『壹』 想要發生核聚變要克服那些阻力靜電力還有什麼力
核聚變的定義:
核聚變是指由質量小的原子,主要是指氘或氚,在一定條件下(如超高溫和高壓),發生原子核互相聚合作用,生成新的質量更重的原子核,並伴隨著巨大的能量釋放的一種核反應形式。原子核中蘊藏巨大的能量,原子核的變化(從一種原子核變化為另外一種原子核)往往伴隨著能量的釋放。如果是由重的原子核變化為輕的原子核,叫核裂變,如原子彈爆炸;如果是由輕的原子核變化為重的原子核,叫核聚變,如太陽發光發熱的能量來源。
相比核裂變,核聚變幾乎不會帶來放射性污染等環境問題,而且其原料可直接取自海水中的氘,來源幾乎取之不盡,是理想的能源方式。
目前人類已經可以實現不受控制的核聚變,如氫彈的爆炸。但是要想能量可被人類有效利用,必須能夠合理的控制核聚變的速度和規模,實現持續、平穩的能量輸出。科學家正努力研究如何控制核聚變,但是現在看來還有很長的路要走。
目前主要的幾種可控核聚變方式:
超聲波核聚變
激光約束(慣性約束)核聚變
磁約束核聚變(托卡馬克)
核聚變的另一定義
比原子彈威力更大的核武器—氫彈,就是利用核聚變來發揮作用的。核聚變的過程與核裂變相反,是幾個原子核聚合成一個原子核的過程。只有較輕的原子核才能發生核聚變,比如氫的同位素氘()、氚(chuan)等。核聚變也會放出巨大的能量,而且比核裂變放出的能量更大。太陽內部連續進行著氫聚變成氦過程,它的光和熱就是由核聚變產生的。
核聚變能釋放出巨大的能量,但目前人們只能在氫彈爆炸的一瞬間實現非受控的人工核聚變。而要利用人工核聚變產生的巨大能量為人類服務,就必須使核聚變在人們的控制下進行,這就是受控核聚變。
實現受控核聚變具有極其誘人的前景。不僅因為核聚變能放出巨大的能量,而且由於核聚變所需的原料——氫的同位素氘可以從海水中提取。經過計算,1升海水中提取出的氘進行核聚變放出的能量相當於100升汽油燃燒釋放的能量。全世界的海水幾乎是「取之不盡」的,因此受控核聚變的研究成功將使人類擺脫能源危機的困擾。
但是人們現在還不能進行受控核聚變,這主要是因為進行核聚變需要的條件非常苛刻。發生核聚變需要在1億度的高溫下才能進行,因此又叫熱核反應。可以想像,沒有什麼材料能經受得起1億度的高溫。此外還有許多難以想像的困難需要去克服。盡管存在著許多困難,人們經過不斷研究已取得了可喜的進展。科學家們設計了許多巧妙的方法,如用強大的磁場來約束反應,用強大的激光來加熱原子等。可以預計,人們最終將掌握控制核聚變的方法,讓核聚變為人類服務。
利用核能的最終目標是要實現受控核聚變。裂變時靠原子核分裂而釋出能量。聚變時則由較輕的原子核聚合成較重的較重的原子核而釋出能量。最常見的是由氫的同位素氘(讀"刀",又叫重氫)和氚(讀"川",又叫超重氫)聚合成較重的原子核如氦而釋出能量。 核聚變較之核裂變有兩個重大優點。一是地球上蘊藏的核聚變能遠比核裂變能豐富得多。據測算,每升海水中含有0.03克氘,所以地球上僅在海水中就有45萬億噸氘。1升海水中所含的氘,經過核聚變可提供相當於300升汽油燃燒後釋放出的能量。地球上蘊藏的核聚變能約為蘊藏的可進行核裂變元素所能釋出的全部核裂變能的1000萬倍,可以說是取之不竭的能源。至於氚,雖然自然界中不存在,但靠中子同鋰作用可以產生,而海水中也含有大量鋰。
第二個優點是既干凈又安全。因為它不會產生污染環境的放射性物質,所以是干凈的。同時受控核聚變反應可在稀薄的氣體中持續地穩定進行,所以是安全的。
目前實現核聚變已有不少方法。最早的著名方法是"托卡馬克"型磁場約束法。它是利用通過強大電流所產生的強大磁場,把等離子體約束在很小范圍內以實現上述三個條件。雖然在實驗室條件下已接近於成功,但要達到工業應用還差得遠。按照目前技術水平,要建立托卡馬克型核聚變裝置,需要幾千億美元。
另一種實現核聚變的方法是慣性約束法。慣性約束核聚變是把幾毫克的氘和氚的混合氣體或固體,裝入直徑約幾毫米的小球內。從外面均勻射入激光束或粒子束,球面因吸收能量而向外蒸發,受它的反作用,球面內層向內擠壓(反作用力是一種慣性力,靠它使氣體約束,所以稱為慣性約束),就像噴氣飛機氣體往後噴而推動飛機前飛一樣,小球內氣體受擠壓而壓力升高,並伴隨著溫度的急劇升高。當溫度達到所需要的點火溫度(大概需要幾十億度)時,小球內氣體便發生爆炸,並產生大量熱能。這種爆炸過程時間很短,只有幾個皮秒(1皮等於1萬億分之一)。如每秒鍾發生三四次這樣的爆炸並且連續不斷地進行下去,所釋放出的能量就相當於百萬千瓦級的發電站。
原理上雖然就這么簡單,但是現有的激光束或粒子束所能達到的功率,離需要的還差幾十倍、甚至幾百倍,加上其他種種技術上的問題,使慣性約束核聚變仍是可望而不可及的。
盡管實現受控熱核聚變仍有漫長艱難的路程需要我們征服,但其美好前景的巨大誘惑力,正吸引著各國科學家在奮力攀登。
補充內容:
每克氘聚變時所釋放的能量為5.8×108kJ,大於每克U-235裂變時所釋放的能量(8.2×107KJ)。從能源的角度考慮,核聚變有幾個方面比核裂變優越:其一,聚變產物是穩定的氦核,沒有放射性污染產生,沒有難於處理的廢料;其二,聚變原料氘的資源比較豐富,在海水中氘和氫之比為1.5×10-4∶1,地球上海水總量約為1018噸,其中蘊藏著大量的氘,提煉氘比提煉鈾容易得多。遺憾的是這個聚變反應需要非常高的溫度,以克服兩個帶正電的氘核之間的巨大排斥力(從理論計算,要克服這種庫侖斥力需要109℃的高溫)。氫彈的製造原理,就是利用一個小的原子彈作為引爆裝置,產生瞬間高溫引發上述聚變反應發生強烈爆炸。氫元素的幾種同位素之間能發生多種聚變反應,這種變化過程存在於宇宙之間,太陽輻射出來的巨大能量就來源於這類核聚變。但我們目前尚沒有辦法在地球上利用這類核聚變發電,怎樣能取得這樣高的溫度?用什麼材料製造反應器?怎樣控制聚變過程等各種問題尚無答案。
『貳』 核聚變到底有多難為什麼中學生都能造,科學家卻50年造不出
10月9日,吉尼斯世界紀錄網站發布了一個公告,來自美國田納西州,現年15歲的傑克遜·奧斯瓦爾特,成為有史以來最年輕的,製造出核聚變反應堆的個人(製造出核聚變堆時離13歲還有幾天,審核了2年)!
我們恭喜他,但請勿盲目崇拜,畢竟這距離真正的核聚變還有一光年距離!
『叄』 全超導托卡馬克核聚變實驗裝置的基本原理
核能是能源家族的新成員,包括裂變能和聚變能兩種主要形式。裂變能是重金屬元素的核子通過裂變而釋放的巨大能量。受控核裂變技術的發展已使裂變能的應用實現了商用化,如核(裂變)電站。裂變需要的鈾等重金屬元素在地球上含量稀少,而且常規裂變反應堆會產生放射性較強的核廢料,這些因素限制了裂變能的發展。聚變能是兩個較輕的原子核聚合為一個較重的原子核並釋放出的能量。目前開展的受控核聚變研究正是致力於實現聚變能的和平利用。其實,人類已經實現了氘氚核聚變--氫彈爆炸,但那是不可控制的瞬間能量釋放,人類更需要受控核聚變。維系聚變的燃料是氫的同位素氘和氚,氘在地球的海水中有極其豐富的蘊藏量。經測算,l升海水所含氘產生的聚變能等同於300升汽油所釋放的能量。海水中氘的儲量可使人類使用幾十億年。特別的,聚變產生的廢料為氦氣,是清潔和安全的。因此,聚變能是一種無限的、清潔的、安全的新能源。這就是世界各國尤其是發達國家不遺餘力競相研究、開發聚變能的根本原因。
受控熱核聚變能的研究主要有兩種--慣性約束核聚變和磁約束核聚變。前者利用超高強度的激光在極短的時間內輻照氘氚靶來實現聚變,後者則利用強磁場可很好地約束帶電粒子的特性,將氘氚氣體約束在一個特殊的磁容器中並加熱至數億攝氏度高溫,實現聚變反應。
托卡馬克(Tokamak)是前蘇聯科學家於20世紀50年代發明的環形磁約束受控核聚變實驗裝置。經過近半個世紀的努力,在托卡馬克上產生聚變能的科學可行性已被證實,但相關結果都是以短脈沖形式產生的,與實際反應堆的連續運行有較大距離。超導技術成功地應用於產生托卡馬克強磁場的線圈上,是受控熱核聚變能研究的一個重大突破。超導托卡馬克使磁約束位形能連續穩態運行,是公認的探索和解決未來聚變反應堆工程及物理問題的最有效的途徑。目前建造超導裝置開展聚變研究已成為國際熱潮。
托克馬克從本質上說是一種脈沖裝置,因為等離子體電流是通過感應方式驅動的。但是,存在所謂的「先進托克馬克」運行的可能性,即它們可以利用非感應外部驅動和發生在等離子體內的自然的壓強驅動電流相結合而實現運行。它們需要仔細地調節壓強和約束使之最佳化。在理論和實驗上正在研究這種先進托克馬克,因為連續運行對聚變功率的產生是最有希望的,其相對小的尺寸導致比類ITER設計更經濟的電站。先進超導托克馬克實驗裝置是指裝置的環向磁場和極向磁場線圈都是超導材料繞制而成的,它可以大大節省供電功率,長時間維持磁體工作,並且可以得到較高的磁場。
等離子體物理研究所主要從事高溫等離子體物理、受控熱核聚變技術的研究以及相關高技術的開發研究工作,擔負著國家核聚變大科學工程的建設和研究任務,先後建成HT-6B、HT-6M等托卡馬克實驗裝置。1994年底,等離子體所成功地建成我國第一台大型超導托卡馬克裝置HT-7,使我國進入超導托卡馬克研究階段,研究成果引起了國際聚變界的廣泛關注。「九五」國家重大科學工程--大型非圓截面全超導托卡馬克核聚變實驗裝置EAST計劃的實施,標志著我國進入國際大型聚變裝置(近堆芯參數條件)的實驗研究階段,表明中國核聚變研究在國際上已佔有重要地位。
『肆』 求一篇關於核聚變的文章
人造太陽——擋不住的誘惑Comments>>
科學松鼠會 發表於 2011-06-05 09:05
萬物生長靠太陽,人類生存自然也離不開太陽。我們生火煮飯的柴草來自太陽,水力發電來自太陽,汽車里燃燒的汽油來自太陽……實際上,迄今為止,除了核能以外,我們使用的所有能源幾乎都來自太陽。太陽像所有的恆星一樣進行著簡單的熱核聚變,向外無休止地輻射著能量。
我們現今所使用的能源,有些直接來自太陽,有些是太陽能轉化的能源,像水能、風能、生物能,有些是早期由太陽能轉化來的一直儲存在地球上的能源,像煤炭、石油這樣的化石燃料。人類社會發展到今天,僅靠太陽給予的可用能源已經不夠用了。人類能源消耗快速增加,水能的開發幾近到達極限,風能、太陽能無法形成規模。我們今天使用的主要能源是化石燃料,再有100多年即將用盡。人們還抱怨化石燃料對大氣造成了污染,增加了溫室氣體。要知道它們是太陽和地球用了上億年才形成的,但只夠人類使用三四百年,而且它們是不可再生的。另外,煤炭、石油等是人類重要的自然資源,作為燃料燒掉是非常可惜的。人們無不擔心,煤和石油燒完了,而其他能源又接替不上該怎麼辦?能源危機開始困擾著人類,人們一直在尋找各種可能的未來能源,以維持人類社會的持續發展。
造一個太陽
細心的人會發現,在元素周期表中,雖然元素是由質子和中子成對增加依次構成的,但是原子的重量卻不是按質子和中子的增加而等量增加的。在較輕的原子中,質子和中子的重量偏重,如果兩個輕的原子合成一個重原子,兩個輕原子的原子量之和往往重於合成的重原子。同樣,在較重的原子中,質子和中子的重量也偏重,一個重原子分裂為兩個輕原子,重原子的原子量一般重於兩個輕原子之和。只是在鐵元素附近的原子中,質子和中子的重量偏輕。由此可見,在原子核反應中,質量是不守恆的,即出現了所謂的質量虧損。這些質量到哪裡去了呢?按照愛因斯坦的質能關系公式E=mc2,虧損的質量轉換為能量,由於c2是個巨大的系數,很小的質量就可釋放出巨大的能量。科學家正是基於這一點,利用重金屬的核裂變製造出了原子彈,利用輕元素的核聚變製造出了氫彈。
原子彈和氫彈的巨大威力令人懼怕,同時也讓人們興奮,因為原子中蘊藏的能量太大了,能否利用這種能源是人們自然想到的問題。原子彈和氫彈中的巨大能量是在瞬間釋放出來的,而要作為常規能源使用,就必須實現可控制的核裂變和核聚變。對於核裂變來說,控制起來相對比較容易,裂變核電站早已經實現商業運行。但能用來產生核裂變的鈾235等重金屬元素在地球上含量稀少,而且常規裂變反應堆會產生長壽命的放射性較強的核廢料,這些因素限制了裂變能的發展。
對人們來說,最具誘惑力的自然是核聚變,它的單位質量產生的能量比核裂變還要大幾倍。實際上,宇宙中最常見的就是氫元素的聚變反應,所有的恆星幾乎都在燃燒著氫,因為氫是宇宙中最豐富的元素。氫的聚變反映在太陽上(還有少量其他核聚變)已經持續了近50億年,至少還可以再燃燒50億年。氫在地球上也是非常豐富的,每個水分子中都有2個氫原子,但最容易實現的聚變反應是氫的同位素—氘與氚的聚變(氫彈就是這種形式的聚變)。氘和氚發生聚變後,2個原子核結合成1個氦原子核,並放出1個中子和17.6兆電子伏特能量。就氘來說,它是海水中重水(水分子為H2O,重水為D2O,只佔海水中的一小部分)的組成元素,海水中大約每6500個氫原子中有1個氘原子。每升水約含30毫克氘(產生的聚變能量相當於300升汽油),其儲量就多達40萬億噸。一座1000兆瓦的核聚變電站,每年耗氘量只需304公斤,海水中的氘足夠人類使用上百億年,這就比太陽的壽命還要長了,更不要說再使用氫了。另外,除氚具有放射性危險之外,氘-氚聚變反應不產生長壽命的強放射性核廢料,其少量放射性廢料也很快失去放射性。氘-氘反應沒有任何放射性。可以說氫及其同位素的聚變反應是一種高效清潔的能源,而且真正是用之不絕。既然恆星上都在進行著這樣的核聚變,地球上也不缺這種核聚變的原料,只要實現可控的核聚變,就可以造出一個供人們永久使用的「太陽」。實際上,自從人們揭開太陽燃燒的秘密以來,就一直希望模仿太陽在地球上實現核聚變從而為人類提供無盡的能源。盡管50多年過去了,人們只見到了氫彈的爆炸,而沒有看到一座核聚變發電站的出現,但它誘人的前景依然是人們心中一個割捨不去的夢。
比想像的要難
在太陽上由於引力巨大,氫的聚變可以自然地發生,但在地球上的自然條件下卻無法實現自發的持續核聚變。在氫彈中,爆發是在瞬間發生並完成的,可以用一個原子彈提供高溫和高壓,引發核聚變,但在反應堆里,不宜採用這種方式,否則反應會難以控制。
根據核聚變發生的機理,要實現可控制的核聚變實際上比造個太陽要難多了。我們知道,所有原子核都帶正電,兩個原子核要聚到一起,必須克服靜電斥力。兩個核之間靠得越近,靜電產生的斥力就越大,只有當它們之間互相接近的距離達到大約萬億分之三毫米時,核力(強作用力)才會伸出強有力的手,把它們拉到一起,從而放出巨大的能量。要使它們聯起手來並不難,難的是既要讓它們有拉手的機會又不能讓他們過於頻繁地拉手。要使它們有機會拉手,就要使粒子間有足夠的高速碰撞的機會,這可以增加原子核的密度和運動速度。但增加原子核的密度是有限制的,否則一旦反應加速,自身放出的能量會使反應瞬間爆發。據計算,在維持一定的密度下,粒子的溫度要達到1~2億度才行,這要比太陽上的溫度(中心溫度1500萬度,表面也有6000度)還要高許多。但這樣高的溫度拿什麼容器來裝它們呢?
這個問題並沒有難倒科學家,20世紀50年代初,蘇聯科學家塔姆和薩哈羅夫提出磁約束的概念。蘇聯庫爾恰托夫原子能研究所的阿奇莫維奇按照這樣的思路,不斷進行研究和改進,於1954年建成了第一個磁約束裝置。他將這一形如麵包圈的環形容器命名為托卡馬克(tokamak)。托卡馬克是「磁線圈圓環室」的俄文縮寫,又稱環流器。這是一個由封閉磁場組成的「容器」,像一個中空的麵包圈,可用來約束電離了的等離子體。我們知道,一般物質到達10萬度時,原子中的電子就脫離了原子核的束縛,形成等離子體。等離子體是由帶正電的原子核和帶負電的電子組成的氣體,整體是電中性的。在磁場中,它們的每個粒子都是顯電性的,帶電粒子會沿磁力線做螺旋式運動,所以等離子體就這樣被約束在這種環形的磁場中。這種環形的磁場又叫磁瓶或磁籠,看不見,摸不著,也不接觸有形的物體,因而也就不怕什麼高溫了,它可以把炙熱的等離子體托舉在空中。
人們本來設想,有了「麵包爐」,只需把氘、氚放入爐內加火烤制,把握好火候,能量就應該流出來。其實不然,人們接著遇到的麻煩是,在加熱等離子體的過程中能量耗散嚴重,溫度越高,耗散越大。一方面,高溫下粒子的碰撞使等離子體的粒子會一步一步地橫越磁力線,攜帶能量逃逸;另一方面,高溫下的電磁輻射也要帶走能量。這樣,要想把氘、氚等離子體加熱到所需的溫度,不是件容易的事。另外,磁場和等離子體之間的邊界會逐漸模糊,等離子體會從磁籠里鑽出去,而且當約束等離子體的磁場一旦出現變形,就會變得極不穩定,造成磁籠斷開或等離子體碰到聚變反應室的內壁上。
步步逼近
托卡馬克中等離子體的束縛是靠縱場(環向場)線圈,產生環向磁場,約束等離子體,極向場控制等離子體的位置和形狀,中心螺管也產生垂直場,形成環向高電壓,激發等離子體,同時加熱等離子體,也起到控制等離子體的作用。
幾十年來,人們一直在研究和改進磁場的形態和性質,以達到長時間的等離子體的穩定約束;還要解決等離子體的加熱方法和手段,以達到聚變所要求的溫度;在此基礎上,還要解決維持運轉所耗費的能量大於輸出能量的問題。每一次等離子體放電時間的延長,人們都為之興奮;每一次溫度的提高,人們都為之歡呼;每一次輸出能量的提高,都意味著我們離聚變能的應用更近了一步。盡管取得了很大進步,但障礙還是沒有克服。到目前為止,托卡馬克裝置都是脈沖式的,等離子體約束時間很短,大多以毫秒計算,個別可達到分鍾級,還沒有一台托卡馬克裝置實現長時間的穩態運行,而且在能量輸出上也沒有做到不賠本運轉。
為了維持強大的約束磁場,電流的強度非常大,時間長了,線圈就要發熱。從這個角度來說,常規托卡馬克裝置不可能長時間運轉。為了解決這個問題,人們把最新的超導技術引入到托卡馬克裝置中,也許這是解決托卡馬克穩態運轉的有效手段之一。目前,法國、日本、俄羅斯和中國共有4個超導的托卡馬克裝置在運行,它們都只有縱向場線圈採用超導技術,屬於部分超導。其中法國的超導托卡馬克Tore-Supra體積較大,它是世界上第一個真正實現高參數准穩態運行的裝置,在放電時間長達120秒的條件下,等離子體溫度為2000萬度,中心粒子密度每立方米1.5×1019個。中國和韓國正在建造全超導的托卡馬克裝置,目標是實現托卡馬克更長時間的穩態運行。
50年來,全世界共建造了上百個托卡馬克裝置,在改善磁場約束和等離子體加熱上下足了功夫。在上世紀70年代,人們對約束磁場研究有了重大進展,通過改變約束磁場的分布和位形,解決了等離子體粒子的側向漂移問題。世界范圍內掀起了托卡馬克的研究熱潮。美國、歐洲、日本、蘇聯建造了四個大型托卡馬克,即美國1982年在普林斯頓大學建成的托卡馬克聚變實驗反應堆(TFTR),歐洲1983年6月在英國建成更大裝置的歐洲聯合環(JET),日本1985年建成的JT-60,蘇聯1982年建成超導磁體的T-15,它們後來在磁約束聚變研究中做出了決定性的貢獻。特別是歐洲的JET已經實現了氘、氚的聚變反應。1991年11月,JET將含有14%的氚和86%的氘混合燃料加熱到了攝氏3億度,聚變能量約束時間達2秒。反應持續1分鍾,產生了1018個聚變反應中子,聚變反應輸出功率約1.8兆瓦。1997年9月22日創造了核聚變輸出功率12.9兆瓦的新記錄。這一輸出功率已達到當時輸入功率的60%。不久輸出功率又提高到16.1兆瓦。在托卡馬克上最高輸出與輸入功率比已達1.25。
中國的核聚變研究也有較快的發展,西南物理研究院1984年建成中國環流器一號(HL-1),1995年建成中國環流器新一號。中國科學院等離子體物理研究所1995年建成超導裝置HT-7。HT-7是前蘇聯無償贈送給中國的一套縱向超導的托卡馬克實驗裝置,經等離子體物理研究所的不斷改進,它已成為一個寵大的實驗系統。它包括HT-7超導托卡馬克裝置本體、大型超高真空系統、大型計算機控制和數據採集處理系統、大型高功率脈沖電源及其迴路系統、全國規模最大的低溫氦製冷系統、兆瓦級低雜波電流驅動和射頻波加熱系統以及數十種復雜的診斷測量系統。在十幾次實驗中,取得若干具有國際影響的重大科研成果。特別是在2003年3月31日,實驗取得了重大突破,獲得超過1分鍾的等離子體放電,這是繼法國之後第二個能產生分鍾量級高溫等離子體放電的托卡馬克裝置。在HT-7的基礎上,等離子體物理研究所研製和設計了全超導托卡馬克裝置HT-7U(後來名字更改為EAST,Experimental Advanced Superconcting Tokamak)。
EAST或者稱「實驗型先進超導托卡馬克」,是一台全超導托卡馬克裝置,受到國際同行的矚目。國際專家普遍認為,EAST可能將成為世界上第一個可實現穩態運行、具有全超導磁體和主動冷卻第一壁結構的托卡馬克。該裝置有真正意義的全超導和非圓截面特性,更有利於科學家探索等離子體穩態先進運行模式,其工程建設和物理研究將為「國際熱核聚變實驗堆」(ITER)的建設提供直接經驗和基礎。
為了達到聚變所要求的條件,托卡馬克已經變為一個高度復雜的裝置,十八般武藝全用上了,其中有超大電流、超強磁場、超高溫、超低溫等極限環境,對工藝和材料也提出了極高的要求,從堆芯上億度的高溫到線圈中零下269度的低溫,就可見一斑。
合作之路
從上個世紀50年代初,美國和蘇聯分別開始秘密地研究可控的核聚變,因為核聚變反應堆不僅可以獲取用之不絕的能源,還可以用作穩定的中子源,例如可用來生產核裂變原料。但理論研究和實驗技術上遇到一個又一個難以逾越的障礙,不久獨立進行研究的各國就認識到這件事並不容易,只有開展廣泛的國際合作才是加速實現核聚變能利用的可行之路。隨後逐漸相互公開研究資料和進展,開始了合作之路。即使在冷戰時期,其他核技術都是相互保密的,惟獨熱核聚變技術是相互公開的。
1985年,美國總統里根和蘇聯總統戈爾巴喬夫,在一次首腦會議上倡議開展一個核聚變研究的國際合作計劃,要求「在核聚變能方面進行最廣泛的、切實可行的國際合作」。戈爾巴喬夫、里根和法國總統密特朗後來又進行了幾次高層會晤,支持在國際原子能機構主持下,進行國際熱核實驗反應堆,即ITER的概念設計和輔助研究開發方面的合作。
1987年春,國際原子能機構總幹事邀請歐共體、日本、美國和加拿大、蘇聯的代表在維也納開會,討論加強核聚變研究的國際合作問題,並達成協議,四方合作設計建造國際熱核實驗堆,並由此誕生了第一個國際熱核實驗堆的概念設計計劃。計劃將於2010年建成一個實驗堆,預期產生熱功率1500兆瓦、等離子體電流2400萬安培,燃燒時間可達16分鍾。
隨後,由於蘇聯的解體,計劃受到很大影響,1999年美國的退出使ITER計劃雪上加霜。日本和歐共體國家於是成為支持國際磁約束聚變研究計劃的主體力量。經過多年的努力,ITER工程設計修改方案也終於在2001年6月圓滿完成。
根據計劃,首座熱核反應堆總造價為約40億歐元。聚變功率至少達到500兆瓦。等離子體的最大半徑6米,最小半徑2米,等離子體電流1500萬安培,約束時間至少維持400秒。未來發展計劃包括一座原型聚變堆在2025年前投入運行,一座示範聚變堆在2040年前投入運行。
2003年2月18日,美國宣布重新加入這一大型國際計劃,中國也於前一個月正式加入該項計劃的前期談判。19日,國際熱核實驗反應堆計劃參與各方在俄羅斯聖彼得堡決定,將於2013年前在日本、西班牙、法國和加拿大四國中的一個國家中建成世界上第一座熱核反應堆。
2003年12月20日在華盛頓召開的一次非常熱鬧的會議上出現了兩軍對壘的形勢:歐盟、中國和俄羅斯主張把反應堆建在法國的卡達拉齊(Cadarache),而美國、南朝鮮和日本則主張建在日本的六所村。因為沒有選擇加拿大作為反應堆候選國,加拿大政府隨後宣布,由於缺乏資金退出該項目。
最終的ITER參與國
ITER的相關會議確定,反應堆所在國出資48%,其他國家各出資10%。經過各項細節談判,2007年反應堆終於在法國南部的卡達拉齊開始動工建造。
盡管ITER計劃採用了最先進的設計,綜合了以往的經驗和成果,比如採用全超導技術,但它的確還面臨重重挑戰。即使它能如期在2018年如期建成,這個10層樓高的龐大機器能否達到預期目標也還是個未知數。諸如探索新的加熱方式與機制為實現聚變點火,改善等離子體的約束性能,反常輸運與漲落現象研究等前沿課題,偏濾器的排灰、大破裂的防禦、密度極限、長脈沖H-模的維持、中心區雜質積累等工程技術難關還有待於各國科技工作者群力攻關。即使對ITER的科學研究真的成功了,聚變發電站至少還要30~50年以後才能實現。
盡管如此,我們還是看到了人造太陽露出的晨曦
『伍』 受控核聚變實驗裝置是什麼裝置
如同某些重原子能發生裂變,同時釋放出巨大的能量一樣,某些輕核也能聚變成較重的核,並釋放出比裂變時大幾倍甚至幾十倍的能量。因此,輕核聚變將是人類獲得核能的另一條更有遠大前景的途徑。人們開展了很多這方面的研究,力求在人為可控的條件下將輕原子核(主要為氘、氚等)聚合成較重的原子核,同時釋放出巨大能量——這就是所謂的受控核聚變。由於氘在地球的海水中藏量豐富,多達40萬億噸,且反應產物是無放射性污染的氦,因此它具有釋放能量密度高、燃料豐富、成本低廉、與環境兼容性強、安全性好等優點。
然而由於聚變反應能夠自持進行的條件十分苛刻,要首先使燃料處於等離子體狀態,並使等離子體的溫度達到幾千萬度甚至幾億度並持續足夠長的熱能約束時間,原子核才可以克服斥力聚合在一起,所以受控核聚變的實現極其艱難。目前這方面的研究分慣性約束和磁約束兩種途徑。慣性約束是利用超高強度的激光在極短的時間內輻照靶板來產生聚變;磁約束是利用強磁場可以很好的約束帶電粒子的特性,構造一個特殊的磁容器,建成聚變反應堆。20世紀下半葉,聚變能的研究取得了重大進展,利用一種環行磁約束裝置——托卡馬克研究領先於其他途徑。
中國一直很重視這方面的研究。中國核工業西南物理學院於1986年自行研製成功托卡馬克研究裝置——「中國環流器一號」。1994年他們又研製成「中國環流器新一號裝置」,更在2002年12月研製成功「中國環流器二號A裝置」。位於中國安徽省合肥市的中國科學院等離子體物理研究所承擔的HT一7超導托卡馬克實驗在2002年至2003年冬季取得了重大進展,該裝置是將超導技術成功應用於產生托卡馬克磁場的線圈上,使得磁約束的連續穩態運行成為現實。這是受控核聚變研究的一次重大突破。中科院等離子體所的HT-7托卡馬克實驗裝置成功的實現了在低雜波驅動下電子溫度超過500萬度、中心密度大於1.0×1019/m3、長達20秒可重復的高溫等離子體放電;實現了電子溫度超過1000萬度、中心密度大於1.2×1.0 x 1019/m3、超導10秒的等離子體放電。在離子伯恩斯波和低雜波協同作用下,實現放電脈沖長度大於100倍能量約束時間、電子溫度2000萬度的高約束穩態運行;最高電子溫度超過3000萬度。
等離子所取得的重大進展表明,HT-7超導托卡馬克裝置已經成為世界上第二個放電長度達到1000倍熱能約束時間。溫度為1000萬度以上,能對穩態先進運行模式展開深入的物理和相關工程技術研究的超導裝置,在穩態高約束運行長度上已達到世界領先水平。
『陸』 全超導托卡馬克核聚變實驗裝置的研究成果
HT-7裝置1995年投入運行,經過多方面的改進和完善,裝置運行的整體性能和水平有了很大的提高。13年來,物理實驗不斷取得重大進展和突破,獲得了一系列國際先進或獨具特色的成果。
在中心等離子體密度大於2.2×1019/m3條件下,最高電子溫度超過5 000萬度;獲得可重復大於60秒(最長達到63.95秒)、中心電子溫度接近500萬度、中心密度大於0.8×1019/m3的非感應全波驅動的高溫等離子體;成功地實現了306秒的穩態等離子體放電,等離子體電流60kA,中心電子密度0.8×1019/m3,中心電子溫度約1 000萬度;2008年春季,HT-7超導托卡馬克物理實驗再次創下新紀錄:連續重復實現了長達400秒的等離子體放電,電子溫度1 200萬度,中心密度0.5×1019/m3。這是目前國際同類裝置中時間最長的高溫等離子體放電。
同時,還在HT-7上開展了石墨限制器條件下的運行模式、等離子體物理特性和波加熱、波驅動高參數等離子體物理特性以及高參數、長脈沖運行模式等世界核聚變前沿課題的研究,出色完成了國家「863」計劃和中科院重大課題研究任務。HT-7實驗的成功使中國磁約束聚變研究進入世界先進行列,也使HT-7成為世界上(EAST建成之前的)第二個全面開放的、可進行高參數穩態條件下等離子體物理研究的公共實驗平台。
EAST在2007年1-2月的第二輪等離子體放電實驗中,獲得了穩定、可控具有大拉長比的偏濾器位形等離子體放電,最大等離子體電流達0.5MA,在0.2MA等離子體電流下最長放電達9秒,並成功完成了磁體、低溫、總控和保護、等離子體控制等多項重要工程測試和物理實驗。
2016年2月,中國EAST物理實驗獲重大突破,成功實現電子溫度超過5000萬度、持續時間達102秒的超高溫長脈沖等離子體放電。這也是截至2016年2月國際托卡馬克實驗裝置上電子溫度達到5000萬度持續時間最長的等離子體放電。標志著中國在穩態磁約束聚變研究方面繼續走在國際前列。 發展目標:通過15年(2006-2020)的努力,使EAST成為我國磁約束聚變能研究發展戰略體系中最重要的知識源頭,使我國核聚變能開發技術水平進入世界先進行列。同時,積極參與國際合作,消化、吸收、掌握聚變堆關鍵科學與技術,鍛煉隊伍,培養人才,儲備技術,使得我國有能力獨立設計和建設(或參與國際合作)聚變能示範堆。
HT-7裝置是國際上正在運行的(EAST投入正式運行之前)第二大超導托卡馬克裝置,配合EAST的科學目標開展高溫等離子體的穩態運行技術和相關物理問題的研究,其穩態高參數等離子體物理實驗結果和工程技術發展對EAST最終科學目標的實現和國際聚變研究都具有重要的直接意義。
EAST的科學研究分三個階段實施:
第一階段(3-5年):長脈沖實驗平台的建設;第二階段(約5年):實現其科學目標,為ITER先進運行模式奠定基礎;第三階段(約5年):長脈沖近堆芯下的實驗研究。
EAST將對國內外聚變同行全面開放,結合國內外聚變的科學、技術和人才優勢,開展磁約束聚變的科學和技術研究,培養國內磁約束聚變人才,為中國聚變能的發展奠定基礎。
『柒』 可持續核聚變反應堆的裝置原理
這位發言人說:「要想發生核聚變燃燒與增益,首先必須『點燃』由氫的同位素氘和氚構成的特殊燃料。20世紀70年代,科學家開始利用強大的激光束進行試驗,壓縮和加熱氫的同位素,使其達到它們的熔點,這一技術被稱作慣性約束核聚變。利用激光束快速加熱,導致目標物的最外層發生爆炸。根據牛頓的第三定律,目標物的剩餘部分在強烈內爆的驅使下,內部的燃料受壓壓縮,形成一個沖擊波,這會進一步加熱中心區域的燃料,導致可持續性燃燒,即已知的點火。」
計算機自動控制集成系統所在地國家點火裝置控制室,是模仿德克薩斯州休斯頓美國宇航局的任務控制中心建設的,它是有史以來為科學儀器設計的最復雜的自動控制系統之一。國家點火裝置的一位發言人說:「它的850台電腦使激光束的間隔不超過50微米。」
『捌』 磁約束核聚變的基本原理
磁約束(magnetic confinement),用磁場來約束等離子體中帶電粒子的運動。主要為可控核聚變提供理論與技術支持,其主要形式為托卡馬克裝置與仿星器裝置。
基本原理
磁約束的基本原理是帶電粒子在磁場中受的洛倫茲力。
物理原理
氘、氚等較輕的原子核聚合成較重的原子核時,會釋放大量核能,但這種聚變反應只能在極高溫下進行,任何固體材料都將熔毀。因此,需要用特殊形態的磁場把由氘、氚等原子核及自由電子組成的一定密度的高溫等離子體約束在有限體積內,使之脫離器壁並限制其熱導,這是實現受控熱核聚變的重要條件。
工作原理
兩端呈瓶頸狀的磁力線,因瓶頸處磁場較強(也稱作磁鏡)能將帶電粒子反射回來 ,從而限制粒子的縱向(沿磁力線方向)移動,使粒子在作迴旋運動的同時,不斷地來回穿梭,被約束在兩端的磁鏡之間,但是仍有一部分其軌道與磁力線的夾角小於某值的帶電粒子會逃逸出去。為了避免帶電粒子的流失,曾經把磁力線連同等離子體彎曲連接成環形;後來又改進為呈8字形的圓環形磁力線管,稱為仿星器;實驗上現最有成效的磁約束裝置是托卡馬克裝置,又稱環流器,它是環形螺線管,其中的磁力線具有螺旋形狀。
相關裝置
托卡馬克
環流器(即tokamak,音譯為托卡馬克)。它的名字來源於環形(toroidal)、真空室(kamera)、磁(magnet)、線圈(kotushka)。是目前性能最好的一種磁約束裝置。(下面是環流器的圖)
環流器
仿星器
為了避免帶電粒子的流失,科學家曾經把磁力線連同等離子體彎曲連接成環形。後來又改進為呈8字形的圓環形磁力線管,稱為仿星器。
盡管托卡馬克被認為是人類未來最具有實用價值的可控核聚變裝置,但仿星器也得到了世界不少科學家的研究興趣。仿星器最早是由 Lyman Spitzer發明的並且在第二年建成,它在50-60年代曾十分流行。
德國科學家認為,仿星器可能是最適合未來核聚變電廠的類型。德國正在建造的世界上最大的仿星器實驗室被命名為Wendelstein X-7。
行業活動
2014年9月4-5號,中國磁約束核聚變第二次戰略研討會在西安召開。會議形成共識,要加快制定我國磁約束核聚變技術路線圖,進一步明確目標,提出具體的解決方案,深入研究支持措施和對策。[1]
2014年3月15-16日,首次磁約束核聚變能發展研究戰略研討會在北京召開。會議分析了磁約束核聚變能研究國際動態、我國磁約束核聚變能專項部署情況、研究基礎和進展,從國內兩大托卡馬克裝置能力提升、聚變堆設計研究、等離子體物理理論與實驗、聚變材料、安全與防護、高校人才培養的效果評估與模式等方面對我國磁約束核聚變能發展戰略進行了研討。