『壹』 變速恆頻交流電源系統和恆速恆頻有什麼區別
航空電源交流使用的是115V,頻率400Hz。 航空電源系統由主電源、應急電源和二次電源組成,有時還包括輔助電源。主電源由航空發動機傳動的發電機、電源控制保護設備等構成,在飛行中供電。 由航空發動機直接傳動的無刷交流發動機和頻率變換器構成主電源的 400赫三相交流電源系統。二次電源、應急電源和輔助電源與恆速恆頻交流電源系統的相同,恆速恆頻電源系統中的恆速傳動裝置屬精度機械,使用維護困難,製造成本較高,自從50年代末功率半導體器件出現以後,人們開始研究用電子變頻器來代替。變頻器有兩種:一種是交-直-交型;另一種是交-交型。交-直-交型先將發電機的變頻交流電經整流電路變為直流電,再用逆變器變為400赫交流電,故這種電源系統又稱為具有直流環節的變速恆頻電源系統。 交-交變頻器直接將發電機產生的多相變頻交流電切換成400赫三相交流電。1972年第一套20千伏·安變速恆頻交流電源裝機使用,主要用在先進的殲擊機上。這種電源系統電能質量高,運動部件少,使用維護方便,可以構成無刷起動/發電雙功能系統。
『貳』 飛機如何啟動
大型客機一般都是:
1.電源啟動輔助發動機.
2.輔助發動機啟動主發動機
滑行階段的時候.主發動機開20%的功率
正式起飛助跑的時候.主發動機全速運行並開加力.
壓縮空氣啟動一般用於螺旋槳飛機
『叄』 航空電源的電壓和頻率是多少
航空電源交流使用的是115V,頻率400Hz。
航空電源系統由主電源、應急電源和二次電源組成,有專時還包括輔助屬電源。主電源由航空發動機傳動的發電機、電源控制保護設備等構成,在飛行中供電。
由航空發動機直接傳動的無刷交流發動機和頻率變換器構成主電源的 400赫三相交流電源系統。二次電源、應急電源和輔助電源與恆速恆頻交流電源系統的相同,恆速恆頻電源系統中的恆速傳動裝置屬精度機械,使用維護困難,製造成本較高,自從50年代末功率半導體器件出現以後,人們開始研究用電子變頻器來代替。變頻器有兩種:一種是交-直-交型;另一種是交-交型。交-直-交型先將發電機的變頻交流電經整流電路變為直流電,再用逆變器變為400赫交流電,故這種電源系統又稱為具有直流環節的變速恆頻電源系統。 交-交變頻器直接將發電機產生的多相變頻交流電切換成400赫三相交流電。1972年第一套20千伏·安變速恆頻交流電源裝機使用,主要用在先進的殲擊機上。這種電源系統電能質量高,運動部件少,使用維護方便,可以構成無刷起動/發電雙功能系統。
『肆』 螺旋槳飛機傳動裝置
我想問的是你用的是什麼電扇……普通家用插電電扇還是裝電池的小風扇
另外是專需要屬把兩個發動機的轉動方向搞成相反的。如果是直流電機直接反接電機兩極就行了。
我最關心的問題還是你用的電機恐怕扭矩和轉速都不夠啊。還有電扇,如果是家用的普通電風扇裡面是交流電機,沒法裝到航模上的……
『伍』 飛機上的設備由什麼供電
飛機電源系統由主電源、應急電源和二次電源組成,有時還包括輔助電源。主電源由航空發動機傳動的發電機、電源控制保護設備等構成,在飛行中供電。編輯本段簡介 當航空發動機不工作時(如地面測試時),主電源也不工作,這時靠輔助電源供電。飛機蓄電池或輔助動力裝置(一種小型機載發動機、發電機和液壓泵等構成的動力裝置)是常用的輔助電源。飛行中主電源發生故障時,蓄電池或應急發電機即成為應急電源。 機載用電設備要求較高的供電質量,電壓調整精度、頻率調整精度、交流電壓波形正弦度、電壓浪涌和尖峰等都有一定的技術標准。 通常一台發動機上有1~2台發電機,因此多發動機飛機上裝有許多台發電機。直流電源系統中的發電機都並聯工作。交流發電機有的並聯工作(如波音 707飛機的4台發電機),有的不並聯工作(如「三叉戟」飛機的3台發電機)。不並聯工作的交流電源系統較為簡單;並聯系統則比較復雜,但電源容量大,負載的波動對電源電壓和頻率的影響較小,故電能質量高,且不易中斷供電。 編輯本段電源類型 ①低壓直流電源系統: 主電源由直流並激發電機、電壓調節器、反流切斷器和過電壓保護器等構成。額定電壓為28.5伏,額定功率有3、6、9、12和18千瓦等數種。由變流機或靜止變流器把低壓直流電變換為交流電作為二次電源。 ②恆速恆頻交流電源系統: 主電源是由恆速傳動裝置和交流發電機構成的400赫、115/200伏三相交流電源系統。額定容量有20、30、40、 60、 90、120和150千伏·安等幾種。它用變壓整流器作二次電源,應急電源由飛機蓄電池或應急交流發電機構成。有的飛機上還有輔助動力裝置作為輔助電源。40年代開始使用恆速恆頻電源系統,後廣泛應用由組合傳動發電裝置構成的恆速恆頻交流電源系統。這種電源系統容量大、重量輕、工作可靠,適合於性能高、用電量大的飛機,如轟炸機、中遠程運輸機和殲擊機等。飛機交流電的頻率是400赫,比一般市電頻率高得多。電源頻率高可減小用電設備中的變壓器、扼流圈和濾波電容等電磁和電氣元件的體積;電動機轉速高、重量輕,能滿足陀螺儀等高速電動機的要求。頻率與發電機的轉速有關,受電機結構、強度、損耗和壽命等因素的限制。飛機上多用三相交流電,因為三相系統的電機利用率高、體積小,非同步電動機的工作也可靠。 ③變速恆頻交流電源系統: 由航空發動機直接傳動的無刷交流發動機和頻率變換器構成主電源的 400赫三相交流電源系統。二次電源、應急電源和輔助電源與恆速恆頻交流電源系統的相同,恆速恆頻電源系統中的恆速傳動裝置屬精度機械,使用維護困難,製造成本較高,自從50年代末功率半導體器件出現以後,人們開始研究用電子變頻器來代替。變頻器有兩種:一種是交-直-交型;另一種是交-交型。交-直-交型先將發電機的變頻交流電經整流電路變為直流電,再用逆變器變為400赫交流電,故這種電源系統又稱為具有直流環節的變速恆頻電源系統。 交-交變頻器直接將發電機產生的多相變頻交流電切換成400赫三相交流電。1972年第一套20千伏·安變速恆頻交流電源裝機使用,主要用在先進的殲擊機上。這種電源系統電能質量高,運動部件少,使用維護方便,可以構成無刷起動/發電雙功能系統。 ④混合電源系統: 由低壓直流電源和變頻交流(有時為恆頻交流)電源構成主電源。應急電源用蓄電池,二次電源用變流機或靜止變流器。某些運輸機和直升機上加溫和防冰等設備用電量很大,它們的工作與電源頻率無關,可以使用變頻交流電。變頻交流電源系統由航空發動機傳動的變頻交流發電機和調壓保護器構成,比較簡單。由低壓直流電源系統供電給飛機上主要用電設備,且常用起動/發電機。有的飛機上用恆頻交流電的設備較多,則使用由恆頻交流電源系統和低壓直流電源系統構成的混合電源系統。 ⑤高壓直流電源系統 :隨著功率電子器件、大規模集成電路和稀土永磁材料的發展,70年代開始研製額定電壓為 270伏的高壓直流電源系統。這種電源系統兼有低壓直流電源系統和交流電源系統的優點:效率高,重量輕,並聯和配電簡便,易實現不中斷供電,抗干擾能力強,不需要恆速傳動裝置,因而簡單、經濟、維護方便,但電路開關器件、電能變換裝置、功率轉換裝置及無刷直流電動機比較復雜。 編輯本段電源功率選擇 飛機用電設備並不是在整個飛機過程中都同時工作的。飛機任務不同或同一任務的不同飛行階段使用的設備也不相同。不同設備對電能種類、質量和功率要求各不相同,而且工作時間也有差異。因此飛機電源系統的功率是按用電功率最大的飛行任務和飛行階段設計的。從供電可靠出發,民航飛機的電源功率比要求的功率大得多;軍用飛機為了減輕重量,電源功率僅略大於要求功率。對於起動/發電機,電機功率必須滿足起動發動機的要求。在多發電機飛機上,若有一台或若乾颱發電機發生故障,飛行控制系統、電動軍械等安全飛行和完成特定飛行任務所需的主要用電設備仍應正常工作,但必須切斷某些照明、加溫等次要用電設備的電源。在主電源全部損壞的危急情況下,陀螺地平儀、超短波電台等確保飛機安全返航或就近著陸的重要設備立即由應急電源供電。應急電源功率稍大於重要用電設備所需要的總功率(見飛機發電機、飛機蓄電池)。
『陸』 航空發動機的點火方法
正常情況下先起動APU(輔助動力裝置,Auxiliary Power Unit)APU提供引氣和電,從APU過來的引氣帶動飛機發動版機上的ATS(啟動機)然後使權N2轉子轉動,當N2達到一定轉速後燃油噴嘴噴出燃油後,由點火激勵器點火引燃燃油繼續推動葉片轉動。N2轉動後會使發動機內部N1轉子葉片前後產生氣壓差,從而帶動N1轉子轉動。N1的轉動使發動機產生向後很大的推力.一般N2上連接著附件齒輪箱,Boeing737飛機附件齒輪箱中的齒輪連接著一個CSD(恆速傳動裝置),帶動一個交流發電機為飛機提供115V,400Hz的交流電。飛機發動機用來控制燃油流量的裝置叫HMU.
『柒』 輪船螺旋槳處,問什麼不進水
螺旋槳與主機之間,是通過一根軸連接的,主船體上用於穿軸的結構叫做艉管,在軸與艉管之間,會有一套密封裝置,設備名稱叫「艉管密封」,這個設備保證了水不會進入船體。
『捌』 飛機是怎麼啟動發動機的
飛機是怎麼啟動發動機的:
航空燃氣渦輪發動機的結構和循環過程,決定了它不能象汽車發動機那樣自主的點火起動。因為,在靜止的發動機中直接噴油點火,因為壓氣機沒有旋轉,前面空氣沒有壓力,就不能使燃氣向後流動,也就無法使渦輪轉動起來,這樣會燒毀燃燒室和渦輪導向葉片。 所以,燃氣渦輪發動機的起動特點就是:先要氣流流動,再點火燃燒,也即是發動機必須要先旋轉,再起動。這就是矛盾,發動機還沒起動,還沒點火,卻要它先轉動。 根據這個起動特點,就必須在點火燃燒前先由其他能源來帶動發動機旋轉。 在以前的小功率發動機上,帶動發動機到達一定轉速所需的功率小,就採用了起動電機來帶動發動機旋轉,如用於國產運-7,運-8飛機的渦槳5、渦槳6發動機。 但是隨著大推力發動機的出現,用電動機已無法提供如此大的能量來帶動發動機,達到點火燃燒時的轉速了,因此需要更大的能源來帶動發動機,這時,採用APU,產生壓縮空氣,用氣源代替電源來起動發動機成為了現在所有高涵道比發動機的起動方式。
起動過程發動機的起動過程是一個能量逐級放大的過程。 先由蓄電池提供電源給APU起動電機,帶動APU轉子旋轉; APU達到起動轉速後噴油燃燒,把燃料提供的化學能轉變為渦輪的機械能,並通過壓氣機把機械能轉換為空氣的壓力能。由於燃料的加入,APU產生的壓縮空氣的能量已遠遠大於蓄電池的能量了 最後,發動機上的空氣渦輪起動機把APU空氣的壓力轉化為帶動發動機核心機轉子旋轉的機械能,在達到發動機起動轉速時噴油點火,最終靠燃料的化學能使發動機進入穩定工作狀態。 所以,在整個起動過程中,帶動發動機核心機旋轉的大能量,從很低的蓄電池能量,通過燃料的加入,一步步升了起來,就象三峽大壩的梯級船閘。 這就是APU的好處:飛機本身只需要攜帶一個能量很低的,充足了電的蓄電池,通過APU,就能夠自主的完成發動機的起動,而不再依賴於地面設備來起動發動機。
『玖』 飛機發動機怎麼啟動
這個問題我可以給你詳細的解釋,以民航飛機常用的CFM56發動機來舉例,當然這個發動機不是噴氣式的,而是渦輪風扇的,但是起動原理是一樣的。首先要啟動發動機,飛機必須通電通氣,電源和氣源靠輔助動力裝置APU提供。如果飛機APU故障,那麼就只能靠地面電源車和高壓氣源車來提供。在發動機的風扇後面五點半的位置有一台氣動起動機,右側三點鍾位置有兩個點火盒,用來把來自飛機電源的115交流電變成一萬五到兩萬伏的高壓直流電,燃燒室左右各一個點火點嘴,用來產生電火花。
啟動過程是這樣,准備完畢後,駕駛艙里發動機控制旋鈕放到點火起動位,主電門提到起,信號傳到發動機控制組件ECU,ECU會控制燃油系統,打開供油通道,同時引氣壓力全部用來起動發動機,否則可能導致壓力不夠而起動失敗,這時飛機的空調會停止工作,高壓引氣由引氣管路傳到起動機,帶動起動機轉動,再由起動機經發動機的附件齒輪箱和傳輸齒輪箱帶動發動機的N2轉子,並且開始加速,當發動機的N2轉子轉速達到16%時,再由ECU控制兩個點火盒,選擇其中一個通電點火。轉速達到22%時,燃燒室周圍的一圈燃油噴嘴開始噴油,燃燒室開始工作,發動機轉速繼續增加,這個過程中ECU會監控所有的參數,如果發現不正常的地方例如渦輪排氣總溫EGT超溫等現象,ECU會自動做出選擇,中斷發動機起動。轉速增加到50%時,起動過程結束,ECU控制起動引氣管路關閉,點火盒停止點火,起動機和發動機脫開。然後發動機轉速會繼續增加,一直到59%轉速,發動機就可以穩定工作,這就是俗稱的慢車位。