44. [10]张宏群.基于虚拟仪器的电容型设备介质损耗在线测试仪[J].仪器仪表用户,2003,10(4):21-22. [11]曹会国.基于虚拟仪器的相关分析[J].山东师范大学学报(自然科学版),2006,21(2):137-138. [12]高育芳,张茂青.基于虚拟仪器技术的电网谐波测试系统[J].检验检测,2007,5(1):35-37. [13]钟凡亮,严国萍.LabVIEW平台下的测试软件系统设计与实现[J]. 计算机与数字工程,2007,35(1):138-140. [14]侯跃谦,李慧,石玉祥.虚拟仪器在检测技术教学中的应用[J].长春大学学报,2006,16(4):29-31. 作者点评通过以上的介绍和分析,可得到以下结论: (1)通过基波相位分离法可以有效的消除直流分量和谐波分量的影响,得到基波分量的幅值和相位信息。 (2)非同步采样补偿算法很好的解决了基波相位分离法对于被测信号必须是采样信号周期的整数倍的苛刻要求,在增加较少运算量的同时提高的测量精度。 (3)利用NI公司开发的虚拟仪器平台LabVIEW可以实现这个算法,不仅提高了仪器的智能化程度和测试性能,还方便操作,具有良好的推广价值。..................以上内容均摘自 http://www.paowen.com/thesis/instry/dqdz/ 因字数限制,只能给你复制这么多,其余的你自己去看吧,网址也都告诉你了。希望可以帮到你。这家网站的信誉是绝对没有问题的,我的毕业论文就是从这里下载的。祝你好运!!!!!!1
麻烦采纳,谢谢!
⑹ 在线等,电子系论文高手,求论文一篇,通过后,重金酬谢
浅谈异步电动机的保护装置与电动机的协调配合
来源:中国论文下载中心 [ 10-07-10 10:03:00 ] 作者:王卿玮 编辑:studa20
-
摘要:该文介绍了异步电动机的各种保护装置。电动机保护主要有两大类:采用电流检测型的有热继电器,带有热磁脱扣的电动机保护用断路器。电于式和固态继电器,带电子式脱扣的电动机保护用断路器以及软起动器;直接检测电动机绕组温度的温度检测型有双金属片温度继电器、热保护器、检测线圈和热教电阻温度继电器等,但由于需直接埋入电机绕组,价格较贵、维修困难等原因,便在部分频繁操作扬合使用。最后指出不管采用何种保护装置,必须考虑过载保护装置与电动机、过载保护装置与短路保护装置的协调配合,
关键词 异步电动机;保护装置控制
异步电动机的保护是个复杂的问题。在实际使用中,应按照电动机的容量、型式、控制方式和配电设备等不同来选择相适应的保护装置及起动设备。
电动机保护装置
电动机的损坏主要是绕组过热或绝缘性能降低引起的,而绕组的过热往往是流经绕组的电流过大引起的。对电动机的保护主要有电流、温度检测两大类型。下面结合产品作些介绍。
一 电流检测型保护装置
热继电器利用负载电流流过经校准的电阻元件,使双金属热元件加热后产生弯曲,从而使继电器的触点在电动机绕组烧坏以前动作。其动作特性与电动机绕组的允许过载特性接近。热继电器虽则动作时间准确性一般,但对电动机可以实现有效
的过载保护。随着结构设计的不断完善和改进,除有温度补偿外,它还具有断相保护及负载不平衡保护功能等。例如从ABB公司引进的T系列双金属片式热过载继电器}从西门子引进的3UA5、3UA6系列双金属片式热过载继电器;JR20型、JR36型热过载继电器,其中Jn36型为二次开发产品,可取代淘汰产品JR16型。
带有热一磁脱扣的电动机保护用断路器热式作过载保护用,结构及动作原理同热继电器,其双金属热元件弯曲后有的直接顶脱扣装置,有的使触点接通,最后导致断路器断开。电磁铁的整定值较高,仅在短路时动作。其结构简单、体积小、价格低、动作特性符合现行标准、保护可靠,故日前仍被大量采用,特别是小容量断路器尤为显著。例如从ABB公司引进的M61 1型电动机保护用断路器,国产DWl5低压万能断路器(200—630A)、s系列塑壳断路器(100、200、400入)。
电子式过电流继电器通过内部各相电流互感器检测故障电流信号,经电子电路处理后执行相应的动作。电子电路变化灵活,动作功能多样,能广泛满足各种类型的电动机的保护。其特点是:
①多种保护功能。主要有三种:过载保护,过载保护+断相保护,过载保护+断相保护+反相保护。
⑦动作时间可选择(符合GB1404 8.4—93标准)。
标准型(10级):7.2In(In为电动机额定电梳),4-10 s动作,用于标准电动机过载保护,速动型(10A级):7.2In时,2—10 s动作,用于潜水电动机或压缩电动机过载保护。慢动型(30级):7.2In时,9—30 s动作,用于如鼓风机电机等起动时间长的电动机过载保护。
③电流整定范围广。其最大值与最小值之比一般可达3—4倍,甚至更大倍数(热继电器为1.56倍),特别适用于电动机容量经常变动的场合(例如矿井等)。
④有故障显示。由发光二极管显示故障类别,便于检修。
固态继电器它是一种从完成继电器功能的简单电子式装置发展到具有各种功能的微处理器装置。其成本和价格随功能而异,最复杂的继电器实际上只能用于较大型、较昂贵的电动机或重要场合。它监视、测量和保护的主要功能有:
①最大的起动冲击电流和时间;
⑦热记忆;
③大惯性负载的长时间加速;
④断相或不平衡相电流;
⑤相序;
⑥欠电压或过电压;
⑦过电流(过载)运行;
⑧堵转;
⑨失载(机轴断裂,传送带断开或泵空吸造成工作电流下跌);
⑩电动机绕组温度和负载的轴承温度;
(11)超速或失速。
上述每一种信息均可编程输入微处理器,主要是加上需要的时限,以确保在电动机起动或运转过程中产生损坏之前,将电源切断。还可用发光二极管或数字显示故障类别和原因,也可以对外向计算机输出数据。
二 温度检测型保护装置
双金属片温度继电器它直接埋人电动机绕组中。当电动机过载使绕组温度升高至接近极限值时,带有一触头的双金属片受热产生弯曲,使触点断开而切断电路。产品如Jw 2温度继电器。
热保护器它是装在电动机本体上使用的热动式过载保护继电器。与温度继电器不同的是带2个触头的碗形双金属片作为触桥串在电动机回路,既有流过的过载电流使其发热,又有电动机温度使其升温,达到一定值时,双金属片瞬间反跳动作,触点断开,分断电动机电流。它可作小型三相电动机的温度、过载和断相保护。产品如sPB、DRB型热保护器。
检测线圈测温电动机定子每相绕组中埋人1—2个检测线圈,由自动平衡式温度计来监视绕组温度。
热敏电阻温度继电器它直接埋入电动机绕组中,一旦超过规定温度,其电阻值急剧增大10—1000倍。使用时,配以电子电路检测,然后使继电器动作。产品如J W 9系列船用电子温度继电器。
保护装置与异步电动机的协调配合
为了确保异步电动机的正常运行及对其进行有效的保护,必须考虑异步电动机与保护装置之间的协调配合。特别是大容量电网中使用小容量异步电动机时,保护的协调配合更为突出。
(一)过载保护装置与电动机的协调配合
过载保护装置的动作时间应比电动机起动时间略长一点。电动机过载保护装置的特性只有躲开电动机起动电流的特性,才能确保其正常运转-但其动作时间又不能太长,其特性只能在电动机热特性之下才能起到过载保护作用。
过载保护装置瞬时动作电流应比电动机起动冲击电流略大一点。如有的保护装置带过载瞬时动作功能,则其动作电流应比起动电流的峰值大一些,才能使电动机正常起动。
过载保护装置的动作时间应比导线热特性小一点,才能起到供电线路后备保护的功能。
(二)过载保护装置与短路保护装置的协调配合一般过载保护装置不具有分断短路电流的能力。一旦在运行中发生短路,需要由串联在主电路中的短路保护装置(如断路器或熔断器等)来切断电路。若故障电流较小,属于过载范围,则仍应由过载保护装置切断电路。故两者的动作之间应有选择性。
短路保护装置特性是以熔断器作代表说明的,与过载保护特性曲线的交点电流为Ij,若考虑熔断器特性的分散性,则交点电流有Is及1B两个,此时就要求Is及以下的过电流应由过载保护装置来切断电路,I b及以上直到允许的极限短路电流则由短路保护装置来切断电路,以满足选择性要求。显然,在I s—IB范围内就很难确保有选择性,因此要求该范围应尽量小。从现行I E c标准规定来看,极限值为Is=0.75Ii,Ib=1.25IJ,目前过载保护装置的额定接通和分断能力均按0.75IJ考核,显然偏低一些,从IEC标准修改的动向,今后有可能按I J考核,以提高其可靠性。因此上述的协调配合应既考虑其选择性,又考虑其额定接通和分断能力。
结语
异步电动机的保护是涉及电气装置和机械设备可靠、正常运转的关键之一。直接检测电动机绕组的温度来保护过载引起的过热是很有效的保护方式,但由于需直接埋入电动机绕组里,价格较贵、维修困难等原因,仅在部分频繁操作场合使用;从经济性考虑,采用电流检测型更为有利,加热继电器仍是一种价廉、简单、可靠的电动机保护形式(从实际使用情况看,目前使用量占大多数);对动作性能要求较高及功能要求全或价格昂贵的大容量电动机保护,则可采用电子式或固态继电器;对一般要求,则采用带热一磁脱扣的电动机保护用断路器更为实用。但不管采用何种保护装置,必须考虑过载保护装置与电动机、过载保护装置与短路保护装置的协调配合。
⑺ 求微弱光电信号检测系统的设计,不会做啊,是输入一个模拟光信号,放大器,滤波器,还有A/D转换器
IBF EM系列 直流(电压/电流)隔离放大器
产品特点:
典型应用:
● 低成本、小体积,SIP 12Pin符合UL94V-0标准阻燃封装
● 无需外接电位器等其它元件,免零点和增益调节
● 电源、信号:输入/输出 3000VDC 三隔离
● 辅助电源:5VDC,12VDC,15VDC,24VDC等单电源供电
● 0-75mV/0-2.5V/0-5V/0-10V/0-±100mV/0-±5V/
0-±10V等电压信号
0-10mA/0-20mA /0-±10mA/0-±20mA/4-20mA
等电流信号之间的相互隔离、放大及转换
● 工业级温度范围: -45~+85 ℃
● 在EMC(电磁干扰)比较特殊的使用场合应注意增加
电磁干扰抑制电路或采取屏蔽措施
● 直流电流 / 电压信号的隔离、转换及放大
● 工业现场信号隔离及长线传输
● 模拟信号地线干扰抑制及数据隔离、采集
● 4-20mA(0-20mA)/0-5V等信号的隔离及变换
● 仪器仪表与传感器信号收发
● 非电量信号变送
● 信号远程无失真传输
● 电力监控、医疗设备隔离安全栅
● 传感器4-20mA等模拟信号一进二出、
二进二出隔离信号的功能实现
产品特征
IBF EM系列隔离放大器是一种磁电隔离的混合集成电路,该IC在同一芯片上集成了一个多隔离的DC/DC变换电源和一组磁电耦合的模拟信号隔离放大器,它采用磁电偶合的低成本方案,主要用于对EMC(电磁干扰)无特殊要求的场合。与光电隔离的产品相比,抗EMC(电磁干扰)能力较差,特殊使用场合应注意增加电磁干扰抑制电路或采取屏蔽措施。输入及输出侧宽爬电距离及内部隔离措施使该芯片可达到5000VDC绝缘电压。IBF EM系列产品使用非常方便,免零点和增益调节,无需外接调节电位器等任何元件,即可实现工业现场信号的隔离转换功能。
★ 产品有PCB板上焊接和标准DIN 35导轨卡槽固定两种安装方式,导轨式安装的可以实现模拟信号一进二出、
二进二出的功能。
★0-5V/0-10V/0-75mV/0-2.5V/0-1mA/0-10mA/0-20mA/4-20mA等国际标准信号输入/输出标准的隔离信号。
精度等级:0.1级、0.2级;全量程范围内极高的线性度(非线性度<0.1%),免零点和增益调节。
⑻ 急!!求有关《通信电源系统的安装与调测》的论文的资料,不胜感激~~~
随着通信网络规模的不断扩大,通信电源设备的稳定性和安全性变得越来越重要。如果电源系统发生直流故障,常常会造成整个通信的全部中断。通信电源设备主要由交流高压、低压变配电设备,直流配电设备,交流稳压器,整流设备,UPS设备,DC/DC变换器,蓄电池,发电机组等组成。
在安装电源系统时,首先先了解下电源的走向。第一,高压经过线路进入高低压配电室(变电所)首先进入高压配电柜;第二,高压配电柜后面就是变压器,将高压变压为380V/220V; 第三,变压器出来接的就是低压配电柜,这个配电柜和其他低压配电柜不一样,因为有油机供电,所以要起到市电油机切换的作用;第四,下来继续接低压配电柜,用交流母牌连接,将电能配送至各单体建筑;第五,如果电能配送至通信机房,则要涉及到UPS,开关电源,当然还有与之配套的蓄电池组。UPS主要保证交流不间断供电,开关电源则是保证直流不间断供电。为了保证不间断供电,UPS和开关电源都要和蓄电池搭配使用。
通信电源建设可以分为交流供电系统建设,直流供电系统建设和接地系统建设。
(1).交流供电系统
通信电源的交流供电系统一般由高压配电所、降压变压器、柴(汽)油发电机组、UPS和低压配电屏组成。高压配电所和降压变压器应按照电力部门的规范进行建设安装;柴(汽)油发电机组、UPS和低压配电屏的安装应遵照电信电源规范进行。
柴油发电机组安装顺序为:开箱检验,安装固定,稳机找平,排气管加工套丝(或焊接),安装波纹管,安装消音器以及试车调测等。
UPS在安装前,要对单节蓄电池进行外观检查,观察是否有渗漏液及壳体变形破裂现象,然后对单节电池进行开路电压测试并记录。电池连接结束后,要对电池总的输出电压进行测试并记录,以防部分电池极性接反。在连接UPS的交流引入线时,火线零线不允许接反(注意某些UPS还有相序之分)。
低压配电屏安装前要对固定螺丝进行全面加固,测试屏内相间有无短路现象,安装时检查屏内压降。
(2).直流供电系统
通信设备的直流供电系统一般由整流器、蓄电池、DC/DC变换器和直流配电屏等组成。分为集中供电(见图3-1)和分散供电(见图3.2)
整流器(目前基本都用高频开关电源)安装时要对机架内加固件进行全面加固,检查输入、输出有无短路,加电后要进行电气性能测试。蓄电池在安装时要对蓄电池外观进行检查,对单节开路电压作测试并记录。电池连接结束后,应对总电压进行测试并记录。DC/DC变换器在加电前,要对输入、输出端进行测试,加电后测试输出电压值,同时要对其它性能进行调测。
直流配电屏的安装类似于上面所讲交流屏的安装。
图3-1 集中供电
图3-2 分散供电
(3).接地系统的建设
为提高通信质量,确保通信设备与人身的安全,通信机房都要求有良好的接地系统。通信电源接地系统通常采用联合地线的接地方式。联合接地的标准连接方式是将接地体通过汇流条(或大截面的铜芯电源线)引入到电力室的接地汇流排,直流工作地、防雷地和保护地再分别从该总地排上引接出来
在通信电源设备的建设过程中,安装人员应本着严谨认真的工作态度去操作,否则会给维护部门造成很多麻烦,甚至造成事故。
3.2 通信电源系统的调测
通信电源系统的调测从工程、运行维护角度对通信电源系统运行质量指标的"五性"----稳定可靠性、可用性、可维护性、可持续性、安全性进行分析和论述,其目的是使现有在运行的系统更加高效、可靠地运行和为以后的工程提供技术支持. 衡量各设备投入运行以后的性能指标
3.2.1 稳定可靠性
稳定可靠性包含稳定性和可靠性两个概念,两者各有自身的含义又互相关联。
稳定性表现在自身运行的三个方面:
(1) 设备运行的稳定度
设备名称 项 目
高频开关电源 杂音指标,稳压精度,均流,负载动态响应
UPS 频率稳定度,电压稳定度,总滤波失真,瞬态时间,动态响应等
蓄电池 动/静态单体端电压的一致性,温升,螺栓紧密情况等
柴油发电机组 机组运行状态,输出电压,频率的稳定度
(2) 设备预设工作模式的持续执行
设备名称 项 目
高频开关电源 双路电的切换,周期性电池放电测试,周期性电池均衡充电,故障自诊断,浮充/均充的自动转换,"三遥"功能,故障回叫,报警功能,二次下电,充电限流,系统限流等。
UPS 周期性电池放电测试,周期性电池均衡充电,故障自诊断,浮充/均充的自动转换,"三遥"功能,故障回叫,报警功能,充电限流,自动分配市电/电池供电方案,自动开/关机程序等
蓄电池 柴油发电机组启动成功率,自启动,自投载,自停机,自补给程序
(3) 自身产生的错误或误动作
设备名称 项 目
高频开关电源 温度漂移,老化漂移影响输出特性和均流;控制单元与整流模块之间的通信故障;控制链路中采样不准确或错发指令;误告警(当告警时不告警,正常时误告警)等。
UPS 温度漂移、老化漂移影响输出特性和并机环流,数字处理器(DSP)或中央处理器(CPU)与整流部分,逆变部分,静态开关,并机板,充电器之间的通信故障或错发指令,误告警(当告警时不告警,正常时误告警)等。
蓄电池 早期容量失效,热失控,中期锑污染,漏液,密封阀顶偏或开/闭阀不精确等。
柴油发电机组 误启动,启动电池自放电,启动电池锑污染,柴油滤清器纸滤芯发涨变软等。
可靠性表现在对外界因素的抵御能力和对自身故障的处理和系统操作能力两方面:
(1) 对外界因素的抵御能力
设备名称 项 目
高频开关电源 市电电压瞬高、瞬低、瞬断,网侧长时过电压,网侧浪涌过电压,负载侧浪涌过电压,负载短路,负载突变,零线电位漂移,零线中断等,海拔超高、超温、超湿、粉尘、盐雾、震动等
UPS 市电电压瞬高、瞬低、瞬断,网侧长时过电压,网侧浪涌过电压,电网波形畸变率,电网频率漂移,负载波峰因数、负载突变,负载短路,负载三相不平衡等,零线共模干扰,零线电位漂移,零线中断等,海拔超高、超温、超湿、粉尘、盐雾、震动等
蓄电池 过充、过放、欠充等超温、超湿、粉尘、盐雾、震动、明火等
柴油发电机组 海拔过高,负载波峰因数,负载短路,三相负载不平衡等
(2) 对自身故障的处理和系统操作
设备名称 项 目
高频开关电源 容错、掩错、隔错功能故障自诊断,系统自动复位,故障回叫,报警功能等
UPS 容错、掩错、隔错功能故障自诊断,系统自动复位,故障回叫,报警功能等主/备机切换,旁路切换,单元互助切换,双总线切换
蓄电池 密封阀排气
柴油发电机组 故障告警,三次不能启动告警,油压低、水温高自动保护停机,主机/备机切换,市电/油机切换等
准确知道蓄电池容量是较准确计算蓄电池组对通信设备放电时间的前提。判断阀控式铅酸蓄电池运行状态有以下几种方法:
(1)离线式容量测试
工程设计中配置的蓄电池一般不少于两组,把蓄电池从供电系统中脱离,接上假负载,使电池组以10小时率或3小时率或1小时率电流放电,放电期间测量蓄电池的端电压及室温,只要电池组中有一只单体的端电压达到规定的终止电压时即停止放电,放电电流乘以放电时间就是电池组放出的实际容量。
(2)在线式核对性放电试验
不把蓄电池从供电系统中脱离,对通信负载(必要时接假负载)进行放电,放出蓄电池额定容量的30%~40%,运用特性对比判断蓄电池的储备容量。如果放电深度不够,会降低容量判断的准确度。
( 3)电导测试法和内阻测试法
电导即蓄电池内部电阻的倒数,指传导电流的能力。蓄电池的电导与容量有很高的相关性,电导单位为西门子(S)。测量时电导仪向蓄电池两端加一个已知频率和振幅的低频交流电压信号,测量出电压与同相位的交流电流值,交流电流值和交流电压的比值即为蓄电池的电导。
电池的电导反映电池的内部状况,如电解液干涸、板栅腐蚀、接触不良等,这些都会引起电池内阻增大、电导减小,蓄电池容量降低。
内阻测试法与电导测试法原理基本类似,不同的是一般内阻测试仪需要离线测试,电导测试仪可在线测试。