㈠ 鏈式輸送機有哪些主要組成部分
鏈式輸送機主要組成部分:
盡管鏈式輸送機的品種繁多,有些結構還比較復雜,但作為組成輸送機的功能部件,基本上由下述幾類組成。
1、原動機
原動機是輸送機的動力來源,一般都採用交流電動機。視需要可以採用普通的交流非同步電動機,或採用交流調速電動機。可調速的電動機有變極式的小范圍內有級調速的電動機,也有能無級調速的變頻、滑差交流電動機。採用可調速電機,電動機本身成本較高,但驅動裝置的結構卻比較簡單。
2、驅動裝置
驅動裝置,又稱為驅動站。通過驅動裝置將電動機與輸送機頭軸連接起來,驅動裝置的組成取決於其要實現的功能,通常驅動裝置要實現的功能如下。
(1)降低速度
由於驅動電機的轉速相對於輸送鏈條運行速度的要求高得多,所以鏈式輸送機必須有減速機構。減速機構通常有帶傳動、鏈傳動、齒輪傳動、蝸桿傳動和履帶驅動機構等。
(2)機械調速
輸送鏈條的運行速度如需在一定范圍內變動,雖然可通過電動機調速來實現,由於單純用電動機調速會有電機轉速低輸出轉矩小的弊病,所以在驅動裝置中設置機械調速裝置,如機械無級變速機與變速箱等。
(3)安全保護
鏈式輸送機工作過程中要求有安全保護與緊急制動的功能,安全保護設備與制動設備大都設置在驅動站的高速運行部分。
3、線體
鏈式輸送機的線體是直接實現輸送功能的關鍵部件。它主要由輸送鏈條、附件、鏈輪、頭軸、尾軸、軌道、支架等部分組成。
正確設計線體一定要注意輸送鏈條與傳動鏈條的區別,盡管兩者在結構上有時可能很相似,甚至完全一樣(例如短節距精密滾子鏈既可作傳動用又可作輸送用),但在功能上仍然是有區分的。輸送鏈需要具備承載物品以及在軌道上運行的功能,所以,正確分析輸送鏈的受力情況及其力流(即物料重力傳送到輸送的支承軌道上所流經的路程)分布是很重要的,設計線體時應遵循力流路線最短與力流路線所經過的各零件盡可能等強度的原則。
4、張緊裝置
張緊裝置用來拉緊尾軸,其作用在於:
①保持輸送鏈條在一定的張緊狀態下運行,消除因鏈條鬆弛使鏈式輸送機運行時出現跳動、振動和異常雜訊等現象。
②當輸送鏈條因磨損而伸長時,通過張緊裝置補償,保持鏈條的預緊度。張緊裝置有重錘張緊與彈簧張緊兩種方法,張緊裝置應安裝於鏈式輸送機線路中張力最小的部位。
5、電控裝置
電控裝置對單台鏈式輸送機來說,其主要功能是控制驅動裝置,使鏈條按要求的規律運行。但對由輸送機組成的生產自動線,如積放式懸掛輸送線、帶移行器等轉向裝置的承托式鏈條輸送線設備,它的功能就要廣泛得多。除了一般的控制輸送機速度外,還需完成雙(多)機驅動的同步、信號採集、信號傳遞、故障診斷等使鏈條自動生產線滿足生產工藝要求的各種功能。
㈡ 生活中常見的傳動有哪些是舉出三列
傳動分為機械傳動、流體傳動和電力傳動3大類。
機械傳動是利用機件直接實現傳動,其中齒輪傳動和鏈傳動屬於嚙合傳動;摩擦輪傳動和帶傳動屬於摩擦傳動。
流體傳動是以液體或氣體為工作介質的傳動,又可分為依靠液體靜壓力作用的液壓傳動、依靠液體動力作用的液力傳動、依靠氣體壓力作用的氣壓傳動。電力傳動是利用電動機將電能變為機械能,以驅動機器工作部分的傳動。各類傳動的特點見表。
傳動
機械傳動能適應各種動力和運動的要求,應用極廣。液壓傳動的尺寸小,動態性能較好,但傳動距離較短。氣壓傳動大多用於小功率傳動和惡劣環境中。液壓和氣壓傳動還易於輸出直線往復運動。
液力傳動具有特殊的輸入和輸出特性,因而能使動力機與機器工作部分良好匹配。電力傳動的功率范圍大,容易實現自動控制和遙控,能遠距離傳遞動力。
傳動的基本參數是傳動比。傳動又可分為定傳動比傳動和變傳動比傳動兩類。變傳動比傳動又分有級變速和無級變速兩類,前者具有若干固定的傳動比(見變速器),後者可在一定范圍內連續變化。
(2)鏈式傳輸機傳動裝置圖擴展閱讀
選擇
傳動首先應當滿足機器工作部分的要求,並使動力機在較佳工況下運轉。小功率傳動常選用簡單的裝置,以降低成本。大功率傳動則優先考慮傳動效率、節能和降低運轉費用。當工作部分要求調速時,如能與動力機的調速性能相適應可採用定傳動比傳動;動力機的調速如不能滿足工藝和經濟性要求,則應採用變傳動比傳動。
工作部分需要連續調速時,一般應盡量採用有級變速傳動。無級變速傳動常用來組成控制系統,對某些對象或過程進行控制,這時應根據控制系統的要求來選擇傳動。
在定傳動比傳動能滿足性能要求的前提下,一般應選用結構簡單的機械傳動。有級變速傳動常採用齒輪變速裝置,小功率傳動也可採用帶或鏈的塔輪裝置。
無級變速傳動有各種傳動形式,其中機械無級變速器結構簡單、維修方便,但壽命較短,常用於小功率傳動;液力無級變速器傳動精確,但造價甚高。選擇傳動裝置時還應考慮起動、制動、反向、過載、空檔和空載等方面的要求。
㈢ 設計膠帶輸送機的傳動裝置
一、摩擦傳動理論
帶式輸送機所需的牽引力是通過驅動裝置中的驅動滾筒與輸送帶間的摩擦作用而傳遞的,因而稱為摩擦傳動。為確保作用力的傳遞和牽引構件不在驅動輪上打滑,必須滿足下列條件:
(1)牽引構件具有足夠的張力;
(2)牽引帶與驅動滾筒的接觸表面有一定的粗糙度;
(3)牽引帶在驅動輪上有足夠大的圍包角。
圖l—22為一台帶式輸送機的簡圖。當驅動滾筒按順時針方向轉動時,通過它與輸送帶間的摩擦力驅動輸送帶沿箭頭方向運動。
在輸送帶不工作時,帶子上各點張力是相等的。當輸送帶運動時,各點張力就不等了。其大小取決於張緊力P0、運輸機的生產率、輸送帶的速度、寬度、輸送機長度、傾角、托輥結構性能等等。故輸送帶的張力由l點到4點逐漸增加,而在繞經驅動滾筒的主動段,由4點到l點張力逐漸減小。必須使輸送帶在驅動滾筒上的趨入點張力Sn大於奔離點張力S1,方能克服運行阻力,使輸送帶運動。此兩點張力之差,即為驅動滾筒傳遞給輸送帶的牽引力W0。在數值上它等於輸送帶沿驅動滾筒圍包弧上摩擦力的總和,即
W0=Sn-S1 (1—1)
趨入點張力Sn隨輸送帶上負載的增加而增大,當負載過大時,致使(Sn-S1)之差值大於摩擦力,此時輸送帶在驅動滾筒上打滑而不能正常工作。該現象在選煤廠中可經常遇到。
Sn與S1應保持何種關系方能防止打滑,保證輸送帶正常工作,這是將要研究的問題。
在討論前,先作如下假設:
(1)假設輸送帶是理想的撓性體,可以任意彎曲,不受彎曲應力影響;
(2)假設繞經驅動滾筒上的輸送帶的重力和所受的離心力忽略不計(因與輸送帶上張力和摩擦力相比數值很小)。
如圖l—22b所示,在驅動滾筒上取一單元長為dl的輸送帶,對應的中心角即圍包角為dα。當滾筒回轉時,作用在這小段輸送帶兩端張力分別為S及S+dS。在極限狀態下,即摩擦力達到最大靜摩擦力時,dS應為正壓力dN與摩擦系數μ的乘積,即
dS=μdN
dN為滾筒給輸送帶以上的作用力總和。
列出該單元長度輸送帶受力平衡方程式為
由於dα很小,故sin(dα/2)≈(dα/2),cos(dα/2)≈1,上述方程組可簡化為
略去二次微量:dSdα,解上述方程組得 .
通過在這段單元長度上輸送帶的受力分析,可以得到,當摩擦力達到最大極限值時,欲保持輸送帶不打滑,各參數間的關系應滿足dS/S=μdα。以定積分方法解之,即可得出輸送帶在整個驅動滾筒圍包弧上,在不打滑的極限平衡狀態下,趨入點的Sn與奔離點的Sk之間的關系
解上式,得
式中 e——自然對數的底,e=2.718;
μ——驅動滾筒與輸送帶之間的摩擦系數;
——輸送帶在驅動滾筒上趨入點的最大張力;
S1一一輸送帶在驅動滾筒奔離點的張力;
α——輸送帶在驅動滾筒上的圍包角,弧度。
上式)即撓性體摩擦驅動的歐拉公式。根據歐拉公式可以繪出在驅動滾筒圍包弧上輸送帶張力變化的曲線,見圖l—23中的bca'。
從上述分析可知,歐拉公式只是表達了趨入點張力為最大極限值時的平衡狀態。而實際生產中載荷往往是不均衡的;而且,在歐拉公式討論中,將輸送帶看作是不變形的撓性體,實際上輸送帶(如橡膠帶)是一個彈性體,在張力作用下,要產生彈性伸長,其伸長量與張力值大小成正比。因此,輸送帶沿驅動滾筒圓周上的分布規律見圖1—23中bca曲線變化(而不是bca』)。在BC弧內,輸送帶張力按歐拉公式之規律變化;到c點後,張力達到Sn值,在CA弧內,Sn值保持不變。也就是說為了防止輸送帶在驅動滾筒上打滑,應使趨入點的實際張力Sn小於極限狀態下的最大張力值,即
既然輸送帶是彈性體,那麼,在受力後就要產生彈性伸長變形。這是彈性體與剛性體最本質的區別。受力愈大,變形也愈大,而輸送帶張力是由趨入點向奔離點逐漸減小,即在趨入點輸送帶被拉長的部分,在向奔離點運動過程中,隨著張力的減小而逐漸收縮,從而使輸送帶與滾筒問產生相對滑動,這種滑動稱為彈性滑動或彈性蠕動(它與打滑現象不同)。顯然,彈性滑動只發生於輸送帶在驅動滾筒圍包弧上有張力變化的一段弧內。產生彈性滑動的這一段圍包弧,稱為滑動弧,即圖l-23中的BC弧,滑動弧所對應的中心角稱為滑動角,即λ角;不產生彈性滑動的圍包弧,稱為靜止弧(圖中的CA弧),靜止弧所對應的中心角,稱為靜止角,即圖中γ角。滑動弧兩端的張力差,即為驅動滾筒傳遞給輸送帶的牽引力。由此可見,只有存在滑動弧,驅動滾筒才能通過摩擦將牽引力傳遞給輸送帶;在靜止弧內不傳遞牽引力,但它保證驅動裝置具有一定的備用牽引力。
當輸送機上負載增加時,趨入點張力Sn增大,滑動弧及對應的滑動角也相應均要增大,而靜止弧及靜止角則隨之減小。圖1—23中的C點向A點靠攏,當趨入點張力Sn增大至極限值Snmax時,則整個圍包弧BA弧都變成了滑動弧,即C點與A點重合,整個圍包角都變成了滑動角(λ=α,γ=0)。這時驅動滾筒上傳送的牽引力達到最大值的極限摩擦力:
(1—4)
若輸送機上的負荷再增加,即 ,這時.輸送帶將在驅動滾筒上打滑,輸送機則不能正常工作。
二、提高牽引力的途徑
根據庫擦傳動的理論及式(1—4)均可以看出,提高帶式輸送機的牽引力可以採用以下三種方法:
(1)增加奔離點的張力S1,以提高牽引力。具體的措施是通過張緊輸送機的拉緊裝置來實現。隨著S1的增大,輸送帶上的最大張力也相應增大,就要求提高輸送帶的強度,這種做法是不經濟的,在技術上也不合理。
(2)改善驅動滾筒表面的狀況,以得到較大的摩擦系數μ,由表1—29可知,膠面滾筒的摩擦系數比光面滾筒大,環境乾燥時比潮濕時大,所以,可以採用包膠、鑄塑,或者採用在膠面上壓制花紋的方法來提高摩擦系數。
(3)採用增加輸送帶在驅動滾筒上的圍包角來提高牽引力。其具體措施是增設改向滾筒(即增面輪)可使包角由180°增至210°-240°必要時採用雙滾筒驅動。
三、剛性聯系雙滾筒驅動牽引力及其分配比朗確定
剛性聯系雙滾筒和單滾筒相比,增加一個主動滾筒:當兩個滾筒的直徑相等時其角度是相同的(圖1—24)。從圖l—24中可以看出,輸送帶由滾筒②的C點到滾筒①的B點時,這兩點之間除了一小段(BC段)膠帶的臼重外,張力沒有任何變化,故B點可看作C點的繼續。因而剛性聯系的雙滾筒與單滾筒實質上是相同的,因為滑動弧隨著張力增大而增大這一規律對它同樣適用的。
S1及μ值在一定的情況下,而且μl=μ2,只有當滾筒②傳遞的牽引力達到極限值時,滾筒①才開始傳遞牽引力。設λ1、λ2、γ1、γ2、α1、α2分別為第①及第②滾筒的滑動角,靜止角及圍包角、則在λ2=α2,λ1=0的情況下,靜止弧僅存在於滾筒①上。當λ2=α2時,λ1=α1-γ1時,輸送帶在兩個主動滾筒上張力變化曲線如圖1—24所示。
滾筒②可能傳遞的最大牽引力為
滾筒①可能傳遞的最大牽引力為
式中 S』——兩滾筒間輸送帶上的張力。
驅動裝置可能傳遞總的最大牽引力為
式中 α——總圍包角
兩滾筒可能傳遞的最大牽引力之比為
在一般情況下: 因而
(1-5)
顯然,當第①滾筒上傳遞的牽引力未達到極限時,即 時,則兩驅動滾筒傳遞的牽引力之比為
由上式可知,當總的牽引力W0和張力S1一定時,若μ值增加,則第⑧個驅動滾筒傳遞的牽引力WII增大,而WI減小。反之,若μ值減小時,則WI增大(因W0=WI+WII為一定值)。
由此可以看出:剛性聯系的雙滾筒驅動裝置,其滾筒牽引力的分配比值隨摩擦系數的變化而改變。但由式(1-5)可知,驅動滾筒①可能傳遞的最大牽引力等於滾筒⑨的 倍這一比值是不變的。
剛性聯系的雙驅動滾筒缺點是已設計的牽引力分配比值,只適用於一定的荷載和一定的摩擦系數。當荷載變化,其比例也就被破壞了。此外,還由於大氣潮濕程度的變化,兩滾筒的表面清潔程度的不同,摩擦系數也發生了變化,其分配比實際上不可能保持定值。
㈣ 垂直鏈式輸送機的CAD裝配圖究竟怎麼畫
方法如下:
1.先找張圖紙,照葫蘆畫瓢,用CAD畫上幾天(最好用英文版,這樣學內的快,而且對以後用容軟體有好處,)不會計算面積,就看怎末計算面積,不會修改線段,就看怎末修改線端,二個星期應該有小成)
2.然後就可以試著畫牆,畫門,並熟悉陣列,填充,標注這些命令了,
3..等圖畫是畫出來了,但很難看,但總覺的花的時間又很長,修改又很麻煩的時候。就可以看精確制圖,圖層,塊,這些稍微復雜一點的東西了。以及熟悉立面圖,剖面圖,結構圖等等。
4.等這些也搞得差不多了,但還是覺得難看,效率低,就可以去找張二次開發的盤來省事了,如天正,新洲,CAXA等,最好是中文版,省事,而且字體較多.
㈤ 鏈條輸送線的基本結構和特徵
1、原動機:原動機是輸送線的動力來源,一般都是採用交流電動機,但有時候會依據需要採用變頻電動機。2、驅動裝置:通過驅動裝置將電動機與輸送機頭軸聯接起來,通常要實現的功能有:降低速度 、機械調速 、安全保護 。
3、線體:線體是輸送設備直接完成物料輸送工程的主體,它主要有輸送鏈條、附件、鏈輪、頭軸、尾軸、軌道、支架等部分組成。
4、漲緊裝置:漲緊裝置的作用主要是用來拉近尾軸;
5、電控裝置:電控裝置的作用主要是用來控制驅動裝置。
鏈式輸送機的基本特徵就是:設備的多樣性、適應性強、輸送的穩定性、工作效率高。
㈥ 鏈式輸送機傳動裝置的設計
1.1 設計題目: 設計鏈式輸送機傳動裝置 1.2 已知條件:
1. 輸送鏈牽引力 F=4.5 kN ;
2. 輸送鏈速度 v=1.6 m/s(允許輸送帶速度誤差為 5%); 3. 輸送鏈輪齒數 z=15 ; 4. 輸送鏈節距 p=80 mm;
5. 工作情況:兩班制,連續單向運轉,載荷平穩,室內工作,無粉塵; 6. 使用期限:20年; 7. 生產批量:20台;
8. 生產條件:中等規模機械廠,可加工6-8級精度齒輪和7-8級精度蝸輪; 9. 動力來源:電力,三相交流,電壓380伏;
10.檢修間隔期:四年一次大修,二年一次中修,半年一次小修。
驗收方式:
1.減速器裝配圖;(使用AutoCAD繪制並列印為A1號圖紙) 2.繪制主傳動軸、齒輪圖紙各1張; 3.設計說明書1份。
㈦ 請問FU鏈式輸送機由哪些部件組成
FU鏈式輸送機的組成部分:FU鏈式輸送機主要有驅動裝置,首節(裝有傳動大鏈輪)、標准中間節、非標准中間節、尾節(從動輪、輸送鏈張緊裝置)、輸送鏈、進料口、出料口及固定裝置組成。FU鏈式輸送機的特點:該種輸送機的輸送能力大,密封性好,揚塵小,使用壽命長,維修費用低。單機長度長,可達50m,在垂直立面有小於15°的爬坡,驅動功率比同輸送量的螺旋輸送機小15%-50%。影響該機械輸送能力的原因:有時候企業在購買使用過程中,會出現達不到理想的效果,吉奧機械也總結了造成這方面的各種原因,主要有一下幾點,輸送鏈條沒張緊,輸送鉤變形或磨損嚴重,輸送鏈條上的套筒或銷軸破損嚴重,導軌磨損嚴重,物料水分大,機槽內物料黏結現象嚴重,物料內有異物。只要保證這幾方面正常,就能使輸送機達到最佳的工作狀態,提高輸送效率。