導航:首頁 > 裝置知識 > 自由基聚合反應實驗裝置

自由基聚合反應實驗裝置

發布時間:2022-07-22 06:07:20

㈠ 請各位指導一下天然橡膠塑煉的具體步驟,以及所需要的助劑

生膠的塑煉混煉工藝
§11.1 生膠的塑煉原理
一.塑煉的定義
通過機械應力、熱、氧或加入某些化學試劑等方式,使橡膠由強韌的高彈性狀態轉變為柔軟的塑性狀態的過程。
塑性(可塑性):橡膠在發生變形後,不能恢復其原來狀態,或者說保持其變形狀態的性質。
二.塑煉的目的和要求
1.塑煉的目的
減小彈性,提高可塑性;降低粘度;改善流動性;提高膠料溶解性和成型粘著性。
2.塑煉膠的質量要求
(1)可塑度要適當
應滿足加工工藝要求,在此基礎上應具有最小的可塑性。過度塑煉會降低硫化膠的強度、彈性、耐磨性等,而且會增加動力消耗。
塑煉程度:根據混煉膠工藝性能和製品性能的要求來確定。
如:供膠、浸膠、刮膠、擦膠和製造海綿等用途的膠料,要求的可塑度較大,生膠的塑煉程度要高些。供模壓用的膠料,則要求可塑性宜小。
一般:膠管外層膠可塑度:0.3~0.35;
膠管內層膠: 0.25~0.3;
胎面膠: 0.22~0.24;
胎側膠 0.35左右;
海綿膠 0.5~0.6
(2)塑煉均勻
三.生膠的增塑方法和原理
(一)增塑方法
(二)塑煉原理
生膠的分子量與可塑性有著密切的關系。分子量越小,可塑性就越大。生膠經過機械塑煉後,分子量降低,粘度下降,可塑性增大。由此可見,生膠在塑煉過程中,可塑性的提高是通過分子量的降低來實現的。
η0—聚合物熔體的最大粘度;A—特性常數;MW—聚合物的重均分子量
1.機械塑煉過程機理
在低溫下:在機械力作用下首先切斷橡膠大分子鏈生成大分子自由基。
(機械力引發橡膠大分子的斷鏈,氧作為自由基接受體,起著阻斷自由基的作用。)
在高溫下:機械力切斷橡膠大分子生成自由基的幾率減少。橡膠大分子在機械力的活化作用下,氧引發橡膠大分子的斷鏈。
(機械力起到應力活化作用,氧作為自由基引發體,引發橡膠大分子的斷鏈。)
鏈終止:橡膠氫過氧化物不穩定,分解生成較小的大分子,連鎖反應終止。
2.影響塑煉的因素:
(1)機械力的作用
根據理論分析,機械力對橡膠分子的斷鏈作用,可表示為:
式中 ρ—分子鏈斷鏈的幾率;K1、K2—常數;E—分子鏈的化學鍵能;F0—作用於分子鏈上的力;δ—分子鏈斷鏈時伸長長度;F0 δ—分子鏈斷鏈時消耗的機械功;
低溫塑煉要求盡可能地降低輥溫和膠溫。
(2)氧的作用
實驗證明,生膠結合0.03%的氧就能使分子量減少50%;結合0.5%的氧,分子量由10萬降到5000。生膠塑煉時,隨著塑煉時間的延長,橡膠質量和丙酮抽出物(其中含有氧化合物)的含量不斷增加,可見氧在塑煉過程中與橡膠分子起了某種加成作用,參與了橡膠的化學反應。
(3)溫度的作用
存在雙重影響:低溫區(<110℃),隨著溫度升高,塑煉效果下降。——機械力作用
高溫區(>110℃),隨著溫度升高,塑煉效果提高。——氧的氧化作用
(4)靜電作用
塑煉過程中,膠料受到強烈的摩擦作用產生靜電。靜電積累產生放電現象,使空氣中的氧活化變為原子態氧和臭氧,加速橡膠分子的氧化斷鏈作用。
(5)化學塑解劑
a.接受型塑解劑(低溫塑解劑):苯硫酚、五氯硫酚等。
b.引發型塑解劑(高溫塑解劑):過氧化苯甲醯(BPO)、偶氮二異丁腈(AIBN)等。
c.混合型塑解劑(鏈轉移型塑解劑):促進劑M、DM和2,2』-二苯甲醯胺二苯基二硫化物等。
§11.2 可塑性的測定方法
生膠和混煉膠可塑度的測定通常有三種方法:壓縮法、旋轉扭力法和壓出法。它們均需在恆溫下進行,因為可塑度隨溫度變化而變化。
一.壓縮法
這種類型的測定方法常用的有:威廉氏法、華萊氏快速可塑度法和德弗可塑度法三種。
1.威廉氏法(Williams)
在恆溫、定負荷下,經過一定時間後根據試樣高度的變化來評定可塑度。將Φ=16mm,h0=10mm的圓柱試樣在T=70±1℃或100±1℃下預熱3min,壓縮3min,除去負荷取出試樣在室溫下恢復3min,測量試樣高度的壓縮變形量及去掉負荷後的變形量,計算可塑度P。
h0 —試樣原始高度,mm;h1—試樣壓縮3min後的高度,mm;h2—恢復3min後的高度,mm
如果試樣為絕對流體,即h1=h2=0,P=1;
若試樣為絕對彈性體,即h2=h0,P=0;
生膠和混煉膠為粘彈體,它們的可塑度在0~1之間,數值越大表示可塑性越大。
2.華萊氏(Wallace)快速可塑度法
其原理與Williams法相同,以定溫、定負荷、定時間下膠片厚度的變化表示可塑度。
該法操作方便,多用於工業生產中作快速檢驗。
3.德弗法
以在定溫和定時間內試樣壓縮至規定高度時所需負荷值來表示。
二.旋轉扭力法—門尼(Mooney)粘度法
原理是:在一定溫度、時間和壓力下,根據試樣在活動面(轉子)與固定面(模腔)之間變形時所受扭力來確定膠料可塑度。
試驗時,將試樣按要求放入模腔里,在100℃下預熱1min,使轉子在2r/min速度轉動4min,所測的扭力值即為門尼粘度,一般用 表示,L表示用大轉子(直徑為38.1±0.03mm)。
門尼粘度法比壓縮法迅速簡便,且表示的動態流動性更接近於工藝實際情況。
三.壓出法
用毛細管流變儀來測定。
在一定溫度、壓力、口型下,於一定時間內用毛細管流變儀測定膠料的壓出速度,以每分鍾壓出的毫克數表示可塑度。
優點:此法與壓出機口型的工作狀況相似,可更具體地了解混煉膠可塑性對壓出性能的影響。
缺點:壓出法試樣需要較多的膠料,且試樣必須經較長時間預熱。
§11.3 塑煉方法及影響因素
一.准備工藝
1.烘膠
NR烘膠溫度一般在50~60℃,時間為24~36h,冬季加熱時間為36~72h。
CR烘膠溫度一般在24~40℃,時間為4~6h。
烘膠溫度不宜過高,否則會影響橡膠的物理機械性能。
2.切膠
用切膠機將生膠切成小塊,每塊重量視膠種而異,NR每塊10~20kg,CR每塊不超過10kg。
3.破膠
橡膠塊需用破膠機破膠,以便塑煉。破膠輥距一般為2~3mm,輥溫控制在45℃以下。
二.開煉機塑煉工藝
(一)開煉機塑煉的原理
開煉機的兩個輥筒以不同的轉速相對回轉,膠料放到兩輥筒間的上方,在摩擦力的作用下被輥筒帶入輥距中。由於輥筒表面的旋轉線速度不同,使膠料通過輥距時的速度不同而受到摩擦剪切作用和擠壓作用,膠料反復通過輥距而被塑煉。
(二)開煉機塑煉的工藝方法
1.包輥塑煉法
把膠片包在前輥上,讓其自然地反復過輥塑煉,直至達到規定的可塑度要求為止。
缺點:塑煉時間長,效率低,最終獲得的可塑度也較低。
又分為:一段塑煉:塑煉時間長,效率低,不適用於可塑度要求較高的生膠塑煉。
分段塑煉:包輥塑煉10~15min,下片、冷卻、停放4~8h後,再進行下一次塑煉,直至達到要求的可塑度為止。通常分為兩段塑煉和三段塑煉,具體依可塑度要求而定。
2.薄通塑煉法
輥距在1 mm以下,膠料通過輥距後不包輥而直接落到接膠盤,讓膠料返回到輥距上方重新通過輥距,這樣反復數次。
優點:膠料散熱快,冷卻效果較好,塑煉膠可塑度均勻,質量高,能達到任意的塑煉程度。
3.化學增塑塑煉法
採用化學塑解劑增加塑煉效果,提高塑煉生產效率並節約能耗。化學塑解劑應以母膠的形式使用,並應適當提高開煉機的輥溫。
(三)開煉機塑煉的影響因素
1.裝膠容量
裝膠容量取決於開煉機的規格,容量大,散熱困難,膠溫升高,降低塑煉效果;容量過小則降低生產效率。
合理的容量根據經驗公式計算:
Q—塑煉容量,L;K—經驗系數,取值一般為0.0065~0.0085,L/cm3;D—輥筒直徑,cm;L—輥筒工作部分長度,cm
合成橡膠塑煉時生熱大,裝膠容量應比NR少。
2.輥距
輥距越小,機械塑煉效果越明顯。薄通時實際使用輥距一般為0.5~1mm。
3.輥速和速比
輥距一定,提高開煉機的輥速或速比會增大膠料的機械剪切作用,從而提高機械塑煉效果。開煉機的速比一般在1.15~1.27之間。速比過大,升溫加快。
4.輥溫
輥溫低,塑煉效果好。輥溫過低容易造成設備超負荷而受到損害。塑煉溫度與生膠膠種有關,NR通常控制前輥溫度在45~55℃,後輥溫度在40~50℃為宜。
5.塑煉時間
在塑煉過程的最初10~15min,膠料的門尼粘度迅速降低,此後漸趨緩慢。
6.化學塑解劑
使用塑解劑能提高塑煉效果,縮短塑煉時間,減小彈性復原。使用化學塑解劑時,適當提高溫度會提高塑煉效果,塑煉溫度一般以70~75℃為宜。
塑解劑的用量,在NR中一般為生膠重量的0.1~0.3%,合成橡膠則應增大到2~3%。
三.密煉機塑煉工藝
優點:自動化程度高,生產效率高,節能,勞動強度低;
缺點:溫度高,冷卻困難,易過煉,出料為無定形狀,需要配備相應的壓片機。
(一)密煉機的工作原理
物料從加料斗加入密煉室後,加料門關閉,壓料裝置的上頂栓降落,對物料加壓。物料在上頂栓壓力及摩擦力的作用下,被帶入兩個具有螺旋棱、有速比的、相對回轉的兩轉子的間隙中,致使物料在由轉子與轉子,轉子與密煉室壁、上頂栓、下頂栓組成的捏煉系統內,受到不斷變化和反復進行的剪切、撕拉、攪拌和摩擦的強烈捏煉作用,從而達到塑煉的目的。
物料在密煉室中主要受到幾種作用:
1.轉子間及轉子與混煉室內壁間的作用;
2.轉子棱間的攪拌作用;
3.轉子軸向的往復切割作用。
(二)密煉機塑煉的工藝方法
密煉機塑煉的工藝方法有一次塑煉法、分段塑煉法和化學增塑塑煉法三種。

㈡ 採用什麼聚合工藝可以得分子量分布較窄的丙烯酸聚合物

一下你可以參考一下:
低分子量聚丙烯酸鈉的制備

低分子量聚丙烯酸鈉的合成主要有以下三種方法:①中和法;②聚合法;③皂化法。

1)中和法 中和法是指在引發劑和鏈轉移劑的作用下,丙烯酸在其水溶液中發生聚合反應,生成聚丙烯酸,然後用氫氧化鈉水溶液中和,生成聚丙烯酸鈉。

2)聚合法 聚合法是指先用氫氧化鈉水溶液中和單體丙烯酸,生成丙烯酸鈉單體,然後在引發劑的和鏈轉移劑的作用下,在水溶液中聚合,生成聚丙烯酸鈉:

3)皂化法 皂化法是指先由丙烯酸與甲醇反應生成丙烯酸甲酯,在引發劑和鏈轉移劑的作用下聚合為聚丙烯酸甲酯,再在聚丙烯酸甲酯的懸浮液或乳液中加入氫氧化鈉水溶液,並加熱至100℃維持幾個小時,(或者先與氫氧化鈉作用,再在引發劑何鏈轉移劑的作用下聚合)即可得聚丙烯酸鈉,副產品是烷基醇,可以用氣提法除去。由於這種方法工藝流程較長,還需要進一步除去副產物,因此在工業生產中應用不太多。

據文獻U.S.P4301266報道,採用APS引發劑體系,在異丙醇一水混合溶劑體系中,丙烯酸均聚合,可得分子量小於2x1護的低分子量聚丙烯酸。

國外有機分散劑產品的分散性能最好的為美國大洋公司的產品SN-5040。近年來,國內有機分散劑的開發應用比較活躍,其中北京的DC分散劑,上海的YH分散劑為開發較成功的產品。YH分散劑採用的工藝是:自由基水溶液聚合,異丙醇作鏈轉移劑,過硫酸按作引發劑,引發游離基的聚合反應,固含量為30-38%.,分散性能良好,但固含量太低,生產成本高。DC分散劑採用的工藝是:聚合、蒸餾(除去鏈轉移劑和水的混合物)、中和,其固含量雖達要求,但生產周期長,成本高。

上述傳統的生產工藝都是在比較高的溫度進行,並且要蒸餾回收大量的鏈轉移劑,操作費時、耗能。孫曉日以氧化還原催化劑在較低溫度下直接合成了低分子量聚丙烯酸鈉,經造紙廠實際應用試驗證明,該分散劑可單獨或與無機磷酸鹽分散劑復配使用,對高嶺土、硫酸鋇、碳酸鈣及其混合體均有良好的分散效果。郭永利等人以水為溶劑,APS-SHS氧化還原引發體系,研究了丙烯酸及其共聚物的合成,結果得到分子量小於2萬,且無色或淡黃色透明的低分子量聚合物。

何靜月等通過研究影響聚丙烯酸鈉分子量的各種因素,使用脂肪酸鹽等助劑,採用分步聚合的新工藝合成出分子量為500-700、1000-1500和2000-3000的低分子量聚丙烯酸鈉。合成出的聚丙烯酸鈉不僅分子量較低,而且分子量分布較窄,分散性良好,應用實驗表明其分散效果優於分散劑DC,與進口產品SN-5040相當。

在裝有迴流冷凝器、溫度計、攪拌器和滴液漏斗的250mL四口瓶中依次加入一定量的去離子水和鏈轉移劑(異丙醇或丙酮或四氯化碳等),在室溫下攪拌均勻,加熱升溫至一定溫度,開始滴加丙烯酸單體和引發劑(過硫酸鉀或過硫酸按)水溶液,3h左右滴定完畢,再保溫反應3h,冷卻至30℃至40℃後用質量分數的為30%的氫氧化鈉水溶液中和至pH=7-,.8,然後將反應裝置改為蒸餾裝置,加熱蒸出鏈轉移劑以回收利用,得淺黃色粘稠低分子量聚丙烯酸鈉溶液,洗滌後置於50℃左右的真空乾燥箱中,乾燥至恆重,粉碎包裝。

聚合反應將以極快的速率進行,體系產生大量的積熱,在普通的玻璃燒瓶反應器中,體系產生的積熱在一分鍾內從50℃到達劇烈沸騰狀態而發生爆聚。若提高聚合溫度,亦即增大了反應速率常數,同時由於單體濃度很高使聚合速率增大而發生爆聚。探索性試驗結果與聚合反應動力學原理相符,因此在選擇合成工藝時應注意以下問題:

a.因單體中雜質起阻聚作用,單體採用精餾過的產品。

b.氧分子可看作雙自由基,對單體有明顯的阻聚作用。氧與鏈自由基反應形成較穩定的過氧自由基。因此,通入氮氣驅趕反應器內的氧。

c.防止爆聚,如果將所有組分同時加入反應器內進行聚合,由於烯類單體在聚合時熱效應大,而聚合反應速度又快,易產生爆聚。為了控制熱量的放出速度以維持一定的聚合溫度,可採取迴流冷凝交換散熱,分批加入引發劑,控制單體滴加速度等措施。

d.控制攪拌速度,使反應物混合均勻。若攪拌速度太快,反應器內物料將出現漩渦和飛濺。

聚合溫度對聚合速率和產品質量都有重要影響。反應溫度是由引發劑的分解溫度決定的。用過硫酸餒為引發劑,其分解溫度大約為70℃,溫度過低,聚合反應不易發生或反應速率太慢;溫度過高,引發劑分解速率過快,聚合反應熱量不易散出,易爆聚。

丙烯酸的聚合熱為 -67kJ/mol,合成過程中反應產生的積熱可以使體系在1分鍾內從50℃上升到100℃的沸騰狀態,這種現象稱為爆聚。爆聚既影響產品質量,還有可能釀成事故。

目前的合成方法主要是以過硫酸鹽為引發劑、異丙醇為鏈轉移劑進行動態水溶液聚合,通過大量鏈轉移劑在冷凝迴流作用下移走反應熱,以及通過滴定單體和引發劑溶液控制反應速度,來防止爆聚的。但這樣操作復雜,生產周期長,能耗高,設備利用率低,生產成本高。

靜態水溶液聚合法是近年來出現的聚丙烯酸鈉合成新方法,這種方法不使用異丙醇,單體濃度高、聚合周期短,有利於降低製造成本。缺點是聚合過程中伴隨著凝膠化現象,放熱劇烈,有大量自由基向大分子鏈轉移並引起大分子間相互交聯,導致產物中有水不溶物,產品質量較差,尚未工業化生產。

靜態水溶液聚合法是指將所有組分同時加入自製的平板式反應器中,瞬間混合均勻後,靜置於一定溫度的水浴中進行聚合的一種合成方法。

向自製的平板式反應器中加入丙烯酸單體,用30%的NaOH溶液中和,冷卻至60℃,依次加入鏈轉移劑和引發劑溶液,混合均勻,置於60℃的水浴中,保溫反應3h,得淺黃色粘稠溶液,洗滌後置於50℃的真空乾燥箱中,乾燥至恆重,粉碎包裝。若聚合溫度低,用少量的鏈轉移劑或直接混合原料都會發生爆聚;只有在高溫下,採用連續滴加單體於含有大量的鏈轉移劑的溶液中才可以實現平穩聚合。這與聚合反應動力學原理相符,在發生爆聚的反應過程中,反應放出的熱不能及時釋放,體系產生大量積熱,反應液的溫度急劇升高,故發生爆聚:而在發生平穩聚合的反應過程中,一方面連續滴加單體3h左右,減緩了反應速率,另一方面在高溫下,大量的鏈轉移劑的冷凝迴流帶走了大量的反應熱,反應液的溫度得到有效控制,故反應平穩進行。但是在這樣的條件下合成低分子量聚丙烯酸鈉,鏈轉移劑用量較大,如果滴定速度不均勻或過快,就會引起分子量分布變寬或爆聚,影響產品質量。所以,傳統動態合成法操作復雜,生產周期長,能耗高,設備利用率低,生產成本高。

由上述討論可知,解決聚合過程中的爆聚問題是導致傳統合成方法中鏈轉移劑用量較大,操作復雜,生產周期長,設備利用率低,能耗大等問題的根源,而爆聚是由於反應積熱引發的,所以用簡便的方法解決積熱問題,就可以解決傳統動態法合成中存在的問題。

解決積熱問題的關鍵就是使反應熱及時排出,實現放熱與散熱的平衡,從而有效控制反應液的溫度,防止爆聚現象的發生。

為了考察反應過程中的放熱情況,配製35wt %的丙烯酸鈉水溶液,用過硫酸鉀作催化劑進行聚合反應。聚合反應放熱從50℃開始,在63. 3℃和80. 9℃時分別有兩個放熱峰,且第二個峰所對應的面積遠大於第一個峰所對應的面積。這是因為一方面溫度升高,引發劑的分解速率速率增大,聚合反應速率加大;另一方面生成的聚丙烯酸鈉作為模板發生了自動加速效應。

在普通玻璃燒瓶中聚合,反應液的溫度在一分鍾內由60℃上升至100℃,體系發生爆聚;而在自製的平板式反應器中聚合,反應液溫度達到60℃後變化不大,趨於穩定,體系平穩聚合。這是因為普通的玻璃反應器比表面積小,散熱效果差,體系積熱,引發爆聚;而平板式反應器散熱效果好,實現了放熱與散熱的平衡,反應液的溫度得到有效的控制。

故用平板式反應器代替傳統的反應器,可以有效解決積熱問題。這樣聚合過程無須攪拌和滴定,由傳統的動態法轉化成靜態法,簡化了操作,縮短了聚合時間,節約了能源。

不同的鏈轉移劑有不同的聚合溫度,其中異丙醇和丙酮的用量較大(單體的200-300% ),其聚合在帶有冷凝迴流的四口瓶中進行;十二硫醇用量較少(單體的4%),其聚合在平板式反應器中進行。

單體濃度也是引起爆聚的一個重要原因。丙烯酸單體的聚合熱大,進行高濃度的聚合,很難實現對聚合過程的控制,故通常聚合濃度在40%以下。實驗結果與這相一致,在以異丙醇為鏈轉移劑的傳統聚合方法中,雖然單體占水重的100-200%,但是在大量異丙醇存在的整個反應體系中單體濃度只有25-30%,所以結合其他條件可以無爆聚進行。在以十二硫醉為鏈轉移劑的聚合反應中,由於鏈轉移劑用量較少,對單體濃度沒有多大影響,實驗發現,控制單體濃度為30%較為合適。

由以上分析討論可知,低聚丙烯酸及其鈉鹽合成時的防爆聚措施主要有以下四條。一、選擇合適的反應器,實現放熱與散熱的平衡。二、選擇合適的聚合溫度,由DSC曲線可以看出,控制聚合溫度在60℃,反應平緩。三、選擇合適的單體濃度,減緩體系積熱引起的溫度上升。四、選擇合適的分子量調節劑,抑制分子量的急劇增加。當然,引發劑濃度也是影響爆聚的重要因素,但是要合成低分子量的聚合物,引發劑濃度不能太低。

綜上所述,靜態水溶液聚合法是合成低分子量聚丙烯酸鈉的一種行之有效的方法。聚合反應器、聚合溫度、單體濃度、分子量調節劑的類型等因素對聚合過程和產物的分子量具有重大影響。在平板式反應器中,以十二硫醇為分子量調節劑,用靜態水溶液聚合法合成低分子量聚丙烯酸鈉,實現了放熱與散熱的平衡,既有效控制了產物的分子量,又避免了爆聚的發生。當單體濃度為30%,分子量調節劑用量為4%(占單體重),引發劑用量為4%(占單體重),聚合溫度為60℃,反應時間為3h,可合成出分子量為5000左右的低分子量聚丙烯酸鈉,產物水溶性好,分子量分布窄,且單體轉化率在99%以上。

1.4 利用廢腈綸制備聚丙烯酸衍生物
1.4.1 腈綸廢絲的利用研究綜述
腈綸廢絲是分子量小於100000的聚合物,其柔軟性、捲曲度、拉伸性、彈性等不合格,不能用在紡織品生產上。據統計,每生產1噸的腈睛綸,就會產生1%的廢絲。因此,我國每年的睛綸廢絲產量相當可觀。雖然一部分廢絲牽伸後得到重新利用,但仍有相當部分的廢絲需另找出路。由於睛綸廢絲不能解聚,不能熱壓成型,燃燒時會散發出有害氣體。因此,若能將睛綸廢絲水解產物製成高聚丙烯酸衍生物,不僅可以解決廢絲的處理問題,而且可以使聚丙烯酸衍生物的成本大大地降低,這不失為一個一舉兩得的好方法。

1994年合肥聯合大學的丁倫漢採用10%A1C13水溶液作為腈綸廢絲水解物的交聯劑制備高吸水性樹脂,A1C13溶液的較佳用量為2.0ml/g。所得高吸水樹脂產品可吸收蒸餾水800g/g,生理鹽水22g/g,洗滌和烘乾過程對吸水率影響較大。

1996年哈爾濱市環境保護科學研究所王鳳艷和楊建華等以腈綸廢絲為原料.進行鹼催化水解,制備污水處理劑一絮凝劑。研究了水解工藝對產物的影響。並用該絮凝劑對選煤廠的污水進行處理,效果良好。

1996年合肥聯合大學建工系丁倫漢和彭守寧等將睛綸廢絲在鹼性條件下水解,經中和、洗滌後,加入交聯劑甲醛反應,製得高吸水性樹脂。實驗表明,甲醛最佳用量為0.22%左右.所得樹脂吸水率穩定在600-800g/g。

1998年江蘇淮陰工業專科學校化工系李登好和郭迎衛以聚丙烯腈( PAN )廢絲為原料,經皂化水解,甲醛交聯制備了高吸水樹脂,研究了水解工藝條件對水解物的影響以及粘度、交聯劑用量等對高吸水樹脂的吸水率的影響,最終得到的吸水樹脂吸水率為500g/g,生理鹽水為61g/g。

1999年西北紡織工學院沈艷琴以腈綸廢絲為主,以丙烯酸酯和丙烯醯胺為輔,合成的BY型丙烯類合成漿料,其外觀白色粉末,有效成分88%以上,6%水溶液粘度60-100mPa.s ,pH值為6~8,經過試驗表明,BY型漿料易溶於水,和澱粉及澱粉+PVA具有良好的混溶性,在澱粉+PVA漿中,BY型漿料可取代15%-20%的PVA。

2003年中原石油勘探局氯化橡膠廠陸穎舟介紹了一種由腈綸廢絲常壓皂化水解制備水解聚丙烯睛的新工藝路線。研究了氫氧化鈉用量、水用量、溫度等對水解反應的影響,找出了最佳的水解工藝條件。引入了一種新型的沉析劑處理水解產物,降低了生產成本和排污負荷。同年,中石化股份公司齊魯分公司研究院的李留忠和於元章等將腈綸水解處理後制備出多種高附加值的產品,文中研究了聚丙烯腈鹼法水解工藝的水解過程、水解程度,考察了水解工藝條件和水解配方對產物性能的影響。結果表明,m(PAN)/m(NaOH)/m(H2O) = 1/0.6/5時,在95℃水解4h,得到含羧鈉基、醯胺基等多種親水性基團的均勻透明的無規共聚物水溶液。採用FTIR、 XRF (X熒光光譜)、ZC-NMR等對產物進行了分析表徵,進一步驗證了試驗結果。

PAN廢絲的利用國外已有報導),如前蘇聯將PAN廢絲經濃鹼皂化水解,得到的水解產物代替紡織工業用的澱粉漿料。日本也將同類型產品作為土質穩定劑等。

一般而言,腈綸廢絲在鹼性條件下進行水解所得的水解產物可以看成是聚丙烯酸衍生物的多元共聚物,因此,PAN廢絲的綜合利用在一定程度上可以說是相對應的聚丙烯酸衍生物的應用。

在無機酸、鹼、加熱、加壓條件下,睛綸廢絲聚合物鏈中的側基氰基(-CN)可以發生水解,使之轉變為極性較強的羧基(-COOH )、醯胺基(-CONH2)等官能團,使之由固態轉變成了液態,這不僅提高了其流動性,而且由於這些基團還能與其它的一些基團化合或配位,賦予了產物新的性質,從而拓寬了其應用范圍。

1.4.2 腈綸廢絲的酸法水解
在硫酸、鹽酸等強酸和適當的溫度下,腈綸廢絲即發生如下水解反應。產物的結構與酸的種類及反應溫度有關。工業上一般使用濃H2SO4進行催化。如果用75%-95%冷濃硫酸,使腈綸廢絲水解4小時,主要產物為聚丙烯醯胺,水解產物中-COOH含量小於1%;用50%硫酸加熱到120-140℃,催化水解腈綸廢絲10小時,則主要產物是聚丙烯酸,其他基團較少。

該法設備簡單,使用耐酸的搪瓷反應釜即可,但要求設備的氣密度較高,迴流冷凝器熱交換效率好。缺點是所用的硫酸太濃,導致成本增加,不利於操作和環境。

1.4.3 腈綸廢絲的鹼法水解
聚丙烯腈纖維一般採用主單體丙烯睛(約佔93%)、改性單體丙烯酸甲酯和第三單體苯乙烯磺酸鈉三元共聚合成,是一種疏水性較強的高分子材料。用鹼法水解可對設備無特殊要求。在鹼性物質的催化和加熱條件下,腈綸廢絲即發生水解反應。可供選用的鹼性催化劑是NaOH、KOH、水玻璃、磷酸三鈉、磷酸三鉀、硫化鈉、氫氧化鈣、氨水,這些物質又稱為皂化劑。在皂化水解過程中,腈綸廢絲由白色轉變為黃色,繼而轉變為橙紅色或棕紅色,同時有氨氣不斷逸出,最後纖維狀消失,得到淺黃色或乳白色粘稠液體。皂化劑可以單獨使用,也可混合使用,但常用NaOH做皂化劑。NaOH可用固體的,也可以用濃度5%以上的液體。如果提高反應釜內壓力,NaOH用量可以減少。

將最終反應的黃色或深黃色半透明溶液放置到室溫,真空抽濾,除去溶液中的不溶性雜質,將濾液收集在大燒杯中。然後向濾液中倒入等體積的無水乙醇(作沉析劑),並用玻璃棒輕輕攪拌即可得到淡黃色或白色粘稠狀膏體沉析物,將此沉析物取出放入小塑料盤中靜置,使表面多餘的沉析劑揮發掉,然後將沉析物放入真空乾燥6-7h,脫除沉析物中殘余的乙醇和水分。

乾燥後得到的淡黃色固體即為目的產物一部分水解聚丙烯酞胺。用鹽酸將睛綸廢絲的水解產物調至中性,用上述方法使之乾燥。制備成產品絮凝劑PAM。沉析分離後所剩餘的分離液通過蒸餾回收,其中的乙醇可以回收凈化後重復使用。水解反應中剩餘的鹼富集於母液中,在母液中再加入一定量的鹼又可以投入睛綸廢絲進行水解反應。

㈢ 誰知道--聚四氟乙烯的彈性模量和泊松比是多少

彈性模量是280MPa 泊松比是0.4。


參考數據:

1、塑料材料的泊松比一般為1.34——0.35

2、彈性模量硬聚氯乙烯3.14——3.92GPa

3、聚四氟乙烯1.14——1.42GPa

4、低壓聚乙烯0.54——0.75GPa


㈣ 聚乙烯(PE)的成分是什麼

聚乙烯(polyethylene ,簡稱PE)是乙烯經聚合製得的一種熱塑性樹脂。在工業上,也包括乙烯與少量α-烯烴的共聚物。

聚乙烯無臭,無毒,手感似蠟,具有優良的耐低溫性能(最低使用溫度可達-100~-70°C),化學穩定性好,能耐大多數酸鹼的侵蝕(不耐具有氧化性質的酸)。常溫下不溶於一般溶劑,吸水性小,電絕緣性優良。

聚乙烯為白色蠟狀半透明材料,柔而韌,比水輕,無毒,具有優越的介電性能。易燃燒且離火後繼續燃燒。透水率低,對有機蒸汽透過率則較大。聚乙烯的透明度隨結晶度增加而下降在一定結晶度下,透明度隨分子量增大而提高。

(4)自由基聚合反應實驗裝置擴展閱讀

聚乙烯有優異的化學穩定性,室溫下耐鹽酸、氫氟酸、磷酸、甲酸、胺類、氫氧化鈉、氫氧化鉀等各種化學物質腐蝕,但硝酸和硫酸對聚乙烯有較強的破壞作用;

聚乙烯容易光氧化、熱氧化、臭氧分解,在紫外線作用下容易發生降解,炭黑對聚乙烯有優異的光屏蔽作用。受輻射後可發生交聯、斷鏈、形成不飽和基團等反映。

工業上低密度聚乙烯主要採用高壓(110~200MPa)、高溫(150~300℃)自由基聚合。其他則用低壓配位聚合,有時同一套裝置可生產密度0.87~0.96g/cm3的聚乙烯產品,稱全密度聚乙烯工藝技術。

聚乙烯可加工製成薄膜、電線電纜護套、管材、各種中空製品、注塑製品、纖維等。廣泛用於農業、包裝、電子電氣、機械、汽車、日用雜品等方面。

㈤ 微管反應器原理

微化工系統是以帶有微結構元件的化工裝備為核心的化工系統,它的突出特點是在微時空尺度上控制流動、傳遞和反應過程,為實現高效、安全的物質轉化提供了基礎。微化工系統相關研究起源於20世紀90年代[1],多年來的研究結果表明:微化工設備內流動狀態高度可控,液滴和氣泡的分散尺度一般在數微米至數百微米之間;具有豐富的多相流型,一些流型中的液滴和氣泡結構與尺寸高度均一;由於微尺度下傳遞距離短、濃度/溫度梯度高以及體系巨大的比表面積,微反應器內傳熱/傳質系數較傳統化工設備大1-3個數量級[2]。
國內開展微反應器研究已經有十餘年時間,在微反應器的設計製造、微混合原理的探索、氣相反應、液相反應、納米顆粒制備等領域得到迅速發展,取得了顯著成果[3]。目前從事微反應器相關研究的主要有中國科學院大連物理化學研究所、清華大學、華東理工大學和山東豪邁化工技術有限公司等科研院校和科研單位。
聚合反應對反應器的傳熱和混合有很高的要求,傳統的釜式反應器在這方面的缺陷成為獲得高性能聚合產物的瓶頸之一。近年來,微反應器已能夠成功應用於多種機理的聚合反應並表現出對傳統釜式反應器的顯著優勢。從當前的發展趨勢來看,微反應器在聚合反應中的應用將成為化工和高分子領域的研究熱點之一。本文綜述了微反應器在不同的聚合反應體系中的應用。
1
自由基聚合
聚合溫度對自由基聚合所得產物的分子量和分子量分布有很大影響。因此,對反應體系溫度的控制是控制產品質量的關鍵因素。大部分自由基聚合是較強的放熱反應,且反應速度較快。在傳統的釜式反應器中,反應器傳熱和傳質能力的不足往往導致反應體系內溫度分布不均,從而影響產物的分子量分布。在放熱較強的自由基聚合中,使用傳熱能力強的微反應器可以顯著改善反應結果。
Iwasaki等[4]用T形微混合器和內徑分別為250μm和500μm的微管式反應器組成微反應器系統(圖一),進行了一系列丙烯酸酯單體的自由基聚合。釜式反應器中丙烯酸丁酯的聚合反應產物分子量分布指數(PDI)高達10以上,而相同的反應時間和產率下微混合器中反應產物的PDI可控制在3.5以下,證明微反應器可以有效地控制自由基聚合產物的分子量分布。

圖一 丙烯酸酯自由基聚合微反應器裝置圖
Okubo等[5]在微反應器中進行了苯乙烯的懸浮聚合,反應物和水通過K-M型微混合器形成懸浮液,再經過管式反應器進行聚合[圖2(a)]。經過降溫可直接在管內得到聚合物顆粒,通過改變流量可以調節聚合物顆粒大小。
微通道中的液滴聚合是一種新興的聚合方式,其基本原理為在管內利用不良溶劑將反應體系分隔成小液滴,每個小液滴均可看做一個微型反應器。在較小的微通道尺寸下,液滴聚合的混沌混合特性進一步強化了傳質效果。Okubo等利用液滴聚合合成了聚苯乙烯和聚甲基丙烯酸甲酯,反應裝置見圖二(b)。通過調節停留時問和控制兩相間溶劑擴散的方法可以實現對聚合產物分子量的控制;與釜式反應器相比,得到的聚苯乙烯和聚甲基丙烯酸甲酯的分子量分布較窄,經過微反應器沉澱得到的聚合物粒子分布也較均一。

圖二 苯乙烯自由基聚合實驗裝置示意圖
Wu等[6}在自製的雙輸入微通道(500μm*600μm)反應器中進行了甲基丙烯酸羥丙酯(HPMA)的ATRP聚合。單體和催化劑從一個通道進入,引發劑從另一入口通入,通過對流量調節可以實現對產物分子量和分子量分布的調控。Wu等[7}隨後又設計了結構相似的三輸入微反應器,實現了環氧乙烷與HPMA的ATRP共聚合。通過調節反應時間和引發劑相對濃度兩種方法均可實現對聚合產物中HPMA含量的調節。Chastek等[8]在微反應器中進行了苯乙烯和一系列丙烯酸酯的ATRP共聚合,通過特定溶劑使產物膠束化,並用動態光散射法對膠束進行了測定,反應裝置見圖三。

圖三 ATRP共聚、膠束化和DLS檢測集成裝置示意圖
2
陰離子聚合
Honda等[9}在由微混合器和微管反應器(內徑250μm)組成的微反應器裝置中進行了氨基酸-N-羧基-環內酸酐的陰離子聚合。所得產物的分子量分布窄於釜式反應器的聚合產物,並可以通過調節流速來控制產物分子量和分子量分布。如圖四所示,流速降低時,反應物停留時問增長,反應程度提高,產物的分子量變大,分子量分布變窄。

圖四 不同流速下的GPC流出曲線
3
陽離子聚合
Nagaki等[10]將微反應器與「陽離子池」引發技術結合,進行了一系列乙烯基醚單體的陽離子聚合(圖五)。陽離子池的高效引發結合微反應器的快速混合使反應在0.5 s內即可完成,並能很好地控制產物的分子量分布,產物的PDI從釜式反應器的2.25降至1.14。

㈥ 在低分子量聚丙烯酸的合成實驗中,單體丙烯酸和引發劑過硫酸銨為什麼分步加入具體原理是什麼

乳膠漆是一種水性塗料,以水作為分散介質,高聚物分子均勻地分散在水中形成穩定的乳液作為成膜物質,加入顏填料和各種功能性助劑,經分散研磨形成一種混和分散體系。其組成中有機溶劑含量低,只有2%—8%左右。是一種綠色環保型塗料。目前,乳膠漆的品種主要有聚醋酸乙烯乳膠漆、乙苯乳膠漆、苯丙乳膠漆、純丙烯酸酯乳膠漆、叔碳酸酯乳膠漆等,近年來還出現高彈性和高耐候性的有機硅單體、有機氟單體改性丙烯酸乳膠漆。乳膠漆由乳液,顏填料,助劑和水四個部分組成。

2.1乳 液
乳膠漆的乳液決定了乳膠漆的附著力,耐水性,耐沾污性,耐老化性,成膜溫度,儲存穩定性等根本性能。隨著塗料技術的發展進步,現在已經有多種性能不同,用途相異乳液可供選擇,如苯丙,酯丙,叔醋,純丙,硅丙,彈性乳液等。乳液可以自行合成,也可以向有關廠家購買。選擇合適的乳液生產乳膠漆是至關重要的。
製造乳膠漆的乳液是由多種單體經乳液聚合合成的,共聚單體的選擇將直接決定乳液乃至乳膠漆的性能。合成純丙乳液時選擇甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸甲酯、丙烯酸丁酯、丙烯酸等單體作原料。在這些單體中,甲基丙烯酸甲酯主要為乳液提供必要的硬度,耐大氣性和耐洗刷性,甲基丙烯酸丁酯和丙烯酸丁酯,提供樹脂的彈性、柔韌性、耐沖擊性和塗膜的附著力。丙烯酸為分子結構提高親水基團可增加塗膜與基材的附著力。

2.2顏填料
生產乳膠漆的顏填料有鈦白粉(金紅石型和銳鈦型),立德粉,重質碳酸鈣,輕質碳酸鈣,滑石粉,瓷土,雲母粉,白炭黑,重晶石粉,沉澱硫酸鋇,硅酸鋁粉等。用於外牆乳膠漆的顏填料有金紅石型鈦白粉,重質碳酸鈣,滑石粉,雲母粉等,適用於內牆乳膠漆的顏填料有銳鈦型鈦白粉,立德粉,重質碳酸鈣,輕質碳酸鈣,滑石粉,瓷土,硅酸鋁粉等。各種顏填料的密度是不同的,其性能差別也很大。

各種顏填料的密度
顏填料名稱 密度
金紅石型鈦白粉 4.2
銳鈦型鈦白粉 3.9
輕重鈣 2.7
滑石粉 2.8
瓷土 2.6

顏填料的吸油量是乳膠漆的一個重要指標,在同樣的稠度下,吸油量大的顏填料比吸油量小的顏填料要耗費較多的漆料,不同顏填料的顏色,遮蓋力,著色力,粒度,晶型結構,表面電荷,極性等物理性能均不相同,也決定了其化學性能(耐化學品性,耐侯性,耐光性,耐熱性)的不同,因此合理選擇顏填料的數量品種在乳膠漆的生產中也很重要,它決定了乳膠漆分散性能的好壞、遮蓋能力、耐老化性、外觀狀態、儲存穩定性等各種性能。

2.3助劑
乳膠漆中使用的助劑有潤濕劑,分散劑,增稠劑,消泡劑,成膜助劑,PH調節劑,防腐劑,防霉劑等。其中分散劑和增稠劑的使用尤為重要,早期的乳膠漆或者低成本塗料中用的分散劑多採用多聚磷酸鹽類,如六偏磷酸鈉,三聚磷酸鈉,在高PVC低成本的乳膠漆中,選用聚丙烯酸鹽和陰離子,非離子多官能團嵌段共聚物為分散劑。
增稠劑主要品種為纖維素衍生物類(HEC),聚丙烯酸酪乳液增稠劑(鹼膨脹增稠劑)和締合型增稠劑三大類,可分別使用,也可以相互合理搭配使用。顏填料體積濃度高時乳膠漆使用HEC和聚丙烯酸鹽類為主,中低顏填料體積濃度的外牆乳膠漆中使用締合型增稠劑為主。
乳膠漆的觸變指數的高低是所用增稠劑效果的最好檢測。流平性好的乳膠漆,其TI<4,流平性要求不高的乳膠漆,其TI可略高。實踐證明,HEC增稠的乳膠漆增稠效率高,用量少,但流平性差,刷痕不容易除去。聚丙烯酸酪乳液使用便利,但是容易受到PH值影響。締合型增稠劑性能優良,但價格比較貴。
特殊品種助劑具有顯著作用:硅助劑可以明顯改變乳膠漆的附著力,蠟助劑可以使乳膠漆呈現荷葉效果,氟碳助劑則極大的改變了乳膠漆的附著力,防水性能和耐沾污性。

2.4水
乳膠漆所用水為去離子水,可由專用的脫離子水器生產,乳膠漆用水標准可以參照蒸汽鍋爐用軟水指標:總硬度<0.3毫克當量/升;而將自來水用於乳膠漆生產是不合適的,短時期內尚無明顯變化,長期儲存則極容易沉澱,並容易造成破乳。

三.主要試劑
實驗試劑:
甲基丙烯酸甲酯,甲基丙烯酸丁酯,丙烯酸丁酯,丙烯酸甲酯,丙烯酸,去離子水,過硫酸銨,十二烷基磺酸鈉,吐溫-60,消泡劑。

四.實驗設計
(一)純丙乳液的合成
目標產物:乳白色的純丙乳液

提 示:
1.聚合機理及聚合方法:自由基聚合,乳液聚合
2.反應裝置:常規乳液聚合裝置

要 求:
1.根據所需的目標產物,確定聚合配方、聚合機理及具體聚合方法;
2.確定聚合裝置及主要儀器,畫出聚合裝置簡圖;
3.研究乳液聚合的動力學過程,確定影響乳液性能的因素,如:軟、硬單體用量比例,乳化劑選擇,引發劑用量等。

(二)純丙乳膠漆的制備
目標產物:乳白色的純丙乳膠漆的制備

提 示:
1.制備方法:高速分散,砂磨混合
2.反應裝置:高速分散機,砂磨機

㈦ 浙江大學化學工程與生物工程學系的學術研究

科研建設
國家及省部級研究基地 化學工程聯合國家重點實驗室二次資源化工國家專業實驗室高壓過程裝備與安全教育部工程研究中心生物質化工教育部重點實驗室(浙江大學)工業生物催化浙江省工程實驗室教育部膜與水處理技術工程研究中心 研究所 化學工程研究所 聯合化學反應工程研究所 聚合與聚合物工程研究所 生物工程研究所 制葯工程研究所 化工機械研究所 工業生態與環境研究所 科研成果(2009-2012)
2012年度,化工系科研總經費14353.60萬元,其中縱向經費佔44.0%,橫向經費佔56.0%。國家基金共32項,經費達到2638萬。發表學術論文被SCI收錄217篇;被EI收錄117篇;SITP:11篇;授權發明專利159項。
科研論文(篇) SCI收錄 EI收錄 ISTP收錄 2009年 200 165 13 2010年 192 142 13 2011年 176 197 10 2012年 217 117 11 專利(件) 發明專利實用新型專利軟體登記或外觀設計合計2009年 65 18 3 86 2010年 69 11 1 81 2011年 128 24 0 152 2012年 158 35 0 193 科研獲獎 獲獎年度 獎勵名稱 獎勵等級 負責人 項目名稱 2009 國家技術發明獎 二等獎 任其龍 食品功能因子高效分離與制備中的分子修飾與吸附分離耦合技術 2009 教育部高等學校
自然科學獎 一等獎 羅英武、李伯耿 活性可控自由基聚合反應過程基礎 2009 浙江省科學技術獎 一等獎 何潮洪 雷公藤有效成分的提取分離及質量控制技術 2009 教育部高等學校
技術發明獎 二等獎 楊健、鄭津洋 CSMB耦合型模擬移動床集成反應分離設備 2009 機械工業聯合會
科技進步獎 二等獎 王樂勤、鄭津洋、吳大轉、譚善光、曾 勝 大型延遲焦化裝置高壓切焦泵技術研究與工業應用 2009 浙江省科學技術獎 二等獎 徐志南、林建平、
蔡謹、黃磊 體內和體外高效合成功能性異源蛋白質的理論基礎和關鍵技術 2009 浙江省科學技術獎 二等獎 徐志南 嗎替麥考酚酯及其制劑(賽可平)的研究及產業化 2009 浙江省科學技術獎 二等獎 申屠寶卿 符合RoHS指令的電子電器專用阻燃耐漏電尼龍66系列工程塑料研發 2009 安徽省科技進步獎 三等獎 陳歡林、張林 環氧樹脂高鹽廢水膜蒸餾濃縮-鹽回收新工藝及裝備 2010 國家技術發明獎 二等獎 王樂勤、吳大轉 渦輪泵發射技術研究 2010 國家技術發明獎 二等獎 陳志榮 脂溶性維生素及類胡蘿卜素的綠色合成新工藝及產業化 2010 浙江省科學技術獎 一等獎 陳新志、錢超 連續化低碳脂肪胺生產技術 2010 浙江省科學技術獎 一等獎 鄭津洋 沖拔式車載大直徑高壓天然氣無縫鋼瓶關鍵技術及產業化 2010 教育部高等學校
科技進步獎 一等獎 鄭津洋、劉鵬飛、
趙永志、楊健 70Mpa高壓氣態儲氫系統關鍵技術及應用 2010 浙江省科學技術獎 二等獎 姚善涇、林東強、關怡新 擴張床吸附介質研製及生物分離機制研究 2010 浙江省科學技術獎 二等獎 吳綿斌 紅豆杉的中醫葯綜合利用研究 2010 浙江省科學技術獎 三等獎 鄭津洋、劉鵬飛 天然氣長輸管道安全預測預警關鍵技術與應急救援指揮輔助決策系統 2010 中國專利優秀獎 鄭津洋 聚烯烴管道電熔焊接接頭冷焊缺陷的超聲檢測方法 2011 教育部高等學校
科技進步獎 一等獎 楊立榮、吳堅平、徐剛 化學-酶法制備手性菊酯農葯的關鍵技術及產業化 2011 浙江省科學技術獎 二等獎 王樂勤、吳大轉 流程工業高壓離心泵理論、技術研究與應用 2011 浙江省科學技術獎 二等獎 金志江、張志新、許忠斌 高性能高參數減溫減壓裝置 2011 浙江省科學技術獎 二等獎 曾勝 全自動電機轉子動平衡機 2011 中國輕工業聯合會
科技進步獎 一等獎 許忠斌 高效精密注塑系統及裝備的研發 2012 國家技術發明獎 二等獎 楊立榮、吳堅平、徐剛 全有機溶劑中化學-酶法高效制備手性菊酯關鍵技術及產業化 2012 浙江省科學技術獎 一等獎 李伯耿、羅英武、
范宏、王文俊、
曹堃、吳林波、
卜志揚 復雜高分子體系的反應動力學及其應用基礎研究 2012 中國石油和化學工業
聯合會科技獎 一等獎 鄭津洋、施建峰 聚烯烴及其復合管道安全檢測與評價方法 2012 中國海洋工程咨詢協會海洋工程科學技術獎 一等獎 閆克平、黃逸凡 海洋淺地層高解析度多道地震探測技術及其應用

㈧ 有人能告訴我化學報告怎麼寫啊

化學觸及的范圍太廣,我就列舉一例。 高分子化學實驗 一、課程簡介 《高分子化學實驗》是化學學科的一門重要基礎課,是化學專業學生必修的一門獨立的基礎實驗課程。通過實驗課程訓練,鞏固並加深高分子化學課程的基本原理和概念的理解,掌握高分子化學實驗的基本方法,了解近代大型儀器的性能及在高分子化學與物理中的應用,了解計算機控制實驗條件、採集實驗數據和進行數據處理的基本知識。培養學生的動手能力、觀察能力、查閱文獻的能力、思維創新能力、表達能力和歸納處理、分析實驗數據及撰寫科學報告的能力。從而培養學生求真求實具有獨立工作的本領和初步的科研能力。培養學生的創新精神,提高學生的綜合科研素質。 《高分子化學實驗》實驗課的主要目的是: 1、掌握高分子化學實驗的基本研究方法,通過實驗手段熟悉高聚物的合成和結構表徵,理解高聚物化學性質與結構之間的關系,學會重要的高分子化學實驗技術和基本實驗儀器的使用。 2、掌握實驗數據的處理及實驗結果的分析和歸納方法,從而加深對高分子化學基礎知識和基本原理的理解,增強解決實際化學問題的能力。 3、注重實驗技能的培養和特殊實驗操作的掌握,對學生進行實驗工作的綜合訓練,使之具有基本的科研素質,培養其嚴謹的、實事求是的工作作風和科學態度。 高分子化學實驗課的基本任務是: 通過嚴格的、定量的實驗研究聚合物的合成和化學、物理性質和化學反應規律,使學生既具有堅實的實驗基礎,又具有初步的科學研究能力,實現學生由學習知識、技能到進行科學研究的初步轉變。為化學專業培養高素質的專門人才。 二、實驗目的及要求 本課程的主要目的是: 1、 對學生進行實驗工作的綜合訓練,使之具有基本的科研素質,培養其嚴謹的、實事求是的工作作風和科學態度。 2、 綜合性實驗的目的在於培養學生對知識綜合應用的能力、分析和解決問題的能力。 3、 設計性實驗的目的在於激發學生學習的主動性和創新意識,培養學生獨立思考、綜合運用知識、提出問題和解決復雜問題的能力。 本課程的基本要求 1、實驗前學生應事先認真仔細閱讀實驗內容,了解實驗的目的要求,並寫出預習報告,包括實驗的原理和實驗技術,實驗操作的次序和注意點,數據記錄的格式,以及預習中產生的疑難問題等。指導老師應檢查學生的預習報告,進行必要的提問,並解答疑難問題。學生達到預習要求後才能進行實驗。 2、學生進行實驗後應檢查測量儀器和試劑是否符合實驗要求,並作好實驗的各種准備工作,記錄當時的實驗條件。實驗過程中,要求學生仔細觀察實驗現象,詳細記錄原始數據,嚴格控制實驗條件。整個實驗過程中保持嚴謹求實的科學態度、團結互助的合作精神,積極主動的探求科學規律。 3、實驗結束後學生必須將原始記錄交教員簽名,然後正確處理數據,寫出實驗報告。實驗報告應包括:實驗的目的要求、簡明原理、實驗儀器和實驗條件、具體操作方法、數據處理、結果討論及參考資料等。其中實驗討論是實驗報告的重要部分,教員應引導學生通過這一部分反映出學生通過實驗所獲得的心得體會,以及對於實驗結果和實驗現象的分析、歸納和解釋,鼓勵學生進一步深入進行該實驗的設想。 4、對綜合性、設計性實驗的要求:設計實驗不是基礎實驗的重復,而是基礎實驗的提高和深化。它是在教師的指導下,學生選擇實驗課題,應用已經學過的物理化學實驗原理、方法和技術,查閱文獻資料,獨立設計實驗方案,選擇合理的儀器設備,組裝實驗裝置,進行獨立的實驗操作,並以科學論文的形式寫出實驗報告。 三、實驗方式及要求 實驗分為二個環節,首先做5個驗證性高分子化學實驗(20學時),5個驗證性高分子物理實驗(20學時),1個綜合實驗(16學時),1個設計性實驗(16學時)。 設計實驗的程序 選題 由老師提供的設計性實驗題目中選擇自己感興趣的題目,或者自己確定實驗題目。 查閱文獻 查閱包括實驗原理、實驗方法、儀器裝置等方面的文獻,對不同方法進行對比、綜合、歸納等。 設計方案 設計方案應包括實驗裝置示意圖、詳細的實驗步驟、所需的儀器、葯品清單等。 可行性論證 在實驗開始前一周進行實驗可行性論證,請老師和同學提出存在的問題,優化實驗方案。 實驗准備 提前一周到實驗室進行實驗儀器、葯品等的准備工作。 實驗實施 實驗過程中應注意隨時觀察實驗現象,考察影響因數等,反復進行實驗直到成功為止。 數據處理 綜合處理實驗數據,進行誤差分析,按論文的格式寫出有一定見解的實驗報告並進行交流答辯。 設計實驗的要求 1、所查文獻至少包括一篇外文文獻。 2、學生必須自己設計實驗、組合儀器並完成實驗,以培養綜合運用化學實驗技能和所學的基礎知識解決實際問題的能力。 四、考核方法及評價 《高分子化學實驗》是一門獨立的課程,涉及內容較為廣泛,因此有必要進行考核。考核以平時實驗為主,學期結束進行實驗操作考試,為時1小時,成績佔50%;平時成績包括預習報告、實驗態度、操作技能、實驗報告等作綜合評分佔50%;合起來為總評成績。 五、主要儀器設備 SWQ-Ta智能數字恆溫控制器、SYP型玻璃恆溫水浴、電子天平、減壓蒸餾裝置、機械攪拌裝置、旋轉蒸發儀、真空乾燥箱、簡單蒸餾裝置、粘度計、電動攪拌器等。 六、配套教材或指導書 何衛東編.高分子化學實驗.中國科學技術大學出版社,2002 復旦大學高分子科學系編,高分子實驗技術(修訂版)1993 七、實驗項目的設置 項目序 號 實驗項目 名稱 內容提要 實驗學時 儀器套數 每套人數 實驗 要求 1、必做 2、選做 實驗 屬性 1、 基礎 2、 綜合 3、 設計4、 研究 1 單體的提純與引發劑的精製 掌握乙酸乙烯酯、甲基丙烯酸甲酯、苯乙烯等單體的提純、引發劑AIBN和BPO的精製方法 減壓蒸餾裝置 4 1 必做 2 醋酸乙烯酯的溶液聚合 了解溶液聚合的基本原理,掌握其實驗技術 恆溫裝置、機械攪拌裝置、旋轉蒸發儀 4 1 必做 3 聚乙烯醇的制備 了解聚乙酸乙烯酯醇解反應原理、特點及影響醇解反應的因數;通過實驗加深對高分子反應的理解 恆溫裝置、機械攪拌裝置、真空乾燥箱 4 1 必做 4 聚乙烯醇縮甲醛的制備 通過實驗進一步加深對高分子化學反應的理解,掌握分析縮醛含量的方法 機械攪拌裝置、水蒸氣蒸餾裝置、酸式滴定管 4 1 必做 5 界面縮聚制備尼龍-610 加深界面縮聚制備聚合物的方法 恆溫裝置、機械攪拌裝置、旋轉蒸發儀 4 1 必做 6 聚甲基丙烯酸甲酯的制備 了解自由基本體聚合的特點和實施方法,熟悉有機玻璃板的制備方法,了解其工藝過程 電動攪拌器、恆溫裝置 4 1 必做 7 白乳膠的制備 了解乳液聚合的基本原理和乙酸乙烯酯的乳液聚合特點,掌握乳液聚合的實驗技術 恆溫裝置、機械攪拌裝置、旋轉蒸發儀 4 1 必做 8 雙酚A環氧樹脂的制備 學習環氧樹脂的實驗室制備方法,掌握環氧值的測定 恆溫裝置、機械攪拌裝置、旋轉蒸發儀 4 1 必做 9 水解縮合法制備甲基乙烯基硅油 掌握聚硅氧烷的合成方法, 圓底燒瓶,攪拌器,分液漏斗,減壓蒸餾裝置 4 1 必做 10 丙烯醯胺的溶液聚合 掌握丙烯醯胺的溶液聚合方法 圓底燒瓶,攪拌器,滴液漏斗,通氮裝置 4 1 必做 11 水性聚氨酯的合成與性能分析 掌握乳液聚合的方法制備水性聚合物的技術和聚合物成膜後的性能分析 恆溫裝置、機械攪拌裝置、旋轉蒸發儀、粘度計 20 1 必做 合計54 八、綜合性、設計性實驗簡介 項目一:有機硅改性苯丙乳液的合成與性能分析(設計性)(宋建華老師) 1、 指導思想 以水性塗料逐漸取代油性塗料是目前全世界塗料工業的發展趨勢,其原因是受有機揮發物(VOC)排放量的限制。水性塗料的優點是以水為溶劑,因而可以避免採用有機溶劑帶來的可燃性、毒性,以及高成本和施工條件等種種不利因素;除此之外,水性塗料有優良的防銹性,可用於金屬表面,其光澤接近一般溶劑漆,穩定性也較好。有機硅改性苯丙乳液是以水為溶劑,十二烷基硫酸鈉-烷基乙烯基磺酸鈉(SDS;DNS86)為乳化劑,過硫酸鉀(KPS)為引發劑,採用分步引發的自由基聚合方法,制備了乙烯基三乙氧基硅烷-苯乙烯-丙烯酸丁酯-甲基丙烯酸(A-151-St-BA-MAA /SDS-DNS86/H2O)乳液。 2、實驗目的及要求 實驗目的:首先考察溫度、不同配比、乳化劑含量等因素對乳液性能的影響,得到了乳化劑用量—粘度曲線、乳化劑用量—粒徑分布曲線、固含量—粒徑分布曲線、固含量—粘度曲線、固含量—吸水率曲線;其次對提高乳液固含量進行了研究,固含量最高可達60%左右;最後用IR光譜對各種乳液成膜進行了結構表徵,用TG對各種乳液成膜進行了熱性能分析,用DSC測定了各種乳液成膜的玻璃化轉變溫度。 實驗要求:所查文獻至少10篇,其中包括一篇外文文獻;學生必須自己設計實驗、組合儀器並完成實驗。 3、涉及的內容或知識點 本實驗主要涉及高分子化學及實驗中關於自由基乳液聚合的知識點;還有水性塗料的知識點。 4、採用的教學方法和手段 教師給出實驗目的、要求和實驗題目;學生查閱資料, 自行設計方案、擬定實驗步驟, 經老師指導,完善和確定方案,再獨立進行實驗,完成實驗報告或小論文。

閱讀全文

與自由基聚合反應實驗裝置相關的資料

熱點內容
檢查閥門不正確的方法是什麼意思 瀏覽:429
佛山祥盛五金製品有限公司招聘 瀏覽:423
高中化學課本實驗裝置圖 瀏覽:369
半液晶儀表怎麼實現地圖顯示 瀏覽:100
蒸發用的器材有什麼 瀏覽:286
機械圖圓後面向下箭頭什麼意思 瀏覽:657
曲靖家用電動工具批發 瀏覽:20
滄州固化設備哪裡有 瀏覽:165
帝豪gl儀表台上面那個小燈是什麼 瀏覽:548
在小縣城辦機械廠有什麼扶持嗎 瀏覽:918
液晶儀表怎麼點亮 瀏覽:588
數控機床怎麼加工都光滑 瀏覽:694
接觸器中滅弧裝置的作用 瀏覽:93
荒野行動設備被封禁怎麼查詢 瀏覽:316
cgw閥門排氣什麼水平 瀏覽:385
賓士怎麼設置儀表盤上的照片 瀏覽:980
水箱中應設閥門的管道是 瀏覽:469
進口超聲儀器有哪些 瀏覽:247
盤車裝置作用位置 瀏覽:471
吸氧腐蝕的實驗裝置 瀏覽:721