导航:首页 > 装置知识 > 设计制作数字信号时序分析装置

设计制作数字信号时序分析装置

发布时间:2021-11-26 14:50:17

⑴ 逻辑分析仪与示波器的差别在哪里

逻辑分析仪为了测试数字信号的逻辑状态的,需要设置每个测试端子的电平规范。当被测端发生电平变化时,配合触发设置,通过逻辑分析仪可以记录下来相关的若干个测试端子的逻辑状态和信号时序。
示波器可以理解为一个信号采集装置,现在的示波器很多都是通过高速ADC完成信号数字化,配合触发信号进行捕获和相关的后处理后,将被测信号以时域或者频域(FFT)的图像形式呈现出来,还可以辅以一些信号参数的快速测量。

⑵ 抖动的定义是什么

抖动 英文叫做dithering. 抖动的定义是“数字信号的各个有效瞬时对其当时的理想位置的短期性偏离”,这意味着抖动是不希望有的数字信号的相位调制。相位偏离的频率称为抖动频率,与抖动有密切关系的第二个参数称为漂移,把它定义为“数字信号的各个有效瞬间相对其当时的理想位置的长期偏离”。到目前为止,在抖动和漂移之间的界限还没有明确的定义,通常具有频率低于1Hz至10Hz相位变化部分称为漂移。由于信号再生点把差错引入到数字比特流中以及在含有缓冲存储器的数字设备中的数字溢出或取空,可以把滑动引入到数字信号中,因此抖动可以降低数字电路的传输性能。抖动分系统性抖动和随机性抖动,系统性抖动是由于信号再生装置中定时恢复电路调整不当,或者码间干扰以及由于电缆均衡有缺陷而产生幅度到相位变换而引起的,系统性抖动与码型相关;随机抖动来源于内部干扰信号,如中继器的噪声、串话或反射,随机抖动与传输码型无关,在大部分现有低速数字系统中系统性抖动是主要的,在一个多接力段系统中,对所有数字波道都应该确定无输入抖动时输出抖动的累计平方根值和总的抖动转移函数。最大容许输入抖动通常与无线段的数目无关,因此应该分别测量所有数字波道中的每接力段的最大容许输入抖动。 1、无输入抖动时输出抖动,这种抖动是在各系列接口的网络输出抖动和各个数字设备产生的固定抖动,测量结果可以用指定频率范围内的抖动的峰—峰值来表示。 2、容许的最大输入抖动,这种容许输入抖动也称输入口的抖动容限,当把正弦抖动幅度加到设备输入口的时钟上时;产生的差错性能劣化,用此来定义抖动容限。抖动容限是所加抖动的幅度和频率的函数,它可以用比特差错率(RBER)恶化或开始发生差错时所对应的最大输入抖动数值来表示。 3、抖动转移函数,当抖动出现在设备的数字输入口时,这些抖动会转移到对应的数字输出口,抖动转移特性是在被测系统输入端按规定码型加有一定量的抖动数字信号时测得的输出抖动量与输入抖动量之比: G=20log(Jout/Jin)dB 它表征当被测系统受有抖动的输入信号驱动时,由被测系统所引起的抖动幅度的变化。 抖动:发生随机变化。 在计算机操作系统的虚拟存储管理中,抖动是指刚被调出的页又立即被调入所形成的频繁调入调出的现象。 抖动的分类 抖动有两种主要类型:确定性抖动和随机性抖动。 确定性抖动是由可识别的干扰信号造成的,这种抖动通常幅度有限,具备特定的(而非随机的)产生原因,而且不能进行统计分析。 随机抖动是指由较难预测的因素导致的时序变化。例如,能够影响半导体晶体材料迁移率的温度因素,就可能造成载子流的随机变化。另外,半导体加工工艺的变化,例如掺杂密度不均,也可能造成抖动。 抖动的描述方法 可以通过许多基本测量指标确定抖动的特点,基本的抖动参数包括: 1)周期抖动(period jitter) 测量实时波形中每个时钟和数据的周期的宽度。这是最早最直接的一种测量抖动的方式。这一指标说明了时钟信号每个周期的变化。 2)周期间抖动(cycle-cycle jitter) 测量任意两个相邻时钟或数据的周期宽度的变动有多大,通过对周期抖动应用一阶差分运算,可以得到周期间抖动。这个指标在分析琐相环性质的时候具有明显的意义。 3)时间间隔误差(timer interval error,TIE) 测量时钟或数据的每个活动边沿与其理想位置有多大偏差,它使用参考时钟或时钟恢复提供理想的边沿。TIE在通信系统中特别重要,因为他说明了周期抖动在各个时期的累计效应。 抖动的频域表示——相位噪声 相位噪声是对信号时序变化的另一种测量方式,其时间抖动(jitter)在频率域中的显示。图2用一个振荡器信号来解释相位噪声。 如果没有相位噪声,那么振荡器的整个功率都应集中在频率f=fo处。但相位噪声的出现将振荡器的一部分功率扩展到相邻的频率中去,产生了边带(sideband)。从图2中可以看出,在离中心频率一定合理距离的偏移频率处,边带功率滚降到1/fm,fm是该频率偏离中心频率的差值。 相位噪声通常定义为在某一给定偏移频率处的dBc/Hz值,其中,dBc是以dB为单位的该频率处功率与总功率的比值。一个振荡器在某一偏移频率处的相位噪声定义为在该频率处1Hz带宽内的信号功率与信号的总功率比值。

⑶ 什么是嵌入式逻辑分析仪试简述其特征

专门分析数字信号方面的一种仪器,类似示波器,都是可以看波形,但是示波器是看模拟信号,逻辑分析仪是看数字信号显示的是方波,而逻辑分析仪还可以把波形的数据解码出来。

⑷ 谁知道ds18b20

DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。 1: 技术性能描述 ①、 独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。 ② 、测温范围 -55℃~+125℃,固有测温分辨率0.5℃。 ③、支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。 ④、工作电源: 3~5V/DC ⑤ 、在使用中不需要任何外围元件 ⑥、 测量结果以9~12位数字量方式串行传送 ⑦ 、不锈钢保护管直径 Φ6 ⑧ 、适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温 ⑨、 标准安装螺纹 M10X1, M12X1.5, G1/2”任选 ⑩ 、PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。
编辑本段应用范围
2.1 该产品适用于冷冻库,粮仓,储罐,电讯机房,电力机房,电缆线槽等测温和控制领域 2.2 轴瓦,缸体,纺机,空调,等狭小空间工业设备测温和控制。 2.3 汽车空调、冰箱、冷柜、以及中低温干燥箱等。 2.4 供热/制冷管道热量计量,中央空调分户热能计量和工业领域测温和控制
编辑本段产品型号与规格
型 号 测温范围 安装螺纹 电缆长度 适用管道 TS-18B20 -55~125 无 1.5 m TS-18B20A -55~125 M10X1 1.5m DN15~25 TS-18B20B -55~125 1/2”G 接线盒 DN40~ 60
编辑本段接线说明
特点 独特的一线接口,只需要一条口线通信 多点能力,简化了分布式温度传感应用 无需外部元件 可用数据总线供电,电压范围为3.0 V至5.5 V 无需备用电源 测量温度范围为-55 ° C至+125 ℃ 。华氏相当于是-67 ° F到257华氏度 -10 ° C至+85 ° C范围内精度为±0.5 ° C 温度传感器可编程的分辨率为9~12位 温度转换为12位数字格式最大值为750毫秒 用户可定义的非易失性温度报警设置 应用范围包括恒温控制,工业系统,消费电子产品温度计,或任何热敏感系统 描述该DS18B20的数字温度计提供9至12位(可编程设备温度读数。信息被发送到/从DS18B20 通过1线接口,所以中央微处理器与DS18B20只有一个一条口线连接。为读写以及温度转换可以从数据线本身获得能量,不需要外接电源。 因为每一个DS18B20的包含一个独特的序号,多个ds18b20s可以同时存在于一条总线。这使得温度传感器放置在许多不同的地方。它的用途很多,包括空调环境控制,感测建筑物内温设备或机器,并进行过程监测和控制。 8引脚封装 TO-92封装 用途 描述 5 1 接地 接地 4 2 数字 信号输入输出,一线输出:源极开路 3 3 电源 可选电源管脚。见"寄生功率"一节细节方面。电源必须接地,为行动中,寄生虫功率模式。 不在本表中所有管脚不须接线 。 概况框图图1显示的主要组成部分DS18B20的。DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。该装置信号线高的时候,内部电容器 储存能量通由1线通信线路给片子供电,而且在低电平期间为片子供电直至下一个高电平的到来重新充电。 DS18B20的电源也可以从外部3V-5 .5V的电压得到。 DS18B20采用一线通信接口。因为一线通信接口,必须在先完成ROM设定,否则记忆和控制功能将无法使用。主要首先提供以下功能命令之一: 1 )读ROM, 2 )ROM匹配, 3 )搜索ROM, 4 )跳过ROM, 5 )报警检查。这些指令操作作用在没有一个器件的64位光刻ROM序列号,可以在挂在一线上多个器件选定某一个器件,同时,总线也可以知道总线上挂有有多少,什么样的设备。 若指令成功地使DS18B20完成温度测量,数据存储在DS18B20的存储器。一个控制功能指挥指示DS18B20的演出测温。测量结果将被放置在DS18B20内存中,并可以让阅读发出记忆功能的指挥,阅读内容的片上存储器。温度报警触发器TH和TL都有一字节EEPROM 的数据。如果DS18B20不使用报警检查指令,这些寄存器可作为一般的用户记忆用途。在片上还载有配置字节以理想的解决温度数字转换。写TH,TL指令以及配置字节利用一个记忆功能的指令完成。通过缓存器读寄存器。所有数据的读,写都是从最低位开始。 DS18B20有4个主要的数据部件: (1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 (2) DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 表1 DS18B20温度值格式表 4.3.1 DS18B20的管脚排列如图4.4所示。 图4.4DS18B20的管脚排列如图 DS18B20内部结构主要由四部分组成:64位光刻ROM,温度传感器,温度报警触发器TH和TL,配置寄存器。DS18B20内部结构图如图4.5所示。 图4.5 DS18B20内部结构图 4.3.2存储器 DS18B20的存储器包括高速暂存器RAM和可电擦除RAM,可电擦除RAM又包括温度触发器TH和TL,以及一个配置寄存器。存储器能完整的确定一线端口的通讯,数字开始用写寄存器的命令写进寄存器,接着也可以用读寄存器的命令来确认这些数字。当确认以后就可以用复制寄存器的命令来将这些数字转移到可电擦除RAM中。当修改过寄存器中的数时,这个过程能确保数字的完整性。 高速暂存器RAM是由8个字节的存储器组成;第一和第二个字节是温度的显示位。第三和第四个字节是复制TH和TL,同时第三和第四个字节的数字可以更新;第五个字节是复制配置寄存器,同时第五个字节的数字可以更新;六、七、八三个字节是计算机自身使用。用读寄存器的命令能读出第九个字节,这个字节是对前面的八个字节进行校验。存储器的结构图如图4.6所示。 图4.6 存储器的结构图 4.3.3 64-位光刻ROM 64位光刻ROM的前8位是DS18B20的自身代码,接下来的48位为连续的数字代码,最后的8位是对前56位的CRC校验。64-位的光刻ROM又包括5个ROM的功能命令:读ROM,匹配ROM,跳跃ROM,查找ROM和报警查找。64-位光刻ROM的结构图如图4.7所示。 图4.7位64-位光刻ROM的结构图 4.3.4 DS18B20外部电源的连接方式 DS18B20可以使用外部电源VDD,也可以使用内部的寄生电源。当VDD端口接3.0V—5.5V的电压时是使用外部电源;当VDD端口接地时使用了内部的寄生电源。无论是内部寄生电源还是外部供电,I/O口线要接5KΩ左右的上拉电阻。 连接图如图4.8、图4.9所示。 图4.8 使用寄生电源的连接图 图4.9外接电源的连接图 4.3.4 DS18B20温度处理过程 4.3.4.1配置寄存器 配置寄存器是配置不同的位数来确定温度和数字的转化。配置寄存器的结构图如图4.10所示。 图4.10 配置寄存器的结构图 由图4.9可以知道R1,R0是温度的决定位,由R1,R0的不同组合可以配置为9位,10位,11位,12位的温度显示。这样就可以知道不同的温度转化位所对应的转化时间,四种配置的分辨率分别为0.5℃,0.25℃,0.125℃和0.0625℃,出厂时以配置为12位。温度的决定配置图如图8所示。 图4.11 温度的决定配置图 4.3.4.2 温度的读取 DS18B20在出厂时以配置为12位,读取温度时共读取16位,所以把后11位的2进制转化为10进制后在乘以0.0625便为所测的温度,还需要判断正负。前5个数字为符号位,当前5位为1时,读取的温度为负数;当前5位为0时,读取的温度为正数。16位数字摆放是从低位到高位,温度的关系图如图4.12所示。 图4.12为温度的关系图 4.3.4.3.DS18B20控制方法 DS18B20有六条控制命令,如表4.1所示: 表4.1 为DS18B20有六条控制命令 指 令 约定代码 操 作 说 明 温度转换 44H 启动DS18B20进行温度转换 读暂存器 BEH 读暂存器9位二进制数字 写暂存器 4EH 将数据写入暂存器的TH、TL字节 复制暂存器 48H 把暂存器的TH、TL字节写到E2RAM中 重新调E2RAM B8H 把E2RAM中的TH、TL字节写到暂存器TH、TL字节 读电源供电方式 B4H 启动DS18B20发送电源供电方式的信号给主CPU 4.3.4.4 DS18B20的初始化 (1) 先将数据线置高电平“1”。 (2) 延时(该时间要求的不是很严格,但是尽可能的短一点) (3) 数据线拉到低电平“0”。 (4) 延时750微秒(该时间的时间范围可以从480到960微秒)。 (5) 数据线拉到高电平“1”。 (6) 延时等待(如果初始化成功则在15到60毫秒时间之内产生一个由DS18B20所返回的低电平“0”。据该状态可以来确定它的存在,但是应注意不能无限的进行等待,不然会使程序进入死循环,所以要进行超时控制)。 (7) 若CPU读到了数据线上的低电平“0”后,还要做延时,其延时的时间从发出的高电平算起(第(5)步的时间算起)最少要480微秒。 (8) 将数据线再次拉高到高电平“1”后结束。 其时序如图4.13所示: 图4.13 初始化时序图 4.3.4.5 DS18B20的写操作 (1) 数据线先置低电平“0”。 (2) 延时确定的时间为15微秒。 (3) 按从低位到高位的顺序发送字节(一次只发送一位)。 (4) 延时时间为45微秒。 (5) 将数据线拉到高电平。 (6) 重复上(1)到(6)的操作直到所有的字节全部发送完为止。 (7) 最后将数据线拉高。 DS18B20的写操作时序图如图4.14所示。 图4.14 DS18B20的写操作时序图 4.3.4.6 DS18B20的读操作 (1)将数据线拉高“1”。 (2)延时2微秒。 (3)将数据线拉低“0”。 (4)延时3微秒。 (5)将数据线拉高“1”。 (6)延时5微秒。 (7)读数据线的状态得到1个状态位,并进行数据处理。 (8)延时60微秒。 DS18B20的读操作时序图如图4.15所示。 图1.15 DS18B20的读操作图 数字温度传感器DS18B20介绍
1、DS18B20的主要特性 1.1、适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数 据线供电 1.2、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯 1.3、 DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温 1.4、DS18B20在使用中不需要任何外围元件,全部 传感元件及转换电路集成在形如一只三极管的集成电路内 1.5、温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃ 1.6、可编程 的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温 1.7、在9位分辨率时最多在 93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快 1.8、测量结果直接输出数字温度信号,以"一 线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力 1.9、负压特性:电源极性接反时,芯片不会因发热而烧毁, 但不能正常工作。 2、DS18B20的外形和内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM 、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的外形及管脚排列如下图1: DS18B20引脚定义: (1)DQ为数字信号输入/输出端; (2)GND为电源地; (3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。
图2: DS18B20内部结构图 3、DS18B20工作原理 DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振 随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对 低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重 新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即 为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。 图3:DS18B20测温原理框图
DS18B20有4个主要的数据部件: (1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位 (28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用 是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 (2)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以 0.0625℃/LSB形式表达,其中S为符号位。
表1: DS18B20温度值格式表 这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0, 这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际 温度。 例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FE6FH,-55℃的数字输出为FC90H 。 表2: DS18B20温度数据表
(3)DS18B20温度传感器的存储器 DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器 TH、TL和结构寄存器。 (4)配置寄存器 该字节各位的意义如下: 表3:配置寄存器结构 TM R1 R0 1 1 1 1 1
低五位一直都是"1",TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用 户不要去改动。R1和R0用来设置分辨率,如下表所示:(DS18B20出厂时被设置为12位) 表4:温度分辨率设置表 R1 R0 分辨率 温度最大转换时间
0 0 9位
93.75ms
0 1 10位
187.5ms
1 0 11位
375ms
1 1 12位
750ms
4、高速暂存存储器 高速暂存存储器由9个字节组成,其分配如表5所示。当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在 高速暂存存储器的第0和第1个字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式如表1所示。对应的温度计算: 当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变为原码,再计算十进制值。表 2是对应的一部分温度值。第九个字节是 冗余检验字节。 表5:DS18B20暂存寄存器分布
寄存器内容 字节地址
温度值低位 (LS Byte) 0
温度值高位 (MS Byte) 1
高温限值(TH) 2
低温限值(TL) 3
配置寄存器 4
保留 5
保留 6
保留 7
CRC校验值 8
根据DS18B20的通讯协议,主机(单片机)控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行 复位操作,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后 释放,当DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。 表6:ROM指令表 指 令 约定代码 功 能
读ROM 33H 读DS1820温度传感器ROM中的编码(即64位地址)

符合 ROM 55H 发出此命令之后,接着发出 64 位 ROM 编码,访问单总线上与该编码相对应的 DS1820 使之作出响应,为下一步对该 DS1820 的读写作准备。

搜索 ROM 0FOH 用于确定挂接在同一总线上 DS1820 的个数和识别 64 位 ROM 地址。为操作各器件作好准备。

跳过 ROM 0CCH
忽略 64 位 ROM 地址,直接向 DS1820 发温度变换命令。适用于单片工作。

告警搜索命令 0ECH
执行后只有温度超过设定值上限或下限的片子才做出响应。
表6:RAM指令表 指 令 约定代码 功 能
温度变换 44H 启动DS1820进行温度转换,12位转换时最长为750ms(9位为93.75ms)。结果存入内部9字节RAM中。

读暂存器
0BEH 读内部RAM中9字节的内容

写暂存器
4EH 发出向内部RAM的3、4字节写上、下限温度数据命令,紧跟该命令之后,是传送两字节的数据。

复制暂存器
48H
将RAM中第3 、4字节的内容复制到EEPROM中。

重调 EEPROM
0B8H
将EEPROM中内容恢复到RAM中的第3 、4字节。
读供电方式 0B4H
读DS1820的供电模式。寄生供电时DS1820发送“ 0 ”,外接电源供电 DS1820发送“ 1 ”。
5、DS18B20的应用电路DS18B20测温系统具有测温系统简单、测温精度高、连接方便、占用口线少等优点。下面就是DS18B20几个不同应用方式下的 测温电路图: 5.1、DS18B20寄生电源供电方式电路图如下面图4所示,在寄生电源供电方式下,DS18B20从单线信号线上汲取能量:在信号线DQ处于高电平期间把能量储存在内部 电容里,在信号线处于低电平期间消耗电容上的电能工作,直到高电平到来再给寄生电源(电容)充电。 独特的寄生电源方式有三个好处: 1)进行远距离测温时,无需本地电源 2)可以在没有常规电源的条件下读取ROM 3)电路更加简洁,仅用一根I/O口实现测温 要想使DS18B20进行精确的温度转换,I/O线必须保证在温度转换期间提供足够的能量,由 于每个DS18B20在温度转换期间工作电流达到1mA,当几个温度传感器挂在同一根I/O线上进行多点测温时,只靠4.7K上拉电阻就无法提供足够的 能量,会造成无法转换温度或温度误差极大。 因此,图4电路只适应于单一温度传感器测温情况下使用,不适宜采用电池供电系统中。并 且工作电源VCC必须保证在5V,当电源电压下降时,寄生电源能够汲取的能量也降低,会使温度误差变大。 图4
图4 5.2、DS18B20寄生电源强上拉供电方式电路图改进的寄生电源供电方式如下面图5所示,为了使DS18B20在动态转换周期中获得足够的电流供应,当进行温度转换或拷贝到 E2存储器操作时,用MOSFET把I/O线直接拉到VCC就可提供足够的电流,在发出任何涉及到拷贝到E2存储器或启动温度转换的指令后,必须在最 多10μS内把I/O线转换到强上拉状态。在强上拉方式下可以解决电流供应不走的问题,因此也适合于多点测温应用,缺 点就是要多占用一根I/O口线进行强上拉切换。 图5
图5 注意:在图4和图5寄生电源供电方式中,DS18B20的VDD引脚必须接地 5.3、DS18B20的外部电源供电方式在外部电源供电方式下,DS18B20工作电源由VDD引脚接入,此时I/O线不需要强上拉,不存在电源电流不足的问题,可以保证 转换精度,同时在总线上理论可以挂接任意多个DS18B20传感器,组成多点测温系统。注意:在外部供电的方式下,DS18B20的GND引脚不能悬空 ,否则不能转换温度,读取的温度总是85℃。 图6:外部供电方式单点测温电路 图6
. . . . . 图7:外部供电方式的多点测温电路图 图7
外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度 监控系统。站长推荐大家在开发中使用外部电源供电方式,毕竟比寄生电源方式只多接一根VCC引线。在外接电源方式下, 可以充分发挥DS18B20宽电源电压范围的优点,即使电源电压VCC降到3V时,依然能够保证温度量精度。 6、DS1820使用中注意事项 DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题: 6.1、较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此 ,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。在使用PL/M、C等高级语言进行系统程序设计时,对 DS1820操作部分最好采用汇编语言实现。 6.2、在DS1820的有关资料中均未提及单总线上所挂DS1820数量问题,容易使人误认为可以挂任意多个 DS1820,在实际应用中并非如此。当单总线上所挂DS1820超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时 要加以注意。 6.3、连接DS1820的总线电缆是有长度限制的。试验中,当采用普通信号电缆传输长度超过50m时,读取的 测温数据将发生错误。当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150m,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正 常通讯距离进一步加长。这种情况主要是由总线分布电容使信号波形产生畸变造成的。因此,在用DS1820进行长距离测温系统设计时要充分考 虑总线分布电容和阻抗匹配问题。 6.4、在DS1820测温程序设计中,向DS1820发出温度转换命令后,程序总要等待DS1820的返回信号,一旦 某个DS1820接触不好或断线,当程序读该DS1820时,将没有返回信号,程序进入死循环。这一点在进行DS1820硬件连接和软件设计时也要给予 一定的重视。 测温电缆线建议采用屏蔽4芯双绞线,其中一对线接地线与信号线,另一组接VCC和地线,屏蔽层在源端单点接地。

⑸ 逻辑分析仪的选择使用

自20世纪70 年代初研制成微处理器,出现4位和8位总线,传统示波器的双通道输入无法满足8位字节的观察。微处理器和存储器的测试需要不同于时域和频域仪器。数域测试仪器应运而生。HP公司推出状态分析仪和Biomation公司推出定时分析仪(两者最初很不相同)之后不久,用户开始接受这种数域测试仪器作为最终解决数字电路测试的手段,不久状态分析仪与定时分析仪合并成逻辑分析仪。
20世纪80 年代后期,逻辑分析仪变得更加复杂,当然使用起来也就更加困难。例如,引入多电平树形触发,以应付条件语句如IF、THEN、ELSE等复杂事件。这类组合触发必然更加灵活,同时对大多数用户来说就不是那样容易掌握了。
逻辑分析仪的探头日益显得重要。需用夹子夹住穿孔式元件上的16根引脚和双列直插式元件上的只有0.1″间隙的引脚时,就出现探头问题。今天的逻辑分析仪提供几百个工作在200MHz频率上的通道信号连接就是个现实问题。适配器、夹子和辅助爪钩等多种多样,但是最好的办法的是设计一种廉价的测试夹具,逻辑分析仪直接连接到夹具上,形成可靠和紧凑的接触。
今天的发展趋势
逻辑分析仪的基本取向在计算机与仪器的不断融合中找到了解决的办法。Tektronix公司TLA600系列逻辑分析仪着重解决导向和发展能力,亦即仪器如何动作和如何构建有特色的结构。导向采用微软的Windows接口,它非常容易驱动。改进信号发现能力必然涉及到仪器结构的变动。在所有要处理的数据中着重处理与时间有关联的数据,不同类型的信息采用多窗口显示。例如,对于微处理器来说,最好能同时观察定时和状态以及反汇编源码,而且各窗口上的光标彼此跟踪相连。
关于触发,总是传统逻辑分析仪中的难题。TLA600系列逻辑分析仪为用户提供触发库,使复杂触发事件的设置简单化,保证你精力集中解决测试问题上,而不必花时间去调整逻辑分析仪的触发设置。该库中包含有许多易于掌握的触发设置,可以作为通常需要修改的触发起始点。需要特殊的触发能力只是问题的一部分。除了由错误事件直接触发外,用户还希望从过去的时段去观察信号,找出造成错误的根源和它前后的关系。精细的触发和深存储器可提高超前触发能力。
在PC机平台上使用Windows,除了为广大用户提供了许多熟知的好处之外,只要给定正确的软件和相关工具,即可通过互联网进行远程控制,从目标文件格式中提取源码和符号,支持微软公司的CMO/DCOM标准,而且处理器可运行各种控制操作。 如果数字电路出现故障,我们一般优先就考虑使用逻辑分析仪来检查数字电路的完整性,不难发现存在的故障;但是在其他情况下你是否考虑到使用逻辑分析仪呢?譬如说:第一点如何观察测试系统在执行我们事先编制好的程序时,是不是真正地在按照我们设计好的程序来执行呢?如果我们向系统写入的是(MOV A,B)而系统则是执行的(ADD A,B),那会造成什么样的后果?第二点:怎么样真正地监测软件系统的实际工作状态,而不是用DEBUG等方式进行设置断点后,查看预先设定的某些变量或内存中的数据是我们预先想得到的值。在这里我们有第三、第四等等很多问题有待解决。
通常我们将数字系统分成硬件部分和软件部分,在研发设计这些系统时,我们有很多事情要做,譬如硬件电路的初步设计、软件的方案制定和初步编制、硬件电路的调试、 软件的调试、以及最终的系统的定型等等工作,在这些工作中几乎每一步工作都要逻辑分析仪的帮助,但是鉴于每个单位的经济实力和人员状况不同,并且在很多系统的使用中都不是要把以上的每个部分都进行一 遍,这样我们就把逻辑分析仪的使用分成以下几个层次:
第一个层次:只要查看硬件系统的一些常见的故障,例如时钟信号和其他信号的波形、信号中是否存在严重影响系统的毛刺信号等故障;
第二个层次:要对硬件系统的各个信号的时序进行很好的分析,以便最好地利用系统资源,消除由定时分析能够分析出的一些故障;
第三个层次:要对硬件对软件的执行情况的分析,以确保写入的程序被硬件系统完整地执行;
第四个层次:需要实时地监测软件的执行情况,对软件进行实时地调试。
第五个层次:需要进行现有客户系统的软件和硬件系统性的解剖分析,达到我们对现有客户系统的软件和硬件系统全面透彻地了解和掌握的功能。
对以上的几个层次的要求,我们可以看出,他们并不都需要很高档的逻辑分析仪,对于第一层次的使用者,他们甚至用一台功能比较好的示波器就可以解决问题,针对以上的几个使用层次,在选择仪器时可以选用相应的仪器。实际上逻辑分析仪也有几个层次,他们有:
1、 普通2~4通道的数字存储器,例如TDS3000系列(加上TDS3TRG高级触发模块),利用它的一些高级触发功能(例如脉冲宽度触发、欠幅脉冲触发、各个通道之间的一定的与、或、与或、异或关系的触发)就可以找到我们希望看到的信号,发现并排除一些故障,况且示波器的功能还可以作为其他使用,在这里我们只不过用了一台示波器的附加功能,可以说这种方式是最节省的方式。
2、当示波器的通道数不够时,也可以选用一些带有简单的定时分析功能的多通道定时分析仪器,如早期的逻辑分析仪和如今市面上还有的混合信号示波器,如Agilent的546××D示波器。
3、一些功能比较简单,速度不是特别快的的计算机插卡 式,基于Windows、绝大部分功能都由软件来完成的虚拟仪器,这类产品在国内的很多厂家都有生产。
4、采样速率、触发功能、分析功能都很强大的不可扩展的固定式整机。例TLA600系列。
5、功能更强扩展性更好的模块化插卡式整机;对不同的用户,可以针对需要,选择不同档次的仪器。逻 逻辑分析仪是数字设计验证与调试过程中公认最出色的工具,它能够检验数字电路是否正常工作,并帮助用户查找并排除故障。它每次可捕获并显示多个信号,分析这些信号的时间关系和逻辑关系;对于调试难以捕获的、间断性故障,某些逻辑分析仪可以检测低频瞬态干扰,以及是否违反建立、保持时间。在软硬件系统集成中,逻辑分析仪可以跟踪嵌入软件的执行情况,并分析程序执行的效率,便于系统最后的优化。另外,某些逻辑分析仪可将源代码与设计中的特定硬件活动相互关联。逻辑分析仪可将源代码与设计中的特定硬件活动相互关联。
当您需要完成下列工作时,请使用逻辑分析仪:
·调试并检验数字系统的运行;
·同时跟踪并使多个数字信号相关联;
·检验并分析总线中违反时限的操作以及瞬变状态;
·跟踪嵌入软件的执行情况。

⑹ 什么是逻辑分析仪它的作用是什么

逻辑分析仪是一种类似于示波器的波形测试设备,它可以监测硬件电路工作时的逻辑电平(高或低),并加以存储,用图形的方式直观地表达出来,便于用户检测,分析电路设计(硬件设计和软件设计) 中的错误,逻辑分析仪是设计中不可缺少的设备,通过它,可以迅速地定位错误,解决问题,达到事半功倍的效果。

逻辑分析仪是利用时钟从测试设备上采集和显示数字信号的仪器,最主要作用在于时序判定。由于逻辑分析仪不像示波器那样有许多电压等级,通常只显示两个电压(逻辑1和0),因此设定了参考电压后,逻辑分析仪将被测信号通过比较器进行判定,高于参考电压者为High,低于参考电压者为Low,在High与Low之间形成数字波形。例如:一个待测信号使用200MHz采样率的逻辑分析仪,当参考电压设定为1.5V时,在测量时逻辑分析仪就会平均每5ns采取一个点,超过1.5V者为High(逻辑1),低于1.5V者为Low(逻辑0),而后的逻辑1和0可连接成一个简单波形,工程师便可在此连续波形中找出异常错误(bug)之处。

整体而言,逻辑分析仪测量被测信号时,并不会显示出电压值,只是High跟Low的差别;如果要测量电压就一定需要使用示波器。除了电压值的显示不同外,逻辑分析仪与示波器的另一个差别在于通道数量。一般的示波器只有2个通道或4个通道,而逻辑分析仪可以拥有从16个通道、32个通道、64个通道和上百个通道数不等,因此逻辑分析仪具备同时进行多通道测试的优势。

根据硬件设备设计上的差异,目前市面上逻辑分析仪大致上可分为独立式(或单机型)逻辑分析仪和需结合电脑的PC-based卡式虚拟逻辑分析仪。独立式逻辑分析仪是将所有的测试软件、运算管理元件以及整合在一台仪器之中;卡式虚拟逻辑分析仪则需要搭配电脑一起使用,显示屏也与主机分开。

就整体规格而言,独立式逻辑分析仪已发展到相当高标准的产品,例如采样率可达8GHz、通道数可扩充到300个通道以上,存储深度相对也高,独立式逻辑分析仪以往价格昂贵,从几万到数十万人民币不等,一般用户很少用得起。最近台湾OItek科技有限公司推出的OLA2032BTM独立台式EasyDebugTM逻辑分析仪,不超过2万元人民币经济性价格让每个工程师都用得起。尤其在数字电路教学中,改变了以往老师为了降低成本使用虚拟逻辑分析仪进而产生的不直观、麻烦等问题,在同一个价格上,我们可以把台式独立逻辑分析仪很轻松地拎起来。

基于计算机接口的卡式虚拟逻辑分析仪,以较小的成本提供了相应的性能,但是卡式虚拟逻辑分析仪也有很大缺点,它需要配备电脑才能使用,尤其数字测试中,工程师往往会陷入一堆PCB板中,采用旋转按钮的仪器要比在屏幕上移动鼠标更加方便。技术的发展也逐渐把示波器和逻辑分析仪的功能融合在一起,成为混合式的仪器(MSO),也称混合信号测试仪器。逻辑分析仪与示波器比较如下,这样我们就会知道什么情况下用逻辑分析仪或示波器了。

⑺ 逻辑电平测量仪用途有哪些

逻辑电平测量仪用途有哪些?测量逻辑状态,对触发器,单片机等的状态分析

⑻ 什么时候应该使用逻辑分析仪

逻辑分析仪特别适合检验和调试数字设计。逻辑分析仪检验数字电路正常工作,帮助您调试出现的问题。逻辑分析仪一次捕获和显示多个信号,分析信号之间的定时关系。为调试难检的间歇性问题,如ZLG致远电子出的LAB7504逻辑分析仪可以检测毛刺及建立时间和保持时间违规。在软件/硬件集成过程中,逻辑分析仪追踪嵌入式软件的执行情况,分析程序的执行效率。某些逻辑分析仪把源代码与设计中的特定硬件活动关联起来。

⑼ 谁有用数字电子 设计的 交通信号灯的Multisim 仿真图....给我发一个.....

亲~你还有木有啊··能不能给我发一份呀···呜呜··· [email protected]

⑽ 数字电路课程设计的心得体会

传感器实验箱
http://..com/question/36305721.html BC-112型检测与转换技术实验箱是上海博才科教设备有限公司多年生产传感器技术教学实验装置的基础,为适应不同类别,不同层次的专业需要,最新推出的模块化的新产品。检测与转换技术实验箱主要用于各大、中专院校开设的“自动检测技术”、“传感器原理与技术”、“非电量电测技术”、“工业自动化仪表与控制”、“机械量电则”等课程的实验需要。

阅读全文

与设计制作数字信号时序分析装置相关的资料

热点内容
红色28五金机电市场 浏览:517
机械产品怎么显示生产企业标志标志 浏览:127
主角随意移魂附身别人的小说 浏览:615
好看的免费推理电影 浏览:200
奔驰cls如何设置仪表盘开门提示 浏览:113
道奇皮卡英文仪表怎么消太阳 浏览:396
疾速追杀在哪个app可以看 浏览:668
适合夫妻二人观看的电电影 浏览:719
断背山完整版2小时45分 浏览:608
电影在线观看韩国推理片推荐 浏览:588
万州有哪些机械厂招聘信息 浏览:859
韩国爱情亲吻片 浏览:432
欧美青春爱情尺度 浏览:790
肠吸收实验装置改进 浏览:840
平谷地下消防管道漏水检测装置 浏览:942
韩剧电影当兵回来再船上遇见 浏览:484
电影吻戏合集 浏览:265
无线网设备id是什么 浏览:542
管线清洗设备哪个好用 浏览:337
山东济宁阀门厂 浏览:352