QRS你好,整理的1000份機械課設畢設,你說的裡面有的,直接用就行T
⑵ 傳動裝置的分類
汽車傳動系可按能量傳遞方式的不同,劃分為機械傳動、液力傳動、液壓傳動、電傳動等。
汽車傳動系按照結構和傳動介質分,其型式有機械式、液力機械式、靜液式(容積液壓式)、電力式等。
機械式傳動系常見布置型式主要與發動機的位置及汽車的驅動型式有關。可分為:
1.前置後驅—FR:即發動機前置、後輪驅動
這是一種傳統的布置型式。國內外的大多數貨車、部分轎車和部分客車都採用這種型式。
2.後置後驅—RR:即發動機後置、後輪驅動
在大型客車上多採用這種布置型式,少量微型、輕型轎車也採用這種型式。發動機後置,使前軸不易過載,並能更充分地利用車箱面積,還可有效地降低車身地板的高度或充分利用汽車中部地板下的空間安置行李,也有利於減輕發動機的高溫和雜訊對駕駛員的影響。缺點是發動機散熱條件差,行駛中的某些故障不易被駕駛員察覺。遠距離操縱也使操縱機構變得復雜、維修調整不便。但由於優點較為突出,在大型客車上應用越來越多。
3.前置前驅—FF:發動機前置、前輪驅動
這種型式操縱機構簡單、發動機散熱條件好。但上坡時汽車質量後移,使前驅動輪的附著質量減小,驅動輪易打滑;下坡制動時則由於汽車質量前移,前輪負荷過重,高速時易發生翻車現象。大多數轎車採取這種布置型式。
4.越野汽車的傳動系
越野汽車一般為全輪驅動,發動機前置,在變速箱後裝有分動器將動力傳遞到全部車輪上。輕型越野汽車普遍採用4×4驅動型式,中型越野汽車採用4×4或6×6驅動型式;重型越野汽車一般採用6×6或8×8驅動型式。
⑶ 傳動系統的類型
機械傳動系統包括離合器、變速器、萬向傳動裝置、驅動橋以及分動器。機械傳動系統:是機床組成的重要部分,主要是由滾珠絲杠進行傳動的,滾珠絲杠在傳動過程中絲杠和運動軸是一體的,在日本MAZAK也有機床是用電機作為傳動的。機械傳動的作用:機械傳動的作用是傳遞運動和力,常用機械傳動系統的的類型有齒輪傳動、蝸輪蝸桿傳動、帶傳動、鏈傳動、輪系等。齒輪傳動:齒輪傳動是依靠主動齒輪依次撥動從動齒輪來實現的,其基本要求之一是其瞬時角速度之比必須保持不變。齒輪傳動的分類:齒輪傳動的類型較多,按照兩齒輪傳動時的相對運動為平面運動或空間運動,可將其分為平面齒輪傳動和空間齒輪傳動兩大類直齒圓柱齒輪輪齒的初始接觸處是跨過整個齒面而伸展開來的線。斜齒輪輪齒的初始接觸是一點,當齒進入更多的嚙合時,它就變成線。在直齒圓柱齒輪中,接觸是平行於回轉軸線的。在斜齒輪中,該線是跨過齒面的對角線
⑷ 帶式輸送機傳動裝置設計
一、帶式輸送機傳動裝置,可伸縮膠帶輸送機與普通膠帶輸送機的工作原理一樣,是以膠帶作為牽引承載機的連續運輸設備,不過增加了儲帶裝置和收放膠帶裝置等,當游動小車向機尾一端移動時,膠帶進入儲帶裝置內,機尾回縮;反之則機尾延伸,因而使輸送機具有可伸縮的性能。
二、設計安裝調試:
1.輸送機的各支腿、立柱或平台用化學錨栓牢固地固定於地面上。
2.機架上各個部件的安裝螺栓應全部緊固。各托輥應轉動靈活。托輥軸心線、傳動滾筒、改向滾筒的軸心線與機架縱向的中心線應垂直。
3.螺旋張緊行程為機長的1%~1.5%。
4.拉繩開關安裝於輸送機一側,兩開關間用覆塑鋼絲繩連接,松緊適度。
5.跑偏開關安裝於輸送機頭尾部兩側,成對安裝。開關的立輥與輸送帶帶邊垂直,且保證帶邊位於立輥高度的1/3處。立輥與輸送帶邊緣距離為50~70mm。
6.各清掃器、導料槽的橡膠刮板應與輸送帶完全接觸,否則,調節清掃器和導料槽的安裝螺栓使刮板與輸送帶接觸。
7.安裝無誤後空載試運行。試運行的時間不少於2小時。並進行如下檢查:
(1)各托輥應與輸送帶接觸,轉動靈活。
(2)各潤滑處無漏油現象。
(3)各緊固件無松動。
(4)軸承溫升不大於40°C,且最高溫度不超過80°C。
(5)正常運行時,輸送機應運行平穩,無跑偏,無異常噪音。
⑸ 工業機器人常用的傳動裝置有哪一些類型
工業機器人常用的傳動裝置:軸承、齒輪、減速器、帶傳動、纜繩
軸承作用:支撐機械旋轉體,用以降低設備在傳動過程中的機械載荷摩擦系數,影響著機器人運轉平穩性,重復定位精度,動作精確度。
直齒輪或斜齒輪作用:為機器人提供了密封的、維護成本低的動力傳遞,它們應用於機器人手腕;
大直徑的轉盤齒輪作用:用於大型機器人的基座關節,用以提供高剛度來傳遞高轉矩;
雙齒輪驅動作用:被用來提供主動的預緊力,常被應用於大型龍門式機器人和軌道機器人;
蝸輪蝸桿作用:被應用於低速機器人或機器人的末端執行器中。
行星齒輪作用:降低轉速增大扭矩和降低負載/電機的轉動慣量比,常應用於伺服電機、步進電機與直流電機等傳動系統;
減速器:減速機是工業機器人三大重要構件之一。
同步帶傳動作用:常用於兩個減速機之間,同步帶傳動的帶輪和傳動帶之間沒有相對滑動,能夠保證嚴格的傳動比。
纜繩作用:使驅動器布置在機器人機座附近,從而提高動力學效率,多用於多關節柔性手爪。
⑹ Z型傳動船舶模型的生產廠家有哪些
No
⑺ x向線性馬達和z向線性馬達的區別
1、運動方式不同
X向線性馬達就是橫向運動,而Z向線性馬達的中間有個磁柱,其中的"動子"沿著磁柱上下運動。
2、提供的動力不同
X向線性馬達提供的動力比X向線性馬達更為強勁。
(7)z型傳動裝置擴展閱讀:
線性馬達的優點有以下幾個方面:
1、適合高速直線運動,直線電機由於初級和次級之間無接觸,所以沒有摩擦,也不會有離心力約束,所以傳動時能有更高的動能轉換效率。
2、反應更快,普通電機要完成直線運動必須依靠傳動裝置進行轉換,其中有摩擦等因素造成能量損失和反應遲鈍。直線電機不需要傳動裝置進行轉換,直接提供直線動能,所以反應更快。
3、壽命更長,其避免了運動部件間的直接接觸,大大降低了損耗,所以其壽命更長。
線性馬達由於其優越性,所以在手機上能夠提供更為復雜的運動,配合手機模擬各種復雜的運動觸感,給使用者帶來更好的沉浸感。
⑻ z型推進器是怎麼回事
全回轉推進器又稱Z 形推進器、全向推進器、舵推進器、轉向螺旋槳、旋迴螺旋槳。通過傘齒輪系統傳動機構使螺旋槳或導管推進器能在水平面內繞豎軸作360°轉動,用以推進並操縱船舶的推進器。因其軸系布置呈Z 字形,可同時起推進和操縱船舶的作用。能任意改變推力的方向,使船原地調頭,進退自如。對於船舶航行時左右前後的操縱性,360°回轉推進器較導管推進器和平旋推進器為好,這是因為導管推進器雖然順車時推力較大,但在倒車時推力較差,操縱性能也不夠理想;反之,平旋推進器可以獲得良好的操縱性能,但機構復雜,造價高,易損壞;而360°回轉推進器盡管沒有舵,但卻可以使螺旋槳的推力完全轉換為相當於舵力的作用,以利操縱船舶,而且360°回轉推進器單位功率推力大,而且後退推力和前進推力基本相同。這種推進裝置可在車間中整個組裝完成,不需水下作業,安裝及維修十分方便。但因傳動機構和大轂徑帶來較大的損失,其效率一般較低,而且機構復雜,造價高。常用於對操縱性要求很高的船,如渡船等。
⑼ 傳動裝置都有哪些作用
汽車傳動系的基本功能就是將發動機發出的動力傳給驅動車輪。它的首要任務就是與汽車發動機協同工作,以保證汽車能在不同使用條件下正常行駛,並具有良好的動力性和燃油經濟性,為此,汽車傳動系都具備以下的功能:
1、減速和變速:
我們知道,只有當作用在驅動輪上的牽引力足以克服外界對汽車的阻力時,汽車才能起步和正常行駛。由實驗得知,即使汽車在平直得瀝青路面上以低速勻速行駛,也需要克服數值約相當於1.5%汽車總重力得滾動阻力。以東風EQ1090E型汽車為例,該車滿載總質量為9290kg(總重力為91135N),其最小滾動阻力約為1367N。若要求滿載汽車能在坡度為30%的道路上勻速上坡行駛,則所要克服的上坡阻力即達2734N。東風EQ1090E型汽車的6100Q-1發動機所能產生的最大扭距為353Nm(1200-1400rpm)。假設將這以扭距直接如數傳給驅動輪,則驅動輪可能得到的牽引力僅為784N。顯然,在此情況下,汽車不僅不能爬坡,即使在平直的良好路面上也不可能勻速行駛。
另一方面,6100Q-1發動機在發出最大功率99.3kW時的曲軸轉速為3000rpm。假如將發動機與驅動輪直接連接,則對應這一曲軸轉速的汽車速度將達510km/h。這樣高的車速既不實用,也不可能實現(因為相應的牽引力太小,汽車根本無法啟動)。
2、減速作用:
為解決這些矛盾,必須使傳動系具有減速增距作用(簡稱減速作用),亦即使驅動輪的轉速降低為發動機轉速的若干分之一,相應地驅動輪所得到的扭距則增大到發動機扭距的若干倍。
汽車的使用條件,諸如汽車的實際裝載量、道路坡度、路面狀況,以及道路寬度和曲率、交通情況所允許的車速等等,都在很大范圍內不斷變化。這就要求汽車牽引力和速度也有相當大的變化范圍。對活塞式內燃機來說,在其整個轉速范圍內,扭距的變化范圍不大,而功率的及燃油消耗率的變化卻很大,因而保證發動機功率較大而燃油消耗率較低的曲軸轉速范圍,即有利轉速范圍很窄。為了使發動機能保持在翻譯公司有利轉速范圍內工作,而汽車牽引力和速度有能在足夠大的范圍內變化,應當使傳動系傳動比(所謂傳動比就是驅動輪扭距與發動機扭距之比以及發動機轉速與驅動輪轉速之比)能在最大值與最小值之間變化,即傳動系應起變速作用。
3、差速作用
當汽車轉彎行駛時,左右車輪在同一時間內滾過的距離不同,如果兩側驅動輪僅用以根剛性軸驅動,則二者角速度必然相同,因而在汽車轉彎時必然產生車輪相對於地面滑動的現象。這將使轉向困難,汽車的動力消耗增加,傳動系內某些零件和輪胎加速磨損。所以,我們需要在驅動橋內裝置具有差速作用的部件——差速器,使左右兩驅動輪可以以不同的角速度旋轉。
⑽ 萬向傳動裝置的工作原理
萬向節即萬向接頭,是實現變角度動力傳遞的機件,用於需要改變傳動軸線方向的位置,它是汽車驅動系統的萬向傳動裝置的 「關節」部件。萬向節與傳動軸組合,稱為萬向節傳動裝置。萬向傳動裝置一般由萬向節和傳動軸組成,有時還要有中間支承,主要用於以下一些位置: 1-萬向節;2-傳動軸;3-前傳動軸;4-中間支承。在萬向節配合中,一個零部件(輸出軸)繞自身軸的旋轉是由另一個零部件萬向節(輸入軸)繞其軸的旋轉驅動的。
按萬向節在扭轉方向上是否有明顯的彈性可分為剛性萬向節和撓性萬向節。剛性萬向節又可分為不等速萬向節(常用的為十字軸式)、准等速萬向節(如雙聯式萬向節)和等速萬向節(如球籠式萬向節)三種。 萬向節連接的兩軸夾角大於零時,輸出軸和輸入軸之間以變化的瞬時角速度比傳遞運動,但平均角速度相等的萬向節。
十字軸式剛性萬向節由萬向節叉、十字軸、滾針軸承、油封、套簡、軸承蓋等件組成。工作原理為:轉動叉中之一則經過十字軸帶動另一個叉轉動,同時又可以繞十字軸中心在任意方向擺動。轉動過程中滾針軸承中的滾針可自轉,以便減輕摩擦。與輸入動力連接的軸稱輸入軸(又稱主動軸),經萬向節輸出的軸稱輸出軸(又稱從動軸)。在輸入、輸出軸之間有夾角的條件下工作,兩軸的角速度不等,並因此會導致輸出軸及與之相連的傳動部件產生扭轉振動和影響這些部件的壽命。 指在設計的角度下以相等的瞬時角速度傳遞運動,而在其他角度下以近似相等的瞬時角速度傳遞運動的萬向節。它又分為:
a)雙聯式准等速萬向節。指該萬向節等速傳動裝置中的傳動軸長度縮短到最小時的萬向節。
b)凸塊式准等速萬向節。由兩個萬向節又和兩個不同形狀的凸塊組成。其中兩凸塊相當於雙聯萬向節裝置中的中間傳動軸及兩十字銷。
c)三銷軸式准等速萬向節。由兩個三銷軸,主動偏心軸叉,從動偏心軸叉組成。
d)球面滾輪式准等速萬向節。由銷軸、球面滾輪、萬向節軸和圓筒組成。滾輪可在槽內做軸向移動,起到伸縮花鍵作用。滾輪與槽壁接觸可傳遞轉矩。 萬向節所連接的輸出軸和輸入軸以始終相等的瞬時角速度傳遞運動的萬向節。它又分為:
a)球叉式等速萬向節。由有滾道的球叉和鋼球組成的萬向節。而其中的圓弧槽滾道型球叉式萬向節是指球義上的鋼球滾道為圓弧型的萬向節。其節結構特點是在球叉的主動叉和從動叉上做有圓弧凹槽,兩者裝合後形成四個鋼球滾道,滾道內共容納4個鋼球。定心鋼球裝在主、從動叉中心的球形凹槽內。直槽滾道型球叉式萬向節是指球叉上的鋼球滾道為直槽滾道型的萬向節。它的結構特點是在兩個球叉上做有直槽,各直槽與軸的中心線相傾斜,且傾斜的角度相同並彼此對稱。於兩個球叉之間的滾道內裝有4個鋼球。
b)球籠式等速萬向節。根據萬向節軸向能否運動,又可區分為軸向不能伸縮型(固定型)球籠式萬向節和可伸縮型球籠式萬向節。結構上固定型球籠式萬向節的星形套的內表面以內花鍵與傳動軸連接,它的外表面制有6個弧形凹槽作為鋼球的內滾道,外滾道做在球形殼的內表面上。星形套與球形殼裝合後形成的6個滾道內各裝1個鋼球,並由保持架(球籠)使6個鋼球處於同一平面內。動力由傳動軸經鋼球、球形殼傳出(圖2)。可伸縮型球籠式萬向節的結構特點是於筒形殼的內壁和星形套的外部做有圓柱形直槽,在兩者裝合後所形成的滾道內裝有鋼球。鋼球同時也裝在保持架的孔內。星形套內孔做有花鍵用來與輸入軸連接。這一結構允許星形套與簡形殼相對在軸向方向移動。 傳動軸(drive shaft)萬向傳動裝置的傳動軸中能夠傳遞動力的軸。傳動軸除去傳遞動力以外,有些傳動軸長度可以伸縮,用來防止在所連接兩軸之間有距離變化時產生運動干涉。
汽車行駛過程中,變速器與驅動橋的相對位置經常變化,為避免運動干涉,傳動軸用由滑動叉和花鍵軸組成的滑動花鍵連接,以適應傳動軸長度的變化。為減少磨損,還裝有用以加註滑脂的滑脂嘴,油封,堵蓋和防塵套。
傳動軸在高速旋轉時,由於質量不均勻引起的離心力將使傳動軸發生劇烈震動。因此當傳動軸與萬向節裝配後必須進行動平衡。
中間支承(mid-support) 傳動軸過長時需在中間斷開,並將它們通過支承裝置支持在車架(身)上的機構。
中間支承安裝在車架橫梁或車身底架上,要求它具有能補償傳動軸的安裝誤差功能,及適應行駛中由於發動機的彈性懸置引起的發動機竄動和車架變形引起的位移功能。同時其中橡膠彈性元件還有吸收傳動軸振動、降低雜訊及承受徑向力的功能。中間支承由橡膠彈性元件、軸承等組成。由於蜂窩形橡膠墊有彈性,可滿足補償安裝誤差和行駛中發動機竄動和車架變形引起的位移作用。有的中間支承採用雙列圓錐滾子軸承。
傳動軸分段時需加中間支撐。通常中間支撐安裝在車架橫樑上,應能補償傳動軸軸向和角度方向的安裝誤差以及車輛行駛過程中由於發動機竄動或車架等變形所引起的位移。