① 二級圓柱直齒減速器的畢業設計
機械設計課程設計原始資料
一、設計題目
熱處理車間零件輸送設備的傳動裝備
二、運動簡圖
圖1
1—電動機 2—V帶 3—齒輪減速器 4—聯軸器 5—滾筒 6—輸送帶
三、工作條件
該裝置單向傳送,載荷平穩,空載起動,兩班制工作,使用期限5年(每年按300天計算),輸送帶的速度容許誤差為 ±5%.
四、原始數據
滾筒直徑D(mm):320
運輸帶速度V(m/s):0.75
滾筒軸轉矩T(N•m):900
五、設計工作量
1減速器總裝配圖一張
2齒輪、軸零件圖各一張
3設計說明書一份
六、設計說明書內容
1. 運動簡圖和原始數據
2. 電動機選擇
3. 主要參數計算
4. V帶傳動的設計計算
5. 減速器斜齒圓柱齒輪傳動的設計計算
6. 機座結構尺寸計算
7. 軸的設計計算
8. 鍵、聯軸器等的選擇和校核
9. 滾動軸承及密封的選擇和校核
10. 潤滑材料及齒輪、軸承的潤滑方法
11. 齒輪、軸承配合的選擇
12. 參考文獻
七、設計要求
1. 各設計階段完成後,需經指導老師審閱同意後方能進行下階段的設計;
2. 在指定的教室內進行設計.
一. 電動機的選擇
一、電動機輸入功率
二、電動機輸出功率
其中總效率為
查表可得Y132S-4符合要求,故選用它。
Y132S-4(同步轉速 ,4極)的相關參數
表1
額定功率 滿載轉速 堵轉轉矩額定轉矩 最大轉矩額定轉矩 質量
二. 主要參數的計算
一、確定總傳動比和分配各級傳動比
傳動裝置的總傳動比
查表可得V帶傳動單級傳動比常用值2~4,圓柱齒輪傳動單級傳動比常用值為3~5,展開式二級圓柱齒輪減速器 。
初分傳動比為 , , 。
二、計算傳動裝置的運動和動力參數
本裝置從電動機到工作機有三軸,依次為Ⅰ,Ⅱ,Ⅲ軸,則
1、各軸轉速
2、各軸功率
3、各軸轉矩
表2
項目 電機軸 高速軸Ⅰ 中間軸Ⅱ 低速軸Ⅲ
轉速
1440 576 135.753 62.706
功率
5.5 5.28 5.070 4.869
轉矩
36.476 87.542 356.695 1038.221
傳動比 2.5 4.243 3.031
效率 0.96 0.96 0.922
三 V帶傳動的設計計算
一、確定計算功率
查表可得工作情況系數
故
二、選擇V帶的帶型
根據 ,由圖可得選用A型帶。
三、確定帶輪的基準直徑 並驗算帶速
1、初選小帶輪的基準直徑 。
查表8-6和8-8可得選取小帶輪的基準直徑
2、驗算帶速
按計算式驗算帶的速度
因為 ,故此帶速合適。
3、計算大帶輪的基準直徑
按式(8-15a)計算大帶輪的基準直徑 根據教材表8-8,圓整得 。
4、確定V帶的中心距 和基準直徑
(1)按計算式初定中心距
(2)按計算式計算所需的基準長度
=1364mm
查表可選帶的基準長度
(3)按計算式計算實際中心距
中心距的變化范圍為 。
5、驗算小帶輪上的包角
6、計算帶的根數
(1)計算單根V帶的額定功率
由 查表可得
根據 和A型帶,查表可得 、 、 。
故
(2)計算V帶的根數Z
故取V帶根數為6根
7、計算單根V帶的初拉力的最小值
查表可得A型帶的單位長度質量
應使帶的實際初拉力 。
8、計算壓軸力
壓軸力的最小值為
四 減速器斜齒圓柱齒輪傳動的設計計算
一、高速級齒輪
1、選定齒輪類型、精度等級、材料及齒數
(1)按圖所示的傳動方案,選用斜齒圓柱齒輪傳動。
(2)運輸裝置為一般工作機器,速度不高,故選用7級精度。
(3)材料選擇:查表可選擇小齒輪材料為40 (調質),硬度為280HBS;大齒輪材料為45鋼(調質),硬度為240HBS,二者材料硬度差為40HBS。
(4)選小齒輪齒數 ,大齒輪齒數 ,取
(5)選取螺旋角,初選螺旋角
2、按齒面接觸強度設計,按計算式試算即
(1)確定公式內的各計算數值
①試選 ,由圖10-26 , 則有
②小齒輪傳遞轉矩
③查圖10-30可選取區域系數 查表10-7可選取齒寬系數
④查表10-6可得材料的彈性影響系數 。
⑤查圖10-21d得按齒面硬度選取小齒輪的接觸疲勞強度極限 ,大齒輪的接觸疲勞強度極限 。
⑥按計算式計算應力循環次數
⑦查圖可選取接觸疲勞壽命系數 , 。
⑧計算接觸疲勞許用應力
取失效概率為1%,安全系數 ,按計算式(10-12)得
(2)計算相關數值
①試算小齒輪分度圓直徑 ,由計算公式得
②計算圓周速度
③計算齒寬 及模數
④計算總相重合度
⑤計算載荷系數
查表可得使用系數 ,根據 ,7級精度,查表10-8可得動載系數 ,由表10-4查得 的值與直齒輪的相同,為1.419 ,
故載荷系數
⑥按實際的載荷系數校正所算得的分度圓直徑,按計算式得
⑦計算模數
3、按齒根彎曲強度設計,按計算式(10-17)試算即
(1)確定公式內的各計算數值
①、計算載荷系數
②根據縱向重合度 ,查圖10-28可得螺旋角影響系數 。
③查圖可選取區域系數 , , 則有
④查表取應力校正系數 , 。
⑤查表取齒形系數 , 。(線性插值法)
⑥查圖10-20C可得小齒輪的彎曲疲勞強度極限 ,大齒輪的彎曲疲勞強度極限 。
⑦查圖可取彎曲疲勞壽命系數 , 。
⑧計算彎曲疲勞許用應力 ,取彎曲疲勞安全系數 ,按計算式(10-22)計算得
⑨計算大、小齒輪的 並加以計算
大齒輪的數值較大。
(2)設計計算
對比計算結果,由齒面接觸疲勞強度計算的法面模數大於由齒根彎曲疲勞強度計算的法面模數,故取 ,已可滿足彎曲強度,但為了同時滿足接觸疲勞強度,需按接觸疲勞強度算得的分度圓直徑 來計算應有的齒數,於是有
取 ,則
4、幾何尺寸計算
(1)計算中心距
將中心距圓整為 。
(2)按圓整後的中心距修正螺旋角
因 值改變不多,故參數 、 、 等不必修正。
(3)計算大、小齒輪的分度圓直徑
(4)計算齒輪寬度
圓整後取 , 。
二、低速級齒輪
1、選定齒輪類型、精度等級、材料及齒數
(1)按圖所示的傳動方案,選用斜齒圓柱齒輪傳動。
(2)運輸裝置為一般工作機器,速度不高,故選用7級精度。
(3)材料選擇,在同一減速器各級小齒輪(或大齒輪)的材料,沒有特殊情況,應選用相同牌號,以減少材料品種和工藝要求,故查表可選擇小齒輪材料為40 (調質),硬度為52HRC;大齒輪材料為45鋼(調質),硬度為45HRC.
(4)選小齒輪齒數 ,大齒輪齒數
(5)選取螺旋角,初選螺旋角
2、按齒面接觸強度設計,按計算式試算即
(1)確定公式內的各計算數值
①試選
②小齒輪傳遞轉矩
③查表10-7可選取齒寬系數 , 查圖10-26可選取區域系數 , , 則有
④查表可得材料的彈性影響系數 。
⑤查圖得按齒面硬度選取小齒輪的接觸疲勞強度極限 ,大齒輪的接觸疲勞強度極限 。
⑥按計算式計算應力循環次數
⑦查圖可選取接觸疲勞壽命系數 , 。
⑧計算接觸疲勞許用應力
取失效概率為1%,安全系數 ,於是得
(2)計算相關數值
①試算小齒輪分度圓直徑 ,由計算公式得
②計算圓周速度
③計算齒寬 及模數
④計算總相重合度
⑤計算載荷系數
查表可得使用系數 ,根據 ,7級精度,查表可得動載系數 , , ,
故載荷系數
⑥按實際的載荷系數校正所算得的分度圓直徑,按計算式得
⑦計算模數
3、按齒根彎曲強度設計,按計算式試算即
(1)確定公式內的各計算數值
①計算載荷系數
②根據縱向重合度 ,查圖可得螺旋角影響系數 。
③計算當量齒數
④查表可取齒形系數 , 。
⑤查表可取應力校正系數 , 。(線性插值法)
⑥查圖可得小齒輪的彎曲疲勞強度極限 ,大齒輪的彎曲疲勞強度極限 。
⑦查圖可取彎曲疲勞壽命系數 , 。
⑧計算彎曲疲勞許用應力
取彎曲疲勞安全系數 ,按計算式計算
⑨計算大、小齒輪的 並加以計算
大齒輪的數值較大。
(2)設計計算
對比計算結果,由齒面接觸疲勞強度計算的法面模數大於由齒根彎曲疲勞強度計算的法面模數,故取 ,已可滿足彎曲強度,但為了同時滿足接觸疲勞強度,需按接觸疲勞強度算得的分度圓直徑 來計算應有的齒數,於是有
取 ,則
4、幾何尺寸計算
(1)計算中心距
將中心距圓整為 。
(2)按圓整後的中心距修正螺旋角
因 值改變不多,故參數 、 、 等不必修正。
(3)計算大、小齒輪的分度圓直徑
(4)計算齒輪寬度
圓整後取 , 。
五 軸的設計計算
一、高速軸的設計
1、求作用在齒輪上的力
高速級齒輪的分度圓直徑為d
2、選取材料
可選軸的材料為45鋼,調質處理。
3、計算軸的最小直徑,查表可取
應該設計成齒輪軸,軸的最小直徑顯然是安裝連接大帶輪處,為使 與帶輪相配合,且對於直徑 的軸有一個鍵槽時,應增大5%-7%,然後將軸徑圓整。故取 。
4、擬定軸上零件的裝配草圖方案(見下圖)
5、根據軸向定位的要求,確定軸的各段直徑和長度
(1)根據前面設計知大帶輪的轂長為93mm,故取 ,為滿足大帶輪的定位要求,則其右側有一軸肩,故取 ,根據裝配關系,定
(2)初選流動軸承7307AC,則其尺寸為 ,故 , 段擋油環取其長為19.5mm,則 。
(3) 段右邊有一定位軸肩,故取 ,根據裝配關系可定 ,為了使齒輪軸上的齒面便於加工,取 。
(4)齒面和箱體內壁取a=16mm,軸承距箱體內壁的距離取s=8mm,故右側擋油環的長度為19mm,則
(5)計算可得 、
(6)大帶輪與軸的周向定位採用普通平鍵C型連接,其尺寸為 ,大帶輪與軸的配合為 ,流動軸承與軸的周向定位是過渡配合保證的,此外選軸的直徑尺寸公差為m6.
求兩軸承所受的徑向載荷 和
帶傳動有壓軸力 (過軸線,水平方向), 。
將軸系部件受到的空間力系分解到鉛垂面和水平面上兩個平面力系
圖一
圖二
圖三
[注]圖二中 通過另加彎矩而平移到作用軸線上
圖三中 通過另加轉矩而平移到指向軸線
同理
6 、求兩軸承的計算軸向力 和
對於 型軸承,軸承的派生軸向力
故
7、求軸承的當量動載荷 和
對於軸承1
對於軸承2
查表可得徑向載荷系數和軸向載荷系數分別為:
對於軸承1 ,
對於軸承2 ,
8、求該軸承應具有的額定載荷值
因為 則有
故 符合要求。
9、彎矩圖的計算
水平面: , N,則其各段的彎矩為:
BC段:
由彎矩平衡得M-
CD段:
由彎矩平衡得
鉛垂面: 則其各段彎矩為:
AB段:
則
BC段:
則
CD段:
則
做彎矩圖如下
從軸的結構圖以及彎矩和扭矩圖中可以看出截面 是軸的危險截面。現將計算出的截面 處的 、 及 的值列於下表
表3
載荷 水平面
垂直面
支持力
彎矩
總彎矩
扭矩
10、按彎扭合成應力校核軸的強度
進行校核時,通常只校核軸上承受最大彎矩和扭矩的截面(即危險截面 )的強度。根據計算式及上表的數據,以及軸單向旋轉,扭轉切應力為脈動循環變應力,取 ,軸的計算應力
前已選定軸的材料為45鋼,調質處理,查表可得 ,因此 ,故安全。
11、鍵的選擇和校核
高速軸上與大帶輪相配合的軸上選擇鍵連接,由於大帶輪在軸端部,故選用單圓頭平鍵(C型)
根據 ,從表6-1中查得鍵的截面尺寸為:寬度: 高度: ,由輪轂寬度並參考鍵的長度系列,取鍵長為:
鍵、軸承和輪轂材料都為鋼查表可得
取其平均植,
鍵的工作長度
鍵和輪轂鍵槽的接觸高度
則 ,故合適。
所以選用:鍵C GB/T 1096-2003
12、確定軸上圓角和倒角尺寸
取軸端倒角為 ,各軸肩處圓角半徑為2。
二、中間軸的設計
1、求作用在齒輪上的力
因為高速軸的小齒輪與中速軸的大齒輪相嚙合,故兩齒輪所受的 、 、 都是作用力與反作用力的關系,則大齒輪上所受的力為
中速軸小齒輪上的三個力分別為
2、選取材料
可選軸的材料為45鋼,調質處理。
3、計算軸的最小直徑,查表可取
軸的最小直徑顯然是安裝軸承處,為使軸承便於安裝,且對於直徑 的軸有一個鍵槽時,應增大5%-7%,然後將軸徑圓整。故取 。
4、擬定軸上零件的裝配草圖方案(見下圖)
5、根據軸向定位的要求,確定軸的各段直徑和長度
(1)初選滾動軸承7008AC,則其尺寸為:
故 用擋油環定位軸承,故 段右邊有一定位軸肩,故 低速級小齒輪與箱體內壁距離為16 ,與箱體內壁距離為8 ,故左邊擋油環長為24 ,則
(2)低速級小齒輪輪轂為95 ,即 取兩齒面的距離為8 ,即
(3)右邊也用擋油環定位軸承和低速級大齒輪,故 。 段軸長略短與其齒輪轂長,又轂長為55 ,故取
、 、 各有一定位軸肩,故依次可取
(4)計算可得
6、軸上零件的周向定位
低速級大齒輪的軸採用普通平鍵A型連接。
其尺寸為 齒輪與軸的配合為 ,滾動軸承與軸的周向定位是過渡配合保證的,此外選軸的直徑尺寸公差為 。
求兩軸承所受的徑向載荷 和
將軸系部件受到的空間力系分解到鉛垂面和水平面上兩個平面力系
圖一
圖二
圖三
7、求兩軸承的計算軸向力 和
由齒輪中計算得,
對於 型軸承,軸承的派生軸向力
算得
所以
8、求軸承的當量動載荷 和
對於軸承1
對於軸承2
查表可得徑向載荷系數和軸向載荷系數分別為:
對於軸承1 ,
對於軸承2 ,
9、求該軸承應具有的額定載荷值
因為 則有
故 符合要求。
10、彎矩圖的計算
水平面: 。
AB段:
則 即
BC段:
則
CD段:
則
。
鉛垂面:
AB段:
BC段:
CD段:
做彎矩圖如下
從軸的結構圖以及彎矩和扭矩圖中可以看出截面 是軸的危險截面。現將計算出的截面 處的 、 及 的值列於下表
表4
載荷 水平面
垂直面
支持力
彎矩
總彎矩
扭矩
11、按彎扭合成應力校核軸的強度
進行校核時,通常只校核軸上承受最大彎矩和扭矩的截面(即危險截面 )的強度。根據計算式及上表的數據,以及軸單向旋轉,扭轉切應力為脈動循環變應力,取 ,軸的計算應力
前已選定軸的材料為45鋼,調質處理,查表可得 , ,故安全。
12、鍵的選擇和校核
一般的8級以上精度的齒輪有空心精度要求,應選用平鍵連接,由於齒輪不在軸端,故選用圓頭普通平鍵(A型)
取鍵長 ,
鍵、軸承和輪轂材料都為鋼查表可得
取其平均植,
鍵的工作長度
鍵和輪轂鍵槽的接觸高度
則 ,故合適。
所以選用:鍵 GB/T 1096-2003
13、確定軸上圓角和倒角尺寸
取軸端倒角為 ,各軸肩處圓角半徑見365頁……
三、低速軸的設計
1、求作用在齒輪上的力
因為高速軸的小齒輪與中速軸的大齒輪相嚙合,故兩齒輪所受的 、 、 都是作用力與反作用力的關系,則
2、選取材料
可選軸的材料為45鋼,調質處理。
3、計算軸的最小直徑,查表可取
軸的最小直徑顯然是安裝聯軸器處軸的直徑 ,為了使所選的軸直徑 與聯軸器的孔徑相配合,且對於直徑 的軸有兩個鍵槽時,應增大10%-15%,然後將軸徑圓整,故取 。並選取所需的聯軸器型號
聯軸器的計算轉矩 ,查表可得,考慮到轉矩變化小,故取
其公稱轉矩為 。半聯軸器的孔徑 ,長度 ,半聯軸器與軸配合的轂孔長度
4、擬定軸上零件的裝配草圖方案(見下圖)
5、根據軸向定位的要求,確定軸的各段直徑和長度
①為了滿足半聯軸器安裝的軸向定位要求,Ⅰ-Ⅱ軸段右端需制出一軸肩,故Ⅱ-Ⅲ段的直徑 。
②查手冊99頁,選用 型彈性柱銷聯軸器L
③初選滾動軸承7051AC,則其尺寸為
故 左邊軸承安裝處有擋油環,取其長度為20mm,
則
④擋油環右側用軸肩定位,故可取
⑤取齒面與箱體內壁距離 軸承座距箱體內壁距離為 。
用擋油環對齒面定位時,為了使油環可靠的壓緊齒輪, 段應略短於輪轂寬度,故取 所以取
⑥齒輪左側用軸肩定位,取 則 ,軸換寬度 ,取 。
⑦由裝配關系可確定
⑧計算得 , , 。
6、軸上零件的周向定位
齒輪、半聯軸器與軸的周向定位均採用普通平鍵 型 連接。軸與齒輪連接採用平鍵 ,L=70 ,齒輪輪轂與軸的配合為 。同樣半聯軸器與軸連接,採用鍵 。半聯軸器與軸的配合為 。滾動軸承與軸的周向定位是由過渡配合保證的,此外選軸的直徑尺寸公差為 。
7、軸上齒輪所受切向力 ,徑向力 ,軸向力
, 。
8、求兩軸承所受的徑向載荷 和
將軸系部件受到的空間力系分解到鉛垂面和水平面上兩個平面力系
圖一
圖二
圖三
9、求兩軸承的計算軸向力 和
對於 型軸承,軸承的派生軸向力
故
10、求軸承的當量動載荷 和
, 。查表可得徑向載荷系數和軸向載荷系數分別為:
對於軸承1 ,
對於軸承2 ,
因軸承運轉載荷平穩,按表13-6, ,取
則 。
。
11、求該軸承應具有的額定載荷值
因為 則有
預期壽命 故合格
12、彎矩圖的計算
水平面: , .
AB段:彎矩為0
BC段:
CD段:
鉛垂面: , .
AB段彎矩為0
BC段:
CD段:
做彎矩圖如下
從軸的結構圖以及彎矩和扭矩圖中可以看出截面 是軸的危險截面。現將計算出的截面 處的 、 及 的值列於下表
表5
載荷 水平面
垂直面
支持力
彎矩
總彎矩
扭矩
13、按彎扭合成應力校核軸的強度
進行校核時,通常只校核軸上承受最大彎矩和扭矩的截面(即危險截面 )的強度。根據計算式及上表的數據,以及軸單向旋轉,扭轉切應力為脈動循環 變應力,取 ,軸的計算應力
前已選定軸的材料為45鋼,調質處理,查表可得 ,因此 ,故安全。
14、鍵的選擇和校核
選鍵型為普通平鍵(A) 根據 ,從表6-1中查得鍵的截面尺寸為:寬度 =25 ,高度 。取鍵長 。鍵軸和轂的材料都是鋼,有表6-2查得許用擠壓應力 ,取平均值 。鍵的工作長度 ,鍵與輪轂鍵槽的接觸高度 , 故選取鍵A: GB/T 1096-2003
7、確定軸上圓角和倒角尺寸
取軸端倒角為 ,各軸肩處圓角半徑為2。
六.箱體結構的設計
減速器的箱體採用鑄造(HT200)製成,採用剖分式結構為了保證齒輪佳合質量,
大端蓋分機體採用 配合.
1. 機體有足夠的剛度
在機體為加肋,外輪廓為長方形,增強了軸承座剛度
2. 考慮到機體內零件的潤滑,密封散熱。
因其傳動件速度小於12m/s,故採用侵油潤油,同時為了避免油攪得沉渣濺起,齒頂到油池底面的距離H為40mm
為保證機蓋與機座連接處密封,聯接凸緣應有足夠的寬度,聯接表面應精創,其表面粗糙度為
3. 機體結構有良好的工藝性.
鑄件壁厚為10,圓角半徑為R=3。機體外型簡單,拔模方便.
4. 對附件設計
A 視孔蓋和窺視孔
在機蓋頂部開有窺視孔,能看到 傳動零件齒合區的位置,並有足夠的空間,以便於能伸入進行操作,窺視孔有蓋板,機體上開窺視孔與凸緣一塊,有便於機械加工出支承蓋板的表面並用墊片加強密封,蓋板用鑄鐵製成,用M6緊固
B 油螺塞:
放油孔位於油池最底處,並安排在減速器不與其他部件靠近的一側,以便放油,放油孔用螺塞堵住,因此油孔處的機體外壁應凸起一塊,由機械加工成螺塞頭部的支承面,並加封油圈加以密封。
C 油標:
油標位在便於觀察減速器油麵及油麵穩定之處。
油尺安置的部位不能太低,以防油進入油尺座孔而溢出.
D 通氣孔:
由於減速器運轉時,機體內溫度升高,氣壓增大,為便於排氣,在機蓋頂部的窺視孔改上安裝通氣器,以便達到體內為壓力平衡.
E 蓋螺釘:
啟蓋螺釘上的螺紋長度要大於機蓋聯結凸緣的厚度。
釘桿端部要做成圓柱形,以免破壞螺紋.
F 位銷:
為保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯結凸緣的長度方向各安裝一圓錐定位銷,以提高定位精度.
G 吊鉤:
在機蓋上直接鑄出吊鉤和吊環,用以起吊或搬運較重的物體.
減速器機體結構尺寸如下:
名稱 符號 計算公式 結果
箱座壁厚
10
箱蓋壁厚
9
箱蓋凸緣厚度
12
箱座凸緣厚度
15
箱座底凸緣厚度
25
地腳螺釘直徑
M24
地腳螺釘數目
查手冊 6
軸承旁聯接螺栓直徑
M12
機蓋與機座聯接螺栓直徑
=(0.5~0.6)
M10
軸承端蓋螺釘直徑
=(0.4~0.5)
10
視孔蓋螺釘直徑
=(0.3~0.4)
8
定位銷直徑
=(0.7~0.8)
8
, , 至外機壁距離
查機械課程設計指導書表4 34
22
18
, 至凸緣邊緣距離
查機械課程設計指導書表4 28
16
外機壁至軸承座端面距離
= + +(8~12)
50
大齒輪頂圓與內機壁距離
>1.2
15
齒輪端面與內機壁距離
>
10
機蓋,機座肋厚
9 8.5
軸承端蓋外徑
+(5~5.5)
120(1軸)125(2軸)
150(3軸)
軸承旁聯結螺栓距離
120(1軸)125(2軸)
150(3軸)
七. 潤滑密封設計
對於二級圓柱齒輪減速器,因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度.
油的深度為H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化學合成油,潤滑效果好。
密封性來講為了保證機蓋與機座聯接處密封,聯接
凸緣應有足夠的寬度,聯接表面應精創,其表面粗度應為
密封的表面要經過刮研。而且,凸緣聯接螺柱之間的距離不宜太
大,國150mm。並勻均布置,保證部分面處的密封性。
八、課程設計心得體會
作為一名機械設計製造及自動化大三的學生,我覺得能做類似的課程設計是十分有意義,而且是十分必要的。在已度過的大三的時間里我們大多數接觸的是專業基礎課。我們在課堂上掌握的僅僅是專業基礎課的理論面,如何去鍛煉我們的實踐面?如何把我們所學到的專業基礎理論知識用到實踐中去呢?我想做類似的大作業就為我們提供了良好的實踐平台。在做本次課程設計的過程中,我感觸最深的當數查閱大量的設計手冊了。為了讓自己的設計更加完善,更加符合工程標准,一次次翻閱機械設計手冊是十分必要的,同時也是必不可少的。我們是在作設計,但我們不是藝術家。他們可以拋開實際,盡情在幻想的世界裡翱翔,我們是工程師,一切都要有據可依.有
理可尋,不切實際的構想永遠只能是構想,永遠無法升級為設計。
作為一名專業學生掌握一門或幾門制圖軟體同樣是必不可少的,由於本次大作業要求用 auto CAD制圖,因此要想更加有效率的制圖,我們必須熟練的掌握它。
雖然過去從未獨立應用過它,但在學習的過程中帶著問題去學我發現效率好高,記得大一學CAD時覺得好難就是因為我們沒有把自己放在使用者的角度,單單是為了學而學,這樣效率當然不會高。邊學邊用這樣才會提高效率,這是我作本次課程設計的第二大收獲。但是由於水平有限,難免會有錯誤,還望老師批評指正。
參考文獻
〔1〕濮良貴,紀明剛. 機械設計. 7版. 北京:高等教育出版社, 2001
.
〔2〕張策, 機械原理與機械設計[M]. 北京:機械工業出版社, 2004.
[3] 吳宗澤,羅勝國. 機械設計課程設計手冊. 北京: 高等教育出版社, 2007.
[4] 王伯平.互換性與測量技術基礎(第2版). 北京: 機械工業出版社,2006
② 求自動化系的畢業設計課題大綱及內容步驟。
題 目:電動機的發展與維護
姓 名: 朱 中 輝
編 號:
平頂山工業職業技術學院
年 月 日
平頂山工業職業技術學院
畢 業 設 計 (論文) 任 務 書
姓名
專業
任 務 下 達 日 期 年 月 日
設計(論文)開始日期 年 月 日
設計(論文)完成日期 年 月 日
設計(論文)題目:
A•編制設計
B•設計專題(畢業論文)
指 導 教 師
系(部)主 任
年 月 日
平頂山工業職業技術學院
畢業設計(論文)答辯委員會記錄
系 專業,學生 於 年 月 日
進行了畢業設計(論文)答辯。
設計題目:
專題(論文)題目:
指導老師:
答辯委員會根據學生提交的畢業設計(論文)材料,根據學生答辯情況,經答辯委員會討論評定,給予學生 畢業設計(論文)成績為 。
答辯委員會 人,出席 人
答辯委員會主任(簽字):
答辯委員會副主任(簽字):
答辯委員會委員: , , ,
, , ,
平頂山工業職業技術學院畢業設計(論文)評語
第 頁
共 頁
學生姓名: 專業 年級
畢業設計(論文)題目:
評 閱 人:
指導教師: (簽字) 年 月 日
成 績:
系(科)主任: (簽字) 年 月 日
畢業設計(論文)及答辯評語:
目 錄
摘 要 1
Abstract 2
引 言 4
第1章 電動機分類、發展現狀及未來 5
1 電動機分類 5
2電動機技術發展現狀 5
3 電動機的未來 6
第2章電動機的工作原理 7
1 三相非同步電動機的結構及工作原理 7
2 三相非同步電動機的結構 7
3 三相非同步電動機的工作原理 7
第三章。電動機的運行維護 10
1 電動機啟動前的准備 10
2 啟動時應注意的問題 10
3 電動機運行中的監視 10
1) 監視電動機的溫度 10
2) 監視電動機的電流 11
3)監視電動機的電壓 11
4) 注意電動機的振動、響聲和氣味 11
5) 注意傳動裝置的檢查 11
6) 注意軸承的工作情況 11
7) 注意交流電動機的滑環或直流電動機的換向器火花 11
4電動機的定期檢查和保養 11
結 論 13
致 謝 14
參考文獻 15
引 言
電動機是一種實現機、電能量轉換的電磁裝置。常見的電動機可分為交流電動機和直流電動機。電動機是隨著生產力的發展而發展的,反過來,電動機的發展也促進了社會生產力的不斷提高。從19世紀末期起,電動機就逐漸代替蒸汽機作為拖動生產機械的原動機,一個多世紀以來,雖然電動機的基本結構變化不大,但是電動機的類型增加了許多,在運行性能,經濟指標等方面也都有了很大的改進和提高,而且隨著自動控制系統和計算機技術的發展,在一般旋轉電動機的理論基礎上又發展出許多種類的控制電動機,控制電動機具有高可靠性、好精確度、快速響應的特點,已成為電動機學科的一個獨立分支。
1.電動機分類、發展現狀及未來
1.1 電動機分類
電動機應用廣泛,種類繁多、性能各異,分類方法也很多。
1.根據電動機工作電源的不同,可分為直流電動機和交流電動機。其中交流電動機還分為單相電動機和三相電動機。
2.電動機按結構及工作原理可分為非同步電動機和同步電動機。 同步電動機還可分為永磁同步電動機、磁阻同步電動機和磁滯同步電動機。非同步電動機可分為感應電動機和交流換向器電動機。感應電動機又分為三相非同步電動機、單相非同步電動機和罩極非同步電動機。交流換向器電動機又分為單相串勵電動機、交直流兩用電動機和推斥電動機。
3.電動機按起動與運行方式可分為電容起動式電動機、電容運轉式電動機、電容起動運轉式電動機和分相式電動機。按用途分類。電動機按用途可分為驅動用電動機和控制用電動機。驅動用電動機又分為電動工具用電動機、家電用電動機及其它通用小型機械設備用電動機。控制用電動機又分為步進電動機和伺服電動機等。
4.電動機按轉子的結構可分為籠型感應電動機和繞線轉子感應電動機。
5.電動機按運轉速度可分為高速電動機、低速電動機、恆速電動機、調速電動機。
1.2電動機技術發展現狀
電動機是一種實現機、電能量轉換的電磁裝置。它是隨著生產力的發展而發展的,反過來,電動機的發展也促進了社會生產力的不斷提高。從19世紀末期起,電動機就逐漸代替蒸汽機作為拖動生產機械的原動機,一個多世紀以來,雖然電動機的基本結構變化不大,但是電動機的類型增加了許多,在運行性能,經濟指標等方面也都有了很大的改進和提高,而且隨著自動控制系統和計算機技術的發展,在一般旋轉電動機的理論基礎上又發展出許多種類的控制電動機,控制電動機具有高可靠性、好精確度、快速響應的特點,已成為電動機學科的一個獨立分支。電動機的功能是將電能轉換成機械能,它可以作為拖動各種生產機械的動力,是國民經濟各部門應用最多的動力機械。在現代化工業生產過程中,為了實現各種生產工藝過程,需要各種各樣的生產機械。拖動各種生產機械運轉,可以採用氣動,液壓傳動和電力拖動。由於電力拖動具有控制簡單、調節性能好、耗損小、經濟,能實現遠距離控制和自動控制等一系列優點,因此大多數生產機械都採用電力拖動。
按照電動機的種類不同,電力拖動系統分為直流電力拖動系統和交流電力拖動系統兩大類。
縱觀電力拖動的發展過程,交、直流兩種拖動方式並存於各個生產領域。在交流電出現以前,直流電力拖動是唯一的一種電力拖動方式,19世紀末期,由於研製出了經濟實用的交流電動機,致使交流電力拖動在工業中得到了廣泛的應用,但隨著生產技術的發展,特別是精密機械加工與冶金工業生產過程的進步,對電力拖動在起動,制動,正反轉以及調速精度與范圍等靜態特性和動態響應方面提出了新的,更高的要求。由於交流電力拖動比直流電力拖動在技術上難以實現這些要求,所以20世紀以來,在可逆,可調速與高精度的拖動技術領域中,相當時期內幾乎都是採用直流電力拖動,而交流電力拖動則主要用於恆轉速系統。
雖然直流電動機具有調速性能優異這一突出特點,但是由於它具有電刷與換向器(又稱整流子),使得他的故障率較高,電動機的使用環境也受到了限制(如不能在有易爆氣體及塵埃多的場合使用),其電壓等級,額定轉速,單機容量的發展也受到了限制。所以,在20世紀60年代以後,隨著電力電子技術的發展,半導體交流技術的交流技術的交流調速系統得以實現。尤其是70年代以來,大規模集成電路和計算機控制技術的發展,為交流電力拖動的廣泛應用創造了有利條件。諸如交流電動機的串級調速,各種類型的變頻調速,無換向器電動機調速等,使得交流電力拖動逐步具備了調速范圍寬,穩態精度高,動態響應快以及在四象限做可逆運行等良好的技術性能,在調速性能方面完全可與直流電力拖動媲美。除此之外,由於交流電力拖動具有調速性能優良,維修費用低等優點,將廣泛應用於各個工業電氣自動化領域中,並逐步取代直流電力拖動而成為電力拖動的主流。
1.3 電動機的未來
經歷了100多年的技術發展,電動機自身的理論基本成熟。隨著電工技術的發展,對電能的轉換、控制以及高效使用的要求越來越高。電磁材料的性能不斷提高,電工電子技術的廣泛應用,為電動機的發展注入了新的活力。未來電動機將會沿著體積更小、機電能量轉換效率更高、控制更靈活的方向繼續發展。
2.電動機的工作原理
2.1 三相非同步電動機的結構及工作原理
目前較常用的主要是交流電動機,它可分為三相非同步電動機和單相交流電動機兩種。第一種多用在工業上,而第二種多用在民用電器上。下面以三相非同步電動機為例介紹電動機的工作原理。
2.1.1 三相非同步電動機的結構
三相非同步電動機的結構主要由兩個部分組成,一是固定不動的部分(簡稱定子),二是可以自由旋轉的部分(簡稱轉子)。定子與轉子之間有一個很小的氣隙。此外,還有機座、端蓋軸承、接線盒、風扇等其他部分。非同步電動機根據轉子的繞組的結構不同,可分為鼠籠式和繞線式兩種。鼠籠式非同步電動機的轉子繞組本身自成閉合迴路,整個轉子形成一個堅實的整體,其結構簡單牢固、運行可靠、價格便宜,應用最為廣泛,小型非同步電動機絕大部分屬於這類。繞線式非同步電動機的結構比鼠籠式復雜,但啟動性能較好,需要時還可以調節
1.定子
定子定子是用來產生旋轉磁場的,主要由定子鐵心、定子繞組和機座等部分組子成。鼠籠式和繞線式非同步電動機的定子結構是完全一樣的。
2.轉子
轉子是非同步電動機的轉動部分,它在定子繞組旋轉磁場的作用下獲得一定的轉矩而旋轉,通過聯軸器或皮帶輪帶動其他機械設備做功。轉子由轉子鐵心、轉子繞組和轉軸等部分組成。
3.機座
機座是電動機的外殼和支架,它的作用是固定和保護定子鐵心、定子繞組並支撐端蓋,所以要求機座具有足夠的機械強度和剛度,能承受運輸和運行過程中的各種作用力。中、小型非同步電動機通常採用鑄鐵機座,定子鐵心緊貼在機座的內壁,電動機運行時鐵心和繞組產生的熱量主要通過機座表面散發到空氣中去,因此,為了增加散熱面積,在機座表面裝有散熱片。對大型非同步電動機,一般採用鋼板焊接機座,此時為了滿足通風散熱的要求,機座內表面與鐵心隔開適當距離,以形成空腔,作為冷卻空氣的通道。
2.1.2 三相非同步電動機的工作原理
圖2—1所示為用圖解法分析旋轉磁場的電機繞組結構圖。圖中交流電機的定子上嵌放著對稱的三相繞組U1—U2、V1—V2、W1—W2,電流的流入端用符號 表示,流出端用⊙表示。
圖2—1 圖解法分析旋轉磁場的電機繞組結構圖
三相對稱電流波形如圖2—2所示。假定電流從繞組首端流入為正,末端流出為負。
圖2-2 三相對稱電流波形
對稱三相交流電流通入對稱三相繞組時,便產生一個旋轉磁場。下面選取各相電流出現最大值的幾個瞬間進行分析。
在圖2—1中,當wt=0°時,U相電流達到正最大值,電流從首端U1流入,用 表示,從末端U2流出,用⊙表示;V相和W相電流均為負,因此電流均從繞組的末端流入,首端流出,故末端V2和W2應填上 ,首端V1和W1應填上⊙,如圖2—2(a)所示。從圖可見,合成磁場的軸線正好位於U相繞組的軸線上。
當wt=120°時,V相電流為正的最大值,因此V相電流從首端V1流入,用 表示,從末端V2流出,用⊙表示。U相和W相電流均為負,則U1和W1端為流出電流,用⊙表示,而U2和W2為流入電流,用⊙表示,如圖2—2(b)所示。由圖可見,此時合成磁場的軸線正好位於V相繞組的軸線上,磁場方向已從wt=0°時的位置沿逆時針方向旋轉了120°。當wt=240°和wt=360°時,合成磁場的位置分別如圖2—2(c)、(d)所示。當wt=360°時,合成磁場的軸線正好位於U相繞組的軸線上,磁場方向從起始位置逆時針方向旋轉了360°,即電流變化一個周期,合成磁場旋轉一周。由此可見,對稱三相交流電流通入對稱三相繞組所形成的磁場是一個旋轉磁場。旋轉的方向從U→V→W,正好和電流出現正的最大值順序相同,即由電流超前相轉向電流滯後相。如果三相繞組通入負序電流,則電流出現正的最大值的順序是U→W→V。通過圖解法分析可知,旋轉磁場的旋轉方向也為U→W→V。
綜上分析可知,三相非同步電動機轉動的基本工作原則是:
(1)三相對稱繞組中通入三相對稱電流產生圓形旋轉磁場。
(2)轉子導體切割旋轉磁場產生感應電動勢和電流。
(3)轉子載流導體在磁場中受到電磁力的作用,從而形成電磁轉矩,驅使電動機轉子轉動,其轉速小於同步轉速。非同步電動機的轉速不可能達到定子旋轉磁場的轉速,即同步轉速,因為如果到達同步轉速,則轉子導體與旋轉磁場之間沒有相對運動,隨之在轉子導體中不能感應出電勢和電流,也就不能產生推動轉子的電磁力。因此,非同步電動機的轉速總是低於同步轉速,即兩種轉速之間總是存在差異,非同步電動機因此而得名。又因為非同步電動機轉子電流是通過電磁感應作用產生的,所以又稱為感應電動機。
(4)非同步電動機的旋轉方向始終與旋轉磁場的旋轉方向一致,而旋轉磁場的方向又取決於非同步電動機的三相電流相序,因此,三相非同步電動機的轉向與電流的相序一致。要改變轉向,只要改變電流的相序即可,即任意對調電動機的兩根電源線,便可使電動機反轉。
3.電動機的運行維護
3.1 電動機啟動前的准備
為了保證電動機正常安全地啟動,一般啟動前應作好下述准備:
(1)檢查電源是否有電,電壓是否正常,若電源電壓過高或過低,都不宜啟動。
(2)啟動器是否正常,如零部件有無損壞,使用是否靈活,觸頭接觸是否良好,接線是否正確、牢固等。
(3)熔絲規格大小是否合適,安裝是否牢固,有無熔斷或損傷。
(4)電動機接線板上接頭有無松動或氧化。
(5)檢查傳動裝置,如皮帶輕緊是否合適,連接是否牢固,聯軸器的螺絲、銷子是否緊固等。
(6)傳動電動機轉子和負載機械的轉軸,看其轉動是否靈活。
(7)檢查電動機及啟動電器外殼是否接地,接地線有無斷路,接地螺絲是否松動、脫落等。
(8)搬開電動機周圍的雜物並清除機座表麵灰塵、油垢等。
(9)檢查負載機械是否妥善地作好了啟動准備。
(10)對正常運行中的繞線式電動機,應經常觀察電動機滑環有無偏心擺動現象;觀察滑環的火花是否發生異常現象。滑環上碳刷是否要更換。
3.2 啟動時應注意的問題
(1)接通電源後,如果電動機不轉,應立即切斷電源,絕不能遲疑等待,更不能帶電檢查電動機發故障,否則將會燒毀電動機和發生危險。
(2)啟動時應注意觀察電動機、傳動裝置、負載機械的工作情況,以及線路上的電流表和電壓表的指示,若有異常現象,應立即斷電檢查,待故障排除後,載行啟動。
(3)利用手動補償器或手動星三角啟動器啟動電動機時,特別要注意操作順序。一定要先將手柄推到啟動位置,待電動機轉速穩定後再拉到運轉位置,防止誤操作造成設備和人身事故。
(4)同一線路上的電動機不應同時啟動,一般應由大到小逐台啟動以免多太電動機同時啟動,線路上電流太大。電壓降低過多,造成電動機啟動困難引起線路故障或使開關設備跳閘。
(5)啟動時,若電動機的旋轉方向反了,應立即切斷電源,將三相電源線中的任意兩相互換一下位置,即可改變電動機轉向。
3.3 電動機運行中的監視
電動機在運行時,值班工作人員可以通過儀表和感覺器官監視其運行情況,以便及早發現問題,減少或避免故障的發生。
3.3.1 監視電動機的溫度
電動機正常運行時會發熱,使電動機溫度升高,但不應超出允許的限度。如果電動機負載過大,使用環境溫度過高,通風不暢或運行中發生故障,就會使其溫度超出允許限度,導致繞組過熱燒毀,因此電動機溫度的高低是反映電動機運行的主要標志,在運行中經常檢查。判斷電動機是否過熱,可以用以下方法:
(1)憑手的感覺:如果以手接觸外殼,沒有燙手的感覺,說明電動機溫度正常;如果手放上去燙得馬上縮回來,說明電動機已經過熱。
(2)在電動機外殼上滴2-3滴水,如果只冒熱氣沒有聲音,則說明電動機沒有過熱,如果水滴急劇汽化同時伴有"噝噝"聲,說明電動機已經過熱。
(3)判別電動機是否過熱的准確方法還是用溫度計測量。
發現電動機過熱應該立即停車檢查,等查明原因,排除故障後再行使用。
3.3.2 監視電動機的電流
一般容量較大的電動機應裝設電流表,隨時對其電流進行監視。若電流大小或三相電流不平衡超過了允許值。應立即停車檢查。容量較小的電動機一般不裝電流表,但也經常用鉗形表測量。
3.3.3 監視電動機的電壓
電動機的電源上最好裝設一隻電壓表和轉換開關,以便對其三相電源、壓進行監視。電動機的電源電壓過高、過低或三相電壓不平衡,特別是三相電源缺相,都會帶來不良後果。如發現這種情況應立即停車,待查明原因,排除故障後再使用。
3.3.4 注意電動機的振動、響聲和氣味
電動機正常運行時,應平穩、輕快、無異常氣味和響聲。若發生劇烈振動,噪音和焦臭氣味,應停車進行檢查修理。
3.3.5 注意傳動裝置的檢查
電動機運行時要隨時注意查看皮帶輪或聯軸器有無松動,傳動皮帶是否有過緊、過松的現象等,如果有,應停車上緊或進行調整。
3.3.6 注意軸承的工作情況
電動機運行中應注意軸承聲響和發熱情況。若軸承聲音不正常或過熱,應檢查潤滑情況是否良好和有無磨損。
3.3.7 注意交流電動機的滑環或直流電動機的換向器火花
電動機運行中,電刷與換向器或滑環之間難免出現火花。如果所發生的火花大於某一規定限度,尤其是出現放電性的紅色電弧火花時,將產生破壞作用,必須及時加以糾正。
3.4電動機的定期檢查和保養
為了保證電動機正常工作,除了按操作規程正確使用,運行過程中注意監視和維護外還應進行定期檢查和保養。間隔時間可根據電動機的類型、使用環境決定。主要檢查和保養項目如下:
(1)及時清除電動機機座外部的灰塵、油泥,如使用環境灰塵較多,最好每天清掃一次。
(2)經常檢查接線板螺絲是否松動或燒傷。
(3)定期測量電動機的絕緣電阻,若使用環境比較潮濕更應經常測量。
(4)定期用煤油清洗軸承並更換新油(一般半年更換一次),換油時不應上滿,一般占油腔的1/2~1/3,否則,容易發熱或甩出,油要從一面加人,可以把沒有清洗干凈的雜質,從另一面擠出來。
(5)定期檢查啟動設備,看觸頭和接線有無燒傷,氧化,接觸是否良好等。
(6)絕緣情況的檢查。絕緣材料的絕緣能力因乾燥程度不同而異,所以保持電動機繞組的乾燥是非常重要的。電動機工作環境潮濕、工作間有腐蝕性氣體等因素的存在,都會破壞電動機的絕緣。最常見的是繞組接地故障即絕緣損壞,使帶電部分與機殼等不應帶電的金屬部分相碰,發生這種故障,不僅影響電動機正常工作。還會危及人身安全。所以電動機在使用中,應經常檢查絕緣電阻,還要注意查看電動機機殼接地是否可靠。
(7)除了按上述幾項內容對電動機定期維護外,運行一年後要大修一次。大修的目的在於,對電動機進行一次徹底、全面的檢查、維護,增補電動機缺少、磨損的元件,徹底清除電動機內外的灰塵、污物,檢查絕緣情況,清洗軸承並檢查其磨損情況。
結 論
電動機從發展至今,一代代的產品的問世,都是圍繞著基本的工作原理而開發的,如何去運行和維護電動機是我們目前主要工作的重中之重。電動機在我國的經濟建設中擔當著重要的角色,隨著我國加入WTO後,我國電動機行業所面臨的國際社會的巨大競爭壓力和挑戰日益加劇。從節約能源,保護環境出發,高效率電動機是目前國際發展的趨勢。這樣看來,推廣中國的高效率電動機是非常有必要的。
致 謝
本論文在各位老師的悉心指導和嚴格要求下已完成。在學習和生活期間,也始終感受著導師的精心指導和無私的關懷,我受益匪淺。在此向各位老師表示深深的感謝和崇高的敬意。不積跬步何以至千里,本論文能夠順利的完成,也歸功於各位任課老師的認真負責,使我能夠很好的掌握和運用專業知識,並在設計中得以體現。同時我在網上也搜集了不少資料,才使我的畢業論文順利完成。在此向學院工程系的全體老師表示由衷的謝意。
③ 急求:兩級圓柱齒輪減速器課程設計
設 計 任 務 書
一、 課程設計題目:
設計帶式運輸機傳動裝置(簡圖如下)
原始數據:
數據編號 3 5 7 10
運輸機工作轉矩T/(N.m) 690 630 760 620
運輸機帶速V/(m/s) 0.8 0.9 0.75 0.9
捲筒直徑D/mm 320 380 320 360
工作條件:
連續單向運轉,工作時有輕微振動,使用期限為10年,小批量生產,單班制工作(8小時/天)。運輸速度允許誤差為 。
二、 課程設計內容
1)傳動裝置的總體設計。
2)傳動件及支承的設計計算。
3)減速器裝配圖及零件工作圖。
4)設計計算說明書編寫。
每個學生應完成:
1) 部件裝配圖一張(A1)。
2) 零件工作圖兩張(A3)
3) 設計說明書一份(6000~8000字)。
本組設計數據:
第三組數據:運輸機工作軸轉矩T/(N.m) 690 。
運輸機帶速V/(m/s) 0.8 。
捲筒直徑D/mm 320 。
已給方案:外傳動機構為V帶傳動。
減速器為兩級展開式圓柱齒輪減速器。
第一部分 傳動裝置總體設計
一、 傳動方案(已給定)
1) 外傳動為V帶傳動。
2) 減速器為兩級展開式圓柱齒輪減速器。
3) 方案簡圖如下:
二、該方案的優缺點:
該工作機有輕微振動,由於V帶有緩沖吸振能力,採用V帶傳動能減小振動帶來的影響,並且該工作機屬於小功率、載荷變化不大,可以採用V帶這種簡單的結構,並且價格便宜,標准化程度高,大幅降低了成本。減速器部分兩級展開式圓柱齒輪減速,這是兩級減速器中應用最廣泛的一種。齒輪相對於軸承不對稱,要求軸具有較大的剛度。高速級齒輪常布置在遠離扭矩輸入端的一邊,以減小因彎曲變形所引起的載荷沿齒寬分布不均現象。原動機部分為Y系列三相交流 非同步電動機。
總體來講,該傳動方案滿足工作機的性能要求,適應工作條件、工作可靠,此外還結構簡單、尺寸緊湊、成本低傳動效率高。
計 算 與 說 明 結果
三、原動機選擇(Y系列三相交流非同步電動機)
工作機所需功率: =0.96 (見課設P9)
傳動裝置總效率: (見課設式2-4)
(見課設表12-8)
電動機的輸出功率: (見課設式2-1)
取
選擇電動機為Y132M1-6 m型 (見課設表19-1)
技術數據:額定功率( ) 4 滿載轉矩( ) 960
額定轉矩( ) 2.0 最大轉矩( ) 2.0
Y132M1-6電動機的外型尺寸(mm): (見課設表19-3)
A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:270 AD:210 HD:315 BB:238 L:235
四、傳動裝置總體傳動比的確定及各級傳動比的分配
1、 總傳動比: (見課設式2-6)
2、 各級傳動比分配: (見課設式2-7)
初定
第二部分 V帶設計
外傳動帶選為 普通V帶傳動
1、 確定計算功率:
1)、由表5-9查得工作情況系數
2)、由式5-23(機設)
2、選擇V帶型號
查圖5-12a(機設)選A型V帶。
3.確定帶輪直徑
(1)、參考圖5-12a(機設)及表5-3(機設)選取小帶輪直徑
(電機中心高符合要求)
(2)、驗算帶速 由式5-7(機設)
(3)、從動帶輪直徑
查表5-4(機設) 取
(4)、傳動比 i
(5)、從動輪轉速
4.確定中心距 和帶長
(1)、按式(5-23機設)初選中心距
取
(2)、按式(5-24機設)求帶的計算基礎准長度L0
查圖.5-7(機設)取帶的基準長度Ld=2000mm
(3)、按式(5-25機設)計算中心距:a
(4)、按式(5-26機設)確定中心距調整范圍
5.驗算小帶輪包角α1
由式(5-11機設)
6.確定V帶根數Z
(1)、由表(5-7機設)查得dd1=112 n1=800r/min及n1=980r/min時,單根V帶的額定功率分呷為1.00Kw和1.18Kw,用線性插值法求n1=980r/min時的額定功率P0值。
(2)、由表(5-10機設)查得△P0=0.11Kw
(3)、由表查得(5-12機設)查得包角系數
(4)、由表(5-13機設)查得長度系數KL=1.03
(5)、計算V帶根數Z,由式(5-28機設)
取Z=5根
7.計算單根V帶初拉力F0,由式(5-29)機設。
q由表5-5機設查得
8.計算對軸的壓力FQ,由式(5-30機設)得
9.確定帶輪的結構尺寸,給制帶輪工作圖
小帶輪基準直徑dd1=112mm採用實心式結構。大帶輪基準直徑dd2=280mm,採用孔板式結構,基準圖見零件工作圖。
第三部分 各齒輪的設計計算
一、高速級減速齒輪設計(直齒圓柱齒輪)
1.齒輪的材料,精度和齒數選擇,因傳遞功率不大,轉速不高,材料按表7-1選取,都採用45號鋼,鍛選項毛坯,大齒輪、正火處理,小齒輪調質,均用軟齒面。齒輪精度用8級,輪齒表面精糙度為Ra1.6,軟齒面閉式傳動,失效形式為占蝕,考慮傳動平穩性,齒數宜取多些,取Z1=34 則Z2=Z1i=34×2.62=89
2.設計計算。
(1)設計准則,按齒面接觸疲勞強度計算,再按齒根彎曲疲勞強度校核。
(2)按齒面接觸疲勞強度設計,由式(7-9)
T1=9.55×106×P/n=9.55×106×5.42/384=134794 N?mm
由圖(7-6)選取材料的接觸疲勞,極限應力為
бHILim=580 бHILin=560
由圖 7-7選取材料彎曲疲勞極限應力
бHILim=230 бHILin=210
應力循環次數N由式(7-3)計算
N1=60n, at=60×(8×360×10)=6.64×109
N2= N1/u=6.64×109/2.62=2.53×109
由圖7-8查得接觸疲勞壽命系數;ZN1=1.1 ZN2=1.04
由圖7-9查得彎曲 ;YN1=1 YN2=1
由圖7-2查得接觸疲勞安全系數:SFmin=1.4 又YST=2.0 試選Kt=1.3
由式(7-1)(7-2)求許用接觸應力和許用彎曲應力
將有關值代入式(7-9)得
則V1=(πd1tn1/60×1000)=1.3m/s
( Z1 V1/100)=1.3×(34/100)m/s=0.44m/s
查圖7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.則KH=KAKVKβKα=1.42 ,修正
M=d1/Z1=1.96mm
由表7-6取標准模數:m=2mm
(3) 計算幾何尺寸
d1=mz1=2×34=68mm
d2=mz2=2×89=178mm
a=m(z1+z2)/2=123mm
b=φddt=1×68=68mm
取b2=65mm b1=b2+10=75
3.校核齒根彎曲疲勞強度
由圖7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齒輪的彎曲強度.
二、低速級減速齒輪設計(直齒圓柱齒輪)
1.齒輪的材料,精度和齒數選擇,因傳遞功率不大,轉速不高,材料按表7-1選取,都採用45號鋼,鍛選項毛坯,大齒輪、正火處理,小齒輪調質,均用軟齒面。齒輪精度用8級,輪齒表面精糙度為Ra1.6,軟齒面閉式傳動,失效形式為點蝕,考慮傳動平穩性,齒數宜取多些,取Z1=34
則Z2=Z1i=34×3.7=104
2.設計計算。
(1) 設計准則,按齒面接觸疲勞強度計算,再按齒根彎曲疲勞強度校核。
(2)按齒面接觸疲勞強度設計,由式(7-9)
T1=9.55×106×P/n=9.55×106×5.20/148=335540 N?mm
由圖(7-6)選取材料的接觸疲勞,極限應力為
бHILim=580 бHILin=560
由圖 7-7選取材料彎曲疲勞極陰應力
бHILim=230 бHILin=210
應力循環次數N由式(7-3)計算
N1=60n at=60×148×(8×360×10)=2.55×109
N2= N1/u=2.55×109/3.07=8.33×108
由圖7-8查得接觸疲勞壽命系數;ZN1=1.1 ZN2=1.04
由圖7-9查得彎曲 ;YN1=1 YN2=1
由圖7-2查得接觸疲勞安全系數:SFmin=1.4 又YST=2.0 試選Kt=1.3
由式(7-1)(7-2)求許用接觸應力和許用彎曲應力
將有關值代入式(7-9)得
則V1=(πd1tn1/60×1000)=0.55m/s
( Z1 V1/100)=0.55×(34/100)m/s=0.19m/s
查圖7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.則KH=KAKVKβKα=1.377 ,修正
M=d1/Z1=2.11mm
由表7-6取標准模數:m=2.5mm
(3) 計算幾何尺寸
d1=mz1=2.5×34=85mm
d2=mz2=2.5×104=260mm
a=m(z1+z2)/2=172.5mm
b=φddt=1×85=85mm
取b2=85mm b1=b2+10=95
3.校核齒根彎曲疲勞強度
由圖7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齒輪的彎曲強度.
總結:高速級 z1=34 z2=89 m=2
低速級 z1=34 z2=104 m=2.5
第四部分 軸的設計
高速軸的設計
1.選擇軸的材料及熱處理
由於減速器傳遞的功率不大,對其重量和尺寸也無特殊要求故選擇常用材料45鋼,調質處理.
2.初估軸徑
按扭矩初估軸的直徑,查表10-2,得c=106至117,考慮到安裝聯軸器的軸段僅受扭矩作用.取c=110則:
D1min=
D2min=
D3min=
3.初選軸承
1軸選軸承為6008
2軸選軸承為6009
3軸選軸承為6012
根據軸承確定各軸安裝軸承的直徑為:
D1=40mm
D2=45mm
D3=60mm
4.結構設計(現只對高速軸作設計,其它兩軸設計略,結構詳見圖)為了拆裝方便,減速器殼體用剖分式,軸的結構形狀如圖所示.
(1).各軸直徑的確定
初估軸徑後,即可按軸上零件的安裝順序,從左端開始確定直徑.該軸軸段1安裝軸承6008,故該段直徑為40mm。2段裝齒輪,為了便於安裝,取2段為44mm。齒輪右端用軸肩固定,計算得軸肩的高度為4.5mm,取3段為53mm。5段裝軸承,直徑和1段一樣為40mm。4段不裝任何零件,但考慮到軸承的軸向定位,及軸承的安裝,取4段為42mm。6段應與密封毛氈的尺寸同時確定,查機械設計手冊,選用JB/ZQ4606-1986中d=36mm的毛氈圈,故取6段36mm。7段裝大帶輪,取為32mm>dmin 。
(2)各軸段長度的確定
軸段1的長度為軸承6008的寬度和軸承到箱體內壁的距離加上箱體內壁到齒輪端面的距離加上2mm,l1=32mm。2段應比齒輪寬略小2mm,為l2=73mm。3段的長度按軸肩寬度公式計算l3=1.4h;去l3=6mm,4段:l4=109mm。l5和軸承6008同寬取l5=15mm。l6=55mm,7段同大帶輪同寬,取l7=90mm。其中l4,l6是在確定其它段長度和箱體內壁寬後確定的。
於是,可得軸的支點上受力點間的跨距L1=52.5mm,L2=159mm,L3=107.5mm。
(3).軸上零件的周向固定
為了保證良好的對中性,齒輪與軸選用過盈配合H7/r6。與軸承內圈配合軸勁選用k6,齒輪與大帶輪均採用A型普通平鍵聯接,分別為16*63 GB1096-1979及鍵10*80 GB1096-1979。
(4).軸上倒角與圓角
為保證6008軸承內圈端面緊靠定位軸肩的端面,根據軸承手冊的推薦,取軸肩圓角半徑為1mm。其他軸肩圓角半徑均為2mm。根據標准GB6403.4-1986,軸的左右端倒角均為1*45。。
5.軸的受力分析
(1) 畫軸的受力簡圖。
(2) 計算支座反力。
Ft=2T1/d1=
Fr=Fttg20。=3784
FQ=1588N
在水平面上
FR1H=
FR2H=Fr-FR1H=1377-966=411N
在垂直面上
FR1V=
Fr2V=Ft- FR1V=1377-352=1025N
(3) 畫彎矩圖
在水平面上,a-a剖面左側
MAh=FR1Hl3=966 52.5=50.715N?m
a-a剖面右側
M』Ah=FR2Hl2=411 153=62.88 N?m
在垂直面上
MAv=M』AV=FR1Vl2=352×153=53.856 N?m
合成彎矩,a-a剖面左側
a-a剖面右側
畫轉矩圖
轉矩 3784×(68/2)=128.7N?m
6.判斷危險截面
顯然,如圖所示,a-a剖面左側合成彎矩最大、扭矩為T,該截面左側可能是危險截面;b-b截面處合成灣矩雖不是最大,但該截面左側也可能是危險截面。若從疲勞強度考慮,a-a,b-b截面右側均有應力集中,且b-b截面處應力集中更嚴重,故a-a截面左側和b-b截面左、右側又均有可能是疲勞破壞危險截面。
7.軸的彎扭合成強度校核
由表10-1查得
(1)a-a剖面左側
3=0.1×443=8.5184m3
=14.57
(2)b-b截面左側
3=0.1×423=7.41m3
b-b截面處合成彎矩Mb:
=174 N?m
=27
8.軸的安全系數校核:由表10-1查得 (1)在a-a截面左側
WT=0.2d3=0.2×443=17036.8mm3
由附表10-1查得 由附表10-4查得絕對尺寸系數 ;軸經磨削加工, 由附表10-5查得質量系數 .則
彎曲應力
應力幅
平均應力
切應力
安全系數
查表10-6得許用安全系數 =1.3~1.5,顯然S> ,故a-a剖面安全.
(2)b-b截面右側
抗彎截面系數 3=0.1×533=14.887m3
抗扭截面系數WT=0.2d3=0.2×533=29.775 m3
又Mb=174 N?m,故彎曲應力
切應力
由附表10-1查得過盈配合引起的有效應力集中系數 。 則
顯然S> ,故b-b截面右側安全。
(3)b-b截面左側
WT=0.2d3=0.2×423=14.82 m3
b-b截面左右側的彎矩、扭矩相同。
彎曲應力
切應力
(D-d)/r=1 r/d=0.05,由附表10-2查得圓角引起的有效應力集中系數 。由附表10-4查得絕對尺寸系數 。又 。則
顯然S> ,故b-b截面左側安全。
第五部分 校 核
高速軸軸承
FR2H=Fr-FR1H=1377-966=411N
Fr2V=Ft- FR1V=1377-352=1025N
軸承的型號為6008,Cr=16.2 kN
1) FA/COr=0
2) 計算當量動載荷
查表得fP=1.2徑向載荷系數X和軸向載荷系數Y為X=1,Y=0
=1.2×(1×352)=422.4 N
3) 驗算6008的壽命
驗算右邊軸承
鍵的校核
鍵1 10×8 L=80 GB1096-79
則強度條件為
查表許用擠壓應力
所以鍵的強度足夠
鍵2 12×8 L=63 GB1096-79
則強度條件為
查表許用擠壓應力
所以鍵的強度足夠
聯軸器的選擇
聯軸器選擇為TL8型彈性聯軸器 GB4323-84
減速器的潤滑
1.齒輪的潤滑
因齒輪的圓周速度<12 m/s,所以才用浸油潤滑的潤滑方式。
高速齒輪浸入油里約0.7個齒高,但不小於10mm,低速級齒輪浸入油高度約為1個齒高(不小於10mm),1/6齒輪。
2.滾動軸承的潤滑
因潤滑油中的傳動零件(齒輪)的圓周速度V≥1.5~2m/s所以採用飛濺潤滑,
第六部分 主要尺寸及數據
箱體尺寸:
箱體壁厚
箱蓋壁厚
箱座凸緣厚度b=15mm
箱蓋凸緣厚度b1=15mm
箱座底凸緣厚度b2=25mm
地腳螺栓直徑df=M16
地腳螺栓數目n=4
軸承旁聯接螺栓直徑d1=M12
聯接螺栓d2的間距l=150mm
軸承端蓋螺釘直徑d3=M8
定位銷直徑d=6mm
df 、d1 、d2至外箱壁的距離C1=18mm、18 mm、13 mm
df、d2至凸緣邊緣的距離C2=16mm、11 mm
軸承旁凸台半徑R1=11mm
凸台高度根據低速軸承座外半徑確定
外箱壁至軸承座端面距離L1=40mm
大齒輪頂圓與內箱壁距離△1=10mm
齒輪端面與內箱壁距離△2=10mm
箱蓋,箱座肋厚m1=m=7mm
軸承端蓋外徑D2 :凸緣式端蓋:D+(5~5.5)d3
以上尺寸參考機械設計課程設計P17~P21
傳動比
原始分配傳動比為:i1=2.62 i2=3.07 i3=2.5
修正後 :i1=2.5 i2=2.62 i3=3.07
各軸新的轉速為 :n1=960/2.5=3.84
n2=384/2.61=147
n3=147/3.07=48
各軸的輸入功率
P1=pdη8η7 =5.5×0.95×0.99=5.42
P2=p1η6η5=5.42×0.97×0.99=5.20
P3=p2η4η3=5.20×0.97×0.99=5.00
P4=p3η2η1=5.00×0.99×0.99=4.90
各軸的輸入轉矩
T1=9550Pdi1η8η7/nm=9550×5.5×2.5×0.95×0.99=128.65
T2= T1 i2η6η5=128.65×2.62×0.97×0.99=323.68
T3= T2 i3η4η3=323.68×3.07×0.97×0.99=954.25
T4= T3 η2η1=954.23×0.99×0.99=935.26
軸號 功率p 轉矩T 轉速n 傳動比i 效率η
電機軸 5.5 2.0 960 1 1
1 5.42 128.65 384 2.5 0.94
2 5.20 323.68 148 2.62 0.96
3 5.00 954.25 48 3.07 0.96
工作機軸 4.90 935.26 48 1 0.98
齒輪的結構尺寸
兩小齒輪採用實心結構
兩大齒輪採用復板式結構
齒輪z1尺寸
z=34 d1=68 m=2 d=44 b=75
d1=68
ha=ha*m=1×2=2mm
hf=( ha*+c*)m=(1+0.25)×2=2.5mm
h=ha+hf=2+2.5=4.5mm
da=d1+2ha=68+2×2=72mm
df=d1-2hf=68-2×2.5=63
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
齒輪z2的尺寸
由軸可 得d2=178 z2=89 m=2 b=65 d4=49
ha=ha*m=1×2=2mm
h=ha+hf=2+2.5=4.5mm
hf=(1+0.5)×2=2.5mm
da=d2+2ha=178+2×2=182
df=d1-2hf=178-2×2.5=173
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
DT≈
D3≈1.6D4=1.6×49=78.4
D0≈da-10mn=182-10×2=162
D2≈0.25(D0-D3)=0.25(162-78.4)=20
R=5 c=0.2b=0.2×65=13
齒輪3尺寸
由軸可得, d=49 d3=85 z3=34 m=2.5 b=95
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.125=5.625
hf=(ha*+c*)m=(1+0.25)×2.5=3.125
da=d3+2ha=85+2×2.5=90
df=d1-2hf=85-2×3.125=78.75
p=πm=3.14×2.5=7.85
s=πm/2=3.14×2.5/2=3.925
e=s c=c*m=0.25×2.5=0.625
齒輪4寸
由軸可得 d=64 d4=260 z4=104 m=2.5 b=85
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.25=5.625
hf=(ha*+c*)m=(1+0.25)×0.25=3.125
da=d4+2ha=260+2×2.5=265
df=d1-2hf=260-2×3.125=253.75
p=πm=3.14×2.5=7.85
s=e=πm/2=3.14×2.5/2=3.925
c=c*m=0.25×2.5=0.625
D0≈da-10m=260-10×2.5=235
D3≈1.6×64=102.4
D2=0.25(D0-D3)=0.25×(235-102.4)=33.15
r=5 c=0.2b=0.2×85=17
參考文獻:
《機械設計》徐錦康 主編 機械工業出版社
《機械設計課程設計》陸玉 何在洲 佟延偉 主編
第3版 機械工業出版社
《機械設計手冊》
設計心得
機械設計課程設計是機械課程當中一個重要環節通過了3周的課程設計使我從各個方面都受到了機械設計的訓練,對機械的有關各個零部件有機的結合在一起得到了深刻的認識。
由於在設計方面我們沒有經驗,理論知識學的不牢固,在設計中難免會出現這樣那樣的問題,如:在選擇計算標准件是可能會出現誤差,如果是聯系緊密或者循序漸進的計算誤差會更大,在查表和計算上精度不夠准
在設計的過程中,培養了我綜合應用機械設計課程及其他課程的理論知識和應用生產實際知識解決工程實際問題的能力,在設計的過程中還培養出了我們的團隊精神,大家共同解決了許多個人無法解決的問題,在這些過程中我們深刻地認識到了自己在知識的理解和接受應用方面的不足,在今後的學習過程中我們會更加努力和團結。
由於本次設計是分組的,自己獨立設計的東西不多,但在通過這次設計之後,我想會對以後自己獨立設計打下一個良好的基礎。。。
④ 機械類專業畢業設計一般做什麼題目
程設計 帶式輸送機傳動裝置 7畢業論文 橋式起重機副起升機構設計
8畢業論文 兩齒輥破碎機設計 9 63CY14-1B軸向柱塞泵改進設計(共32頁,19000字)
10畢業設計 連桿孔研磨裝置設計
11畢業設計 旁承上平面與下心盤上平面垂直距離檢測裝置的設計
12.. 機械設計課程設計 帶式運輸機傳動裝置設計 13皮帶式輸送機傳動裝置的一級圓柱齒輪減速器
14畢業設計(論文) 立軸式破碎機設計 15畢業設計(論文) C6136型經濟型數控改造(橫向)
16高空作業車工作臂結構設計及有限元分析 17 2007屆畢業生畢業設計 機用虎鉗設計
18畢業設計無軸承電機的結構設計 19畢業設計 平面關節型機械手設計
20畢業設計 三自由度圓柱坐標型工業機器人
21畢業設計XKA5032A/C數控立式升降台銑床自動換刀設計
22畢業設計 四通管接頭的設計 23課程設計:帶式運輸機上的傳動及減速裝置
24畢業設計(論文) 行星減速器設計三維造型虛擬設計分析
25畢業設計論文 關節型機器人腕部結構設計
26本科生畢業設計全套資料 Z32K型搖臂鑽床變速箱的改進設計/
27畢業設計 EQY-112-90 汽車變速箱後面孔系鑽削組合機床設計
28畢業設計 D180柴油機12孔攻絲機床及夾具設計
29畢業設計 C616型普通車床改造為經濟型數控車床
30畢業設計(論文)說明書 中單鏈型刮板輸送機設計
液壓類畢業設計
1畢業設計 ZFS1600/12/26型液壓支架掩護梁設計
2畢業設計 液壓拉力器
3畢業設計 液壓台虎鉗設計
4畢業設計論文 雙活塞液壓漿體泵液力缸設計
5畢業設計 GKZ高空作業車液壓和電氣控制系統設計 數控加工類畢業設計
1課程設計 設計低速級斜齒輪零件的機械加工工藝規程
2畢業設計 普通車床經濟型數控改造
3畢業論文 鉤尾框夾具設計(鏜φ92孔的兩道工序的專用夾具)
...4 機械製造工藝學課程設計 設計「撥叉」零件的機械加工工藝規程及工藝裝備(年產量5000件)
5課程設計 四工位專用機床傳動機構設計
6課程設計說明書 設計「推動架」零件的機械加工工藝及工藝設備
7機械製造技術基礎課程設計 制定CA6140車床法蘭盤的加工工藝,設計鑽4×φ9mm孔的鑽床夾具
8械製造技術基礎課程設計 設計「CA6140車床撥叉」零件的機械加工工藝及工藝設備
9畢業設計 軸類零件設計
10畢業設計 殼體零件機械加工工藝規程制訂及第工序工藝裝備設計
11畢業設計 單拐曲軸零件機械加工規程設計說明書
12機械製造課程設計 機床傳動齒輪的工藝規程設計(大批量)
13課程設計 軸零件的機械加工工藝規程制定
14畢業論文 開放式CNC(Computer Numerical Control)系統設計
15畢業設計 單拐曲軸工藝流程
16畢業設計 殼體機械加工工藝規程
17畢業設計 連桿機械加工工藝規程
18畢業設計(論文) 子程序在沖孔模生產中的運用——編制數控加工(1#-6#)標模點孔的程序
19畢業設計 XKA5032A/C數控立式升降台銑床自動換刀裝置的設計
20機械製造技術基礎課程設計 設計「減速器傳動軸」零件的機械加工工藝規程(年產量為5000件)
21課程設計 杠桿的加工
22畢業設計 2SA3.1多回轉電動執行機構箱體加工工藝規程及工藝裝備設計
23畢業論文 數控銑高級工零件工藝設計及程序編制
24畢業論文 數控銑高級工心型零件工藝設計及程序編制
25畢業設計 連桿的加工工藝及其斷面銑夾具設計
26機械製造工藝學課程設計說明書:設計「CA6140車床撥叉」零件的機械加工工藝及工藝設備 雜合
XKA5032AC數控立式升降台銑床自動換刀裝置設計
機用虎鉗課程設計.rar
行星齒輪減速器減速器的虛擬設計(王少華).rar
物流液壓升降台的設計
自動加料機控制系統.rar全向輪機構及其控制設計.rar
齒輪齒條轉向器.rar
計程車計價系統.rar
(畢業設計)油封骨架沖壓模具
連桿孔研磨裝置設計 .rar
蝸輪蝸桿傳動.rar
用單片機實現溫度遠程顯示.doc
基於Alter的EP1C6Q240C8的紅外遙器(畢業論文).doc
變頻器 調試設計及應用
鎳氫電池充電器的設計.doc
銑斷夾具設計 q 348414338
⑤ 求數控專業畢業設計課題。
提供一些數控專業畢業設計課題,供參考。
課題一:零件的數控加工工藝編制
課題二:手機外殼造型設計
課題三:數控車床零件加工
課題四:數控銑床及加工中心產品加工
課題五:CA6140普通車床數控化改造
課題六:MasterCAM軟體應用課程設計
課題七:機械手控制設計
課題八:《數控加工工藝》課程多媒體課件製作
課題九: 掛圖製作
課題十: 基於×××企業的生產管理模式調研
⑥ 急需一級斜齒圓柱齒輪減速器課程設計.帶式運輸機傳動裝置。拉力F=1500, 速度V=1.1,卷直徑為220mm.
僅供參考
一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW
3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m
五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.
六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm
II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N?m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm
(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危險截面C的強度
由式(6-3)
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。
⑦ 機械專業簡單的畢業設計有哪些題目
簡單的畢業設計有:
1、可伸縮帶式輸送機結構設計。
2、AWC機架現場擴孔機設計 。
3、ZQ-100型鑽桿動力鉗背鉗設計 。
4、帶式輸送機摩擦輪調偏裝置設計。
5、封閉母線自然冷卻的溫度場分析 。
⑧ 機械設計基礎課程設計指導書——設計輸送機傳動裝置課程設計
給你做個參考
一、前言
(一)
設計目的:
通過本課程設計將學過的基礎理論知識進行綜合應用,培養結構設計,計算能力,熟悉一般的機械裝置設計過程。
(二)
傳動方案的分析
機器一般是由原動機、傳動裝置和工作裝置組成。傳動裝置是用來傳遞原動機的運動和動力、變換其運動形式以滿足工作裝置的需要,是機器的重要組成部分。傳動裝置是否合理將直接影響機器的工作性能、重量和成本。合理的傳動方案除滿足工作裝置的功能外,還要求結構簡單、製造方便、成本低廉、傳動效率高和使用維護方便。
本設計中原動機為電動機,工作機為皮帶輸送機。傳動方案採用了兩級傳動,第一級傳動為帶傳動,第二級傳動為單級直齒圓柱齒輪減速器。
帶傳動承載能力較低,在傳遞相同轉矩時,結構尺寸較其他形式大,但有過載保護的優點,還可緩和沖擊和振動,故布置在傳動的高速級,以降低傳遞的轉矩,減小帶傳動的結構尺寸。
齒輪傳動的傳動效率高,適用的功率和速度范圍廣,使用壽命較長,是現代機器中應用最為廣泛的機構之一。本設計採用的是單級直齒輪傳動。
減速器的箱體採用水平剖分式結構,用HT200灰鑄鐵鑄造而成。
二、傳動系統的參數設計
原始數據:運輸帶的工作拉力F=0.2 KN;帶速V=2.0m/s;滾筒直徑D=400mm(滾筒效率為0.96)。
工作條件:預定使用壽命8年,工作為二班工作制,載荷輕。
工作環境:室內灰塵較大,環境最高溫度35°。
動力來源:電力,三相交流380/220伏。
1
、電動機選擇
(1)、電動機類型的選擇: Y系列三相非同步電動機
(2)、電動機功率選擇:
①傳動裝置的總效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作機所需的輸入功率:
因為 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③電動機的輸出功率:
=3.975/0.87=4.488KW
使電動機的額定功率P =(1~1.3)P ,由查表得電動機的額定功率P = 5.5KW 。
⑶、確定電動機轉速:
計算滾筒工作轉速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』 =3~6。取V帶傳動比I』 =2~4,則總傳動比理時范圍為I』 =6~24。故電動機轉速的可選范圍為n』 =(6~24)×96=576~2304r/min
⑷、確定電動機型號
根據以上計算在這個范圍內電動機的同步轉速有1000r/min和1500r/min,綜合考慮電動機和傳動裝置的情況,同時也要降低電動機的重量和成本,最終可確定同步轉速為1500r/min ,根據所需的額定功率及同步轉速確定電動機的型號為Y132S-4 ,滿載轉速 1440r/min 。
其主要性能:額定功率:5.5KW,滿載轉速1440r/min,額定轉矩2.2,質量68kg。
2
、計算總傳動比及分配各級的傳動比
(1)、總傳動比:i =1440/96=15
(2)、分配各級傳動比:
根據指導書,取齒輪i =5(單級減速器i=3~6合理)
=15/5=3
3
、運動參數及動力參數計算
⑴、計算各軸轉速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵計算各軸的功率(KW)
電動機的額定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶計算各軸扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、傳動零件的設計計算
(一)齒輪傳動的設計計算
(1)選擇齒輪材料及精度等級
考慮減速器傳遞功率不大,所以齒輪採用軟齒面。小齒輪選用40Cr調質,齒面硬度為240~260HBS。大齒輪選用45#鋼,調質,齒面硬度220HBS;根據指導書選7級精度。齒面精糙度R ≤1.6~3.2μm
(2)確定有關參數和系數如下:
傳動比i
取小齒輪齒數Z =20。則大齒輪齒數:
=5×20=100
,所以取Z
實際傳動比
i =101/20=5.05
傳動比誤差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齒數比:
u=i
取模數:m=3 ;齒頂高系數h =1;徑向間隙系數c =0.25;壓力角 =20°;
則
h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圓直徑:d =×20mm=60mm
d =3×101mm=303mm
由指導書取
φ
齒寬:
b=φ =0.9×60mm=54mm
=60mm ,
b
齒頂圓直徑:d )=66,
d
齒根圓直徑:d )=52.5,
d )=295.5
基圓直徑:
d cos =56.38,
d cos =284.73
(3)計算齒輪傳動的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液壓絞車≈182mm
(二)軸的設計計算
1
、輸入軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質,硬度217~255HBS
根據指導書並查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴選d=25mm
⑵、軸的結構設計
①軸上零件的定位,固定和裝配
單級減速器中可將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面由軸肩定位,右面用套筒軸向固定,聯接以平鍵作過渡配合固定,兩軸承分別以軸肩和大筒定位,則採用過渡配合固定
②確定軸各段直徑和長度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以長度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L =(2+20+55)=77mm
III段直徑:
初選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直徑:
由手冊得:c=1.5
h=2c=2×1.5=3mm
此段左面的滾動軸承的定位軸肩考慮,應便於軸承的拆卸,應按標准查取由手冊得安裝尺寸h=3.該段直徑應取:d =(35+3×2)=41mm
因此將Ⅳ段設計成階梯形,左段直徑為41mm
+2h=35+2×3=41mm
長度與右面的套筒相同,即L
Ⅴ段直徑:d =50mm. ,長度L =60mm
取L
由上述軸各段長度可算得軸支承跨距L=80mm
Ⅵ段直徑:d =41mm, L
Ⅶ段直徑:d =35mm, L <L3,取L
2
、輸出軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質鋼,硬度(217~255HBS)
根據課本P235頁式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考慮有鍵槽,將直徑增大5%,則
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、軸的結構設計
①軸的零件定位,固定和裝配
單級減速器中,可以將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面用軸肩定位,右面用套筒軸向定位,周向定位採用鍵和過渡配合,兩軸承分別以軸承肩和套筒定位,周向定位則用過渡配合或過盈配合,軸呈階狀,左軸承從左面裝入,齒輪套筒,右軸承和皮帶輪依次從右面裝入。
②確定軸的各段直徑和長度
初選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長42.755mm,安裝齒輪段長度為輪轂寬度為2mm。
則
d =42mm
L
= 50mm
L
= 55mm
L
= 60mm
L
= 68mm
L
=55mm
L
四、滾動軸承的選擇
1
、計算輸入軸承
選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
2
、計算輸出軸承
選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm
五、鍵聯接的選擇
1
、輸出軸與帶輪聯接採用平鍵聯接
鍵的類型及其尺寸選擇:
帶輪傳動要求帶輪與軸的對中性好,故選擇C型平鍵聯接。
根據軸徑d =42mm ,L =65mm
查手冊得,選用C型平鍵,得: 卷揚機
裝配圖中22號零件選用GB1096-79系列的鍵12×56
則查得:鍵寬b=12,鍵高h=8,因軸長L =65,故取鍵長L=56
2
、輸出軸與齒輪聯接用平鍵聯接
=60mm,L
查手冊得,選用C型平鍵,得:
裝配圖中 赫格隆36號零件選用GB1096-79系列的鍵18×45
則查得:鍵寬b=18,鍵高h=11,因軸長L =53,故取鍵長L=45
3
、輸入軸與帶輪聯接採用平鍵聯接
=25mm
L
查手冊
選A型平鍵,得:
裝配圖中29號零件選用GB1096-79系列的鍵8×50
則查得:鍵寬b=8,鍵高h=7,因軸長L =62,故取鍵長L=50
4
、輸出軸與齒輪聯接用平鍵聯接
=50mm
L
查手冊
選A型平鍵,得:
裝配圖中26號零件選用GB1096-79系列的鍵14×49
則查得:鍵寬b=14,鍵高h=9,因軸長L =60,故取鍵長L=49
六、箱體、箱蓋主要尺寸計算
箱體採用水平剖分式結構,採用HT200灰鑄鐵鑄造而成。箱體主要尺寸計算如下:
七、軸承端蓋
主要尺寸計算
軸承端蓋:HT150 d3=8
n=6 b=10
八、減速器的
減速器的附件的設計
1
、擋圈 :GB886-86
查得:內徑d=55,外徑D=65,擋圈厚H=5,右肩軸直徑D1≥58
2
、油標 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
設計參考資料目錄
1、吳宗澤、羅聖國主編.機械設計課程設計手冊.北京:高等教育出版社,1999.6
2、解蘭昌等編著.緊密儀器儀表機構設計.杭州:浙江大學出版社,1997.11
⑨ 機電一體化畢業設計!答出來加100分
數控技術
裝備工業的技術水平和現代化程度決定著整個國民經濟的水平和現代化程度,數控技術及裝備是發展新興高新技術產業和尖端工業(如信息技術及其產業、生物技術及其產業、航空、航天等國防工業產業)的使能技術和最基本的裝備。馬克思曾經說過「各種經濟時代的區別,不在於生產什麼,而在於怎樣生產,用什麼勞動資料生產」。製造技術和裝備就是人類生產活動的最基本的生產資料,而數控技術又是當今先進製造技術和裝備最核心的技術。當今世界各國製造業廣泛採用數控技術,以提高製造能力和水平,提高對動態多變市場的適應能力和競爭能力。此外世界上各工業發達國家還將數控技術及數控裝備列為國家的戰略物資,不僅採取重大措施來發展自己的數控技術及其產業,而且在「高精尖」數控關鍵技術和裝備方面對我國實行封鎖和限制政策。總之,大力發展以數控技術為核心的先進製造技術已成為世界各發達國家加速經濟發展、提高綜合國力和國家地位的重要途徑。
數控技術是用數字信息對機械運動和工作過程進行控制的技術,數控裝備是以數控技術為代表的新技術對傳統製造產業和新興製造業的滲透形成的機電一體化產品,即所謂的數字化裝備,其技術范圍覆蓋很多領域:(1)機械製造技術;(2)信息處理、加工、傳輸技術;(3)自動控制技術;(4)伺服驅動技術;(5)感測器技術;(6)軟體技術等。
1 數控技術的發展趨勢
數控技術的應用不但給傳統製造業帶來了革命性的變化,使製造業成為工業化的象徵,而且隨著數控技術的不斷發展和應用領域的擴大,他對國計民生的一些重要行業(IT、汽車、輕工、醫療等)的發展起著越來越重要的作用,因為這些行業所需裝備的數字化已是現代發展的大趨勢。從目前世界上數控技術及其裝備發展的趨勢來看,其主要研究熱點有以下幾個方面
1.1 高速、高精加工技術及裝備的新趨勢
效率、質量是先進製造技術的主體。高速、高精加工技術可極大地提高效率,提高產品的質量和檔次,縮短生產周期和提高市場競爭能力。為此日本先端技術研究會將其列為5大現代製造技術之一,國際生產工程學會(CIRP)將其確定為21世紀的中心研究方向之一。
在轎車工業領域,年產30萬輛的生產節拍是40秒/輛,而且多品種加工是轎車裝備必須解決的重點問題之一;在航空和宇航工業領域,其加工的零部件多為薄壁和薄筋,剛度很差,材料為鋁或鋁合金,只有在高切削速度和切削力很小的情況下,才能對這些筋、壁進行加工。近來採用大型整體鋁合金坯料「掏空」的方法來製造機翼、機身等大型零件來替代多個零件通過眾多的鉚釘、螺釘和其他聯結方式拼裝,使構件的強度、剛度和可靠性得到提高。這些都對加工裝備提出了高速、高精和高柔性的要求。
從EMO2001展會情況來看,高速加工中心進給速度可達80m/min,甚至更高,空運行速度可達100m/min左右。目前世界上許多汽車廠,包括我國的上海通用汽車公司,已經採用以高速加工中心組成的生產線部分替代組合機床。美國CINCINNATI公司的HyperMach機床進給速度最大達60m/min,快速為100m/min,加速度達2g,主軸轉速已達60 000r/min。加工一薄壁飛機零件,只用30min,而同樣的零件在一般高速銑床加工需3h,在普通銑床加工需8h;德國DMG公司的雙主軸車床的主軸速度及加速度分別達12*!000r/mm和1g。
在加工精度方面,近10年來,普通級數控機床的加工精度已由10μm提高到5μm,精密級加工中心則從3~5μm,提高到1~1.5μm,並且超精密加工精度已開始進入納米級(0.01μm)。
在可靠性方面,國外數控裝置的MTBF值已達6 000h以上,伺服系統的MTBF值達到30000h以上,表現出非常高的可靠性。
為了實現高速、高精加工,與之配套的功能部件如電主軸、直線電機得到了快速的發展,應用領域進一步擴大。
1.2 5軸聯動加工和復合加工機床快速發展
採用5軸聯動對三維曲面零件的加工,可用刀具最佳幾何形狀進行切削,不僅光潔度高,而且效率也大幅度提高。一般認為,1台5軸聯動機床的效率可以等於2台3軸聯動機床,特別是使用立方氮化硼等超硬材料銑刀進行高速銑削淬硬鋼零件時,5軸聯動加工可比3軸聯動加工發揮更高的效益。但過去因5軸聯動數控系統、主機結構復雜等原因,其價格要比3軸聯動數控機床高出數倍,加之編程技術難度較大,制約了5軸聯動機床的發展。
當前由於電主軸的出現,使得實現5軸聯動加工的復合主軸頭結構大為簡化,其製造難度和成本大幅度降低,數控系統的價格差距縮小。因此促進了復合主軸頭類型5軸聯動機床和復合加工機床(含5面加工機床)的發展。
在EMO2001展會上,新日本工機的5面加工機床採用復合主軸頭,可實現4個垂直平面的加工和任意角度的加工,使得5面加工和5軸加工可在同一台機床上實現,還可實現傾斜面和倒錐孔的加工。德國DMG公司展出DMUVoution系列加工中心,可在一次裝夾下5面加工和5軸聯動加工,可由CNC系統控制或CAD/CAM直接或間接控制。
1.3 智能化、開放式、網路化成為當代數控系統發展的主要趨勢
21世紀的數控裝備將是具有一定智能化的系統,智能化的內容包括在數控系統中的各個方面:為追求加工效率和加工質量方面的智能化,如加工過程的自適應控制,工藝參數自動生成;為提高驅動性能及使用連接方便的智能化,如前饋控制、電機參數的自適應運算、自動識別負載自動選定模型、自整定等;簡化編程、簡化操作方面的智能化,如智能化的自動編程、智能化的人機界面等;還有智能診斷、智能監控方面的內容、方便系統的診斷及維修等。
為解決傳統的數控系統封閉性和數控應用軟體的產業化生產存在的問題。目前許多國家對開放式數控系統進行研究,如美國的NGC(The Next Generation Work-Station/Machine Control)、歐共體的OSACA(Open System Architecture for Control within Automation Systems)、日本的OSEC(Open System Environment for Controller),中國的ONC(Open Numerical Control System)等。數控系統開放化已經成為數控系統的未來之路。所謂開放式數控系統就是數控系統的開發可以在統一的運行平台上,面向機床廠家和最終用戶,通過改變、增加或剪裁結構對象(數控功能),形成系列化,並可方便地將用戶的特殊應用和技術訣竅集成到控制系統中,快速實現不同品種、不同檔次的開放式數控系統,形成具有鮮明個性的名牌產品。目前開放式數控系統的體系結構規范、通信規范、配置規范、運行平台、數控系統功能庫以及數控系統功能軟體開發工具等是當前研究的核心。
網路化數控裝備是近兩年國際著名機床博覽會的一個新亮點。數控裝備的網路化將極大地滿足生產線、製造系統、製造企業對信息集成的需求,也是實現新的製造模式如敏捷製造、虛擬企業、全球製造的基礎單元。國內外一些著名數控機床和數控系統製造公司都在近兩年推出了相關的新概念和樣機,如在EMO2001展中,日本山崎馬扎克(Mazak)公司展出的「CyberProction Center」(智能生產控制中心,簡稱CPC);日本大隈(Okuma)機床公司展出「IT plaza」(信息技術廣場,簡稱IT廣場);德國西門子(Siemens)公司展出的Open Manufacturing Environment(開放製造環境,簡稱OME)等,反映了數控機床加工向網路化方向發展的趨勢。
1.4 重視新技術標准、規范的建立
1.4.1 關於數控系統設計開發規范
如前所述,開放式數控系統有更好的通用性、柔性、適應性、擴展性,美國、歐共體和日本等國紛紛實施戰略發展計劃,並進行開放式體系結構數控系統規范(OMAC、OSACA、OSEC)的研究和制定,世界3個最大的經濟體在短期內進行了幾乎相同的科學計劃和規范的制定,預示了數控技術的一個新的變革時期的來臨。我國在2000年也開始進行中國的ONC數控系統的規范框架的研究和制定。
1.4.2 關於數控標准
數控標準是製造業信息化發展的一種趨勢。數控技術誕生後的50年間的信息交換都是基於ISO6983標准,即採用G,M代碼描述如何(how)加工,其本質特徵是面向加工過程,顯然,他已越來越不能滿足現代數控技術高速發展的需要。為此,國際上正在研究和制定一種新的CNC系統標准ISO14649(STEP-NC),其目的是提供一種不依賴於具體系統的中性機制,能夠描述產品整個生命周期內的統一數據模型,從而實現整個製造過程,乃至各個工業領域產品信息的標准化。
STEP-NC的出現可能是數控技術領域的一次革命,對於數控技術的發展乃至整個製造業,將產生深遠的影響。首先,STEP-NC提出一種嶄新的製造理念,傳統的製造理念中,NC加工程序都集中在單個計算機上。而在新標准下,NC程序可以分散在互聯網上,這正是數控技術開放式、網路化發展的方向。其次,STEP-NC數控系統還可大大減少加工圖紙(約75%)、加工程序編制時間(約35%)和加工時間(約50%)。
目前,歐美國家非常重視STEP-NC的研究,歐洲發起了STEP-NC的IMS計劃(1999.1.1~2001.12.31)。參加這項計劃的有來自歐洲和日本的20個CAD/CAM/CAPP/CNC用戶、廠商和學術機構。美國的STEP Tools公司是全球范圍內製造業數據交換軟體的開發者,他已經開發了用作數控機床加工信息交換的超級模型(Super Model),其目標是用統一的規范描述所有加工過程。目前這種新的數據交換格式已經在配備了SIEMENS、FIDIA以及歐洲OSACA-NC數控系統的原型樣機上進行了驗證。
2 對我國數控技術及其產業發展的基本估計
我國數控技術起步於1958年,近50年的發展歷程大致可分為3個階段:第一階段從1958年到1979年,即封閉式發展階段。在此階段,由於國外的技術封鎖和我國的基礎條件的限制,數控技術的發展較為緩慢。第二階段是在國家的「六五」、「七五」期間以及「八五」的前期,即引進技術,消化吸收,初步建立起國產化體系階段。在此階段,由於改革開放和國家的重視,以及研究開發環境和國際環境的改善,我國數控技術的研究、開發以及在產品的國產化方面都取得了長足的進步。第三階段是在國家的「八五」的後期和「九五」期間,即實施產業化的研究,進入市場競爭階段。在此階段,我國國產數控裝備的產業化取得了實質性進步。在「九五」末期,國產數控機床的國內市場佔有率達50%,配國產數控系統(普及型)也達到了10%。
縱觀我國數控技術近50年的發展歷程,特別是經過4個5年計劃的攻關,總體來看取得了以下成績。
a.奠定了數控技術發展的基礎,基本掌握了現代數控技術。我國現在已基本掌握了從數控系統、伺服驅動、數控主機、專機及其配套件的基礎技術,其中大部分技術已具備進行商品化開發的基礎,部分技術已商品化、產業化。
b.初步形成了數控產業基地。在攻關成果和部分技術商品化的基礎上,建立了諸如華中數控、航天數控等具有批量生產能力的數控系統生產廠。蘭州電機廠、華中數控等一批伺服系統和伺服電機生產廠以及北京第一機床廠、濟南第一機床廠等若干數控主機生產廠。這些生產廠基本形成了我國的數控產業基地。
c.建立了一支數控研究、開發、管理人才的基本隊伍。
雖然在數控技術的研究開發以及產業化方面取得了長足的進步,但我們也要清醒地認識到,我國高端數控技術的研究開發,尤其是在產業化方面的技術水平現狀與我國的現實需求還有較大的差距。雖然從縱向看我國的發展速度很快,但橫向比(與國外對比)不僅技術水平有差距,在某些方面發展速度也有差距,即一些高精尖的數控裝備的技術水平差距有擴大趨勢。從國際上來看,對我國數控技術水平和產業化水平估計大致如下。
a.技術水平上,與國外先進水平大約落後10~15年,在高精尖技術方面則更大。
b.產業化水平上,市場佔有率低,品種覆蓋率小,還沒有形成規模生產;功能部件專業化生產水平及成套能力較低;外觀質量相對差;可靠性不高,商品化程度不足;國產數控系統尚未建立自己的品牌效應,用戶信心不足。
c.可持續發展的能力上,對競爭前數控技術的研究開發、工程化能力較弱;數控技術應用領域拓展力度不強;相關標准規范的研究、制定滯後。
分析存在上述差距的主要原因有以下幾個方面。
a.認識方面。對國產數控產業進程艱巨性、復雜性和長期性的特點認識不足;對市場的不規范、國外的封鎖加扼殺、體制等困難估計不足;對我國數控技術應用水平及能力分析不夠。
b.體系方面。從技術的角度關注數控產業化問題的時候多,從系統的、產業鏈的角度綜合考慮數控產業化問題的時候少;沒有建立完整的高質量的配套體系、完善的培訓、服務網路等支撐體系。
c.機制方面。不良機製造成人才流失,又制約了技術及技術路線創新、產品創新,且制約了規劃的有效實施,往往規劃理想,實施困難。
d.技術方面。企業在技術方面自主創新能力不強,核心技術的工程化能力不強。機床標准落後,水平較低,數控系統新標准研究不夠。
3 對我國數控技術和產業化發展的戰略思考
3.1 戰略考慮
我國是製造大國,在世界產業轉移中要盡量接受前端而不是後端的轉移,即要掌握先進製造核心技術,否則在新一輪國際產業結構調整中,我國製造業將進一步「空芯」。我們以資源、環境、市場為代價,交換得到的可能僅僅是世界新經濟格局中的國際「加工中心」和「組裝中心」,而非掌握核心技術的製造中心的地位,這樣將會嚴重影響我國現代製造業的發展進程。
我們應站在國家安全戰略的高度來重視數控技術和產業問題,首先從社會安全看,因為製造業是我國就業人口最多的行業,製造業發展不僅可提高人民的生活水平,而且還可緩解我國就業的壓力,保障社會的穩定;其次從國防安全看,西方發達國家把高精尖數控產品都列為國家的戰略物質,對我國實現禁運和限制,「東芝事件」和「考克斯報告」就是最好的例證。
3.2 發展策略
從我國基本國情的角度出發,以國家的戰略需求和國民經濟的市場需求為導向,以提高我國製造裝備業綜合競爭能力和產業化水平為目標,用系統的方法,選擇能夠主導21世紀初期我國製造裝備業發展升級的關鍵技術以及支持產業化發展的支撐技術、配套技術作為研究開發的內容,實現製造裝備業的跨躍式發展。
強調市場需求為導向,即以數控終端產品為主,以整機(如量大面廣的數控車床、銑床、高速高精高性能數控機床、典型數字化機械、重點行業關鍵設備等)帶動數控產業的發展。重點解決數控系統和相關功能部件(數字化伺服系統與電機、高速電主軸系統和新型裝備的附件等)的可靠性和生產規模問題。沒有規模就不會有高可靠性的產品;沒有規模就不會有價格低廉而富有競爭力的產品;當然,沒有規模中國的數控裝備最終難以有出頭之日。
在高精尖裝備研發方面,要強調產、學、研以及最終用戶的緊密結合,以「做得出、用得上、賣得掉」為目標,按國家意志實施攻關,以解決國家之急需。
在競爭前數控技術方面,強調創新,強調研究開發具有自主知識產權的技術和產品,為我國數控產業、裝備製造業乃至整個製造業的可持續發展奠定基礎。
參考文獻:
〔1〕 中國機床工具工業協會 行業發展部.CIMT2001巡禮〔J〕.世界製造技術與裝備市場,2001(3):18-20.
〔2〕 梁訓王宣 ,周延佑.機床技術發展的新動向〔J〕.世界製造技術與裝備市場,2001(3):21-28.
〔3〕 中國機床工具工業協會 數控系統分會.CIMT2001巡禮〔J〕.世界製造技術與裝備市場,2001(5):13-17.
〔4〕 楊學桐,李冬茹,何文立,等?距世紀數控機床技術發展戰略研究〔M〕.北京:國家機械工業局,2000.
對中國製造業信息化的戰略思考
伴隨中國加入WTO和經濟全球化,中國正在成為世界製造業的中心。中國的製造業企業面臨更加激烈的國際國內市場競爭,如何迅速提高企業的核心競爭力,很重要的一點,就是加快企業的信息化進程。 製造業信息化作為國民經濟和社會信息化的核心,我國政府給予了高度的重視。國家科技部已正式啟動製造業信息化重大專項,將投資八個億大力推進製造業信息化關鍵技術研究及應用示範工程。 從八十年代中期企業逐步開始應用CAD軟體,到國家在九十年代實施CAD應用工程,到企業廣泛應用財務軟體,我國的製造業企業在實施信息化的道路上已經度過了近二十年時間,取得了很多經驗和教訓。本文將對中國製造業企業在實施信息化過程中的深層次的戰略問題進行深入的剖析,以幫助製造業企業能夠在信息化的道路上少走彎路,使信息技術能夠真正為企業經營服務,成為企業發展的原動力。 二.構成製造業信息化價值鏈的基本要素 國家和地方主管部門、製造業企業、咨詢服務企業、系統軟體供應商、製造業應用軟體供應商、電腦與外設供應商、網路產品供應商、渠道與代理商和軟體及系統集成商,是構成製造業信息化價值鏈的基本要素。製造業信息化價值鏈的每個基本要素之間都是相互聯系、相互作用、相互影響的。每個環節出問題,都可能導致製造業信息化工程的失敗。 圖1 製造業信息化的價值鏈 1.國家和地方主管部門是製造業信息化工程的管理者和推動者,其職責是: 1)負責對國家和地方的信息化工作進行宏觀引導與管理。 2)負責制定政策,實施項目和計劃,以點帶面,重點扶持,樹立樣板,推動信息化應用工程的發展。 3)負責推廣先進的信息技術。 4)負責建立和維護公正的市場秩序和競爭機制,保證各個基本要素實現多贏。 2.製造業企業是信息化的最終客戶,是主體,其他要素都是為這個客戶服務的。 每個製造業企業,都需要根據自己的行業、規模、發展階段、管理體制,來選擇個性化的信息化解決方案。要實施好信息化工程,企業必須注意以下問題: 1)企業領導必須對信息化建立基本的認識,必須認識到,信息化是一個工具,是一種手段,需要為我所用,為企業的發展服務。 2)信息化是首長工程,企業領導必須把它當作一個企業發展的戰略任務來抓,必須真抓實干。 3)信息化是一個復雜的系統工程,企業必須把信息化作為一個長期的分階段實施的大項目來進行科學地管理。在項目實施前,必須對信息化工程這個大項目的實施所要解決的問題、每個階段的目標、項目的人員組織、成本、考核標准進行計劃。在實施過程中,必須進行監控,必須對每一個階段的實施成果進行評估和分析。信息化工程這一關繫到企業生死存亡的項目的成功實施,必須滿足項目成功的三個基本條件,即實施周期、實施成本和實施效果。 4)任何一個試圖提高效率、降低成本的革新,一開始總是會降低效率、提高成本。企業這個大系統需要一段時間的適應,才能把革新的成果融入企業,信息化工程也不例外。因此,對信息化過程中的困難和問題,製造業企業應有客觀、理智的認識,企業領導要敢於冒有準備的風險。 5)信息化工程的關鍵,是企業能夠在咨詢服務商或者軟體公司的幫助下,弄清自己的需求。信息化軟體實際上是企業管理思想和理念的一種載體,如果軟體本身所包含的管理思想和理念與製造業企業相沖突,信息化工程是不可能成功的。因此,企業需要有既懂管理,又能夠清晰地描述自身企業的管理模式與信息化需求,並能夠與咨詢公司或軟體企業進行交流和配合的管理人才隊伍。 6)軟體既然是一種工具,就必須有能夠熟練使用這種工具的人。因此,企業需要培訓一批能夠熟練軟體的應用人才隊伍。 7)隨著技術的發展,軟體的應用平台日趨復雜。因此,企業需要有熟練掌握計算機硬體、網路和資料庫的維護人才,確保系統正常運行。在國外,越來越多的企業將這類工作外包給專業的軟體服務和集成商。 8)信息化建設需要消耗相當大的資金,因此,企業要充分考慮資金的獲取渠道與方式,做好預算與成本控制,避免信息化工程因為資金問題而中途夭折。 3.咨詢服務企業是製造業信息化的樞紐,其職責是: 1)幫助企業進行信息化需求的診斷和分析,制定製造業企業信息化的總體規劃。 2)幫助企業進行信息化軟體、硬體和系統集成方案的選型、實施與監理。 3)幫助企業進行多層次信息化人才的培訓。 4)不斷跟蹤和研究製造業信息化領域的技術、市場、產品和服務的發展變化趨勢,深入企業進行調查研究,為製造業企業推薦最合適的信息化解決方案。 4.製造業軟體企業是製造業信息化的工具製造商,其職責是: 1)提供能夠滿足製造業企業功能需求,能夠在企業的計算機和網路平台安全、可靠運行,並能實現與其它應用軟體集成的軟體產品。 2)軟體產品應具備先進性、實用性、可靠性、兼容性、開放性、易學易用性等特性。 3)為製造業提供軟體產品的安裝、培訓與服務。其中服務包含軟體實施、軟體升級、客戶化開發、解決應用中的問題等。 5.軟體服務和集成商是製造業信息化的橋梁,其職責是: 1)幫助企業進行信息化軟體的客戶化開發、培訓和系統升級。 2)幫助企業實現不同應用系統的信息集成。 3)幫助企業維護整個信息系統,並解決信息備份、信息安全問題。 6.電腦與外設供應商、網路產品供應商和系統軟體供應商組成了製造業信息化的基礎的、與具體應用無關的平台。該平台必須保證整個信息化系統運行的可靠性、安全性和兼容性。 7.渠道與代理商負責幫助產品供應商進行產品的銷售、服務與技術支持。大多數硬體與網路供應商和系統軟體供應商以分銷和渠道銷售為主;而製造業應用軟體公司則主要採用直銷,自主從事產品的銷售、服務和技術支持工作。 三.決定製造業信息化工程成敗的關鍵因素 製造業信息化的價值鏈中的各個環節都是決定信息化工程成敗的因素,而其中,政府主管部門、咨詢服務體系和製造業軟體企業,是最重要的因素。 首先,政府主管部門對於整個價值鏈的影響是巨大的,政府主管部門制定的政策如何、導向如何,對製造業信息化工程的成功至關重要。 在「九五」期間,國家科技部提出的CAD應用工程,就順應了當時的企業信息化狀況,帶動了一大批企業甩掉圖板,使用CAD軟體,使企業真正嘗到了信息化的甜頭,激發了企業實現信息技術深化應用的熱情。反之,有些地方和行業的主管部門,在推進信息化的過程中,採取了計劃經濟時代的一些地方保護、行業壟斷等做法,規定企業只能用某某產品、某某軟體,這就不利於信息技術的推廣應用。 第二,在製造業信息化工程實施的過程中,有沒有咨詢服務企業的參與,參與的程度與方式如何,也是導致信息化成功的關鍵因素。 許多製造業企業在實施信息化工程時,考慮得比較多的是建網路、買軟體和硬體,在購買前看演示時令人眼花繚亂的好功能,到了企業就是用不起來,數據格式不兼容、借口連不上等問題隨著而來。有的企業甚至成了「軟體展示廳」,買了一大堆軟體,但還是一個混合物,沒有真正實現「化合」,沒有真正集成起來。究其原因,就是沒有引進咨詢服務企業,進行認真、仔細的需求分析,缺乏有實際指導意義的總體規劃和實施及集成方案。 另一方面,咨詢服務業在中國還處於起步階段,還比較缺乏專業性的製造業信息化咨詢企業,高校的專家、教授和研究生是從事咨詢服務的主要力量。他們的優勢是對國內外先進技術和發展趨勢進行跟蹤研究,但是往往缺乏在企業工作和實施項目的實際經驗。 不少製造業軟體企業除了為製造業企業提供應用軟體之外,實際上也扮演了咨詢服務的角色。企業常常要求製造業軟體公司為企業制定信息化方案,甚至進行軟體與系統集成等。但是,由於製造業軟體企業是以賣自己的軟體為目的,所以免不了王婆賣瓜,少數軟體甚至用一些模糊、錯誤的概念來誤導製造業企業。因此,製造業信息化呼喚專業、獨立、中立的咨詢服務企業,來真正站在企業的角度,制定合理的製造業信息化解決方案。 武漢市製造業信息化工程技術研究中心於2002年1月成立,它是在製造業信息化工程深化實施的過程中應運而生的,在全國首創了由政府引導、高校和企業投資、市場化運作的新型運作模式。工程中心致力於通過深入的研究,來為不同行業、不同規模、不同體制和不同發展階段的製造業企業推薦最優化、最佳性能價格比的解決方案,使企業通過實現信息化,真正提升自己的核心競爭力和創新能力、顯著降低成本,獲得顯著的經濟和社會效益,避免信息化投資的失誤。 第三,製造業應用軟體的選型、實施、客戶化開發與信息集成,也是製造業信息化工程成功與否的關鍵環節。 目前,我國的製造業企業沒有執行統一的標准。許多企業採用行業標准、甚至是企業標准。連標准化程度最高的產品設計過程,也存在許多不同的要求,例如明細表的書寫方式等。在後續的工藝編制環節,則根據企業的產品、行業的特點不同,需求差別更大。有的以裝配工藝為主,有的以機加工工藝為主,有的以焊接工藝為主等。企業生成各種清單、報表的方式以及編碼方式也是五花八門,各不相同。 企業的管理模式則差別更大,一些傳統的大型製造業企業以縱向一體化為主,在整個企業集團建立了嚴格的分工,建立了內部的供應鏈,如一汽。而在一些民營經濟發達的地區,如浙江、江蘇、廣東等地,則建立了橫向一體化,形成了外部的供應鏈,如廣東南海的鋁行材供應鏈、重慶的摩托車供應鏈和浙江永康的小五金供應鏈等。不同的企業生產組織方式、產品特點、營銷模式、采購方式不同,形成了不同的管理模式,因此,不可能用一種類型的管理軟體來適應所有的企業。對於流程型企業,如石油、化工、鋼鐵企業,所使用的管理軟體與離散型製造業又有根本的區別。 製造業的內部管理環節眾多,差別巨大,因此,應用軟體的選型、客戶化開發和信息集成十分關鍵。每個應用軟體都有不同的市場定位