導航:首頁 > 裝置知識 > dsc實驗裝置圖

dsc實驗裝置圖

發布時間:2022-07-18 06:34:50

⑴ 求教如何作DSC曲線

dsc:差示掃描量熱計;dta:差熱分析.我認為dsc(差示掃描量熱法)比較好,可以測定物質的熔點、比熱容、玻璃化轉變溫度、純度、結晶度等差熱掃描量熱儀——測量的結果是溫度差差示掃描量熱儀——測量的結果是熱流,定量性較好差熱分析
(dta)是在程序控制溫度條件下,測量樣品與參比物之間的溫度差與溫度關系的一種熱分析方法.差示掃描量熱法
(dsc)是在程序控制溫度條件下,測量輸入給樣品與參比物的功率差與溫度關系的一種熱分析方法.兩種方法的物理含義不一樣,dta僅可以測試相變溫度等溫度特徵點,dsc不僅可以測相變溫度點,而且可以測相變時的熱量變化.dta曲線上的放熱峰和吸熱峰無確定物理含義,而dsc曲線上的放熱峰和吸熱峰分別代表放出熱量和吸收熱量.dta與dsc區別的分析dta:差熱分析dsc:差示掃描量熱分析.兩者的原理基本相同,都是比較待測物質與參比物質隨溫度變化導致的熱性能的差別,同樣的材料可以得到形狀基本相同的曲線,反應材料相同的信息,但是實驗中兩者記錄的信息並不一樣.dta記錄的是以相同的速率加熱和冷卻過程中,待測物質因相變引起的熱熔變化導致的與參比物質溫度差別的變化.通常得到以溫度(時間)為橫坐標,溫差為縱坐標的曲線.dsc實驗中同樣需要參比物質和待測物質以相同的速率進行加熱和冷卻,但是記錄的信息是保持兩種樣品的溫度相同時,兩者之間的熱量之差.因此得到的曲線是溫度(時間)為橫坐標,熱量差為縱坐標的曲線.比較之下,因為dsc在實驗過程中,參比物質和待測物質始終保持溫度相等,所以兩者之間沒有熱傳遞,在定量計算時精度比較高.而dta只有在使用合適的參比物的情況下,峰面積才可以被轉換成熱量.再者,dsc適合低溫測量(低於700℃),而dta適合高溫測量(高於700℃).差熱分析法(dta)
dta的基本原理
差熱分析是在程序控制溫度下,測量物質與參比物之間的溫度差與溫度關系的一種技術.差熱分析曲線是描述樣品與參比物之間的溫差(δt)隨溫度或時間的變化關系.在dat試驗中,樣品溫度的變化是由於相轉變或反應的吸熱或放熱效應引起的.如:相轉變,熔化,結晶結構的轉變,沸騰,升華,蒸發,脫氫反應,斷裂或分解反應,氧化或還原反應,晶格結構的破壞和其它化學反應.一般說來,相轉變、脫氫還原和一些分解反應產生吸熱效應;而結晶、氧化和一些分解反應產生放熱效應.差熱分析的原理.將試樣和參比物分別放入坩堝,置於爐中以一定速率
進行程序升溫,以
表示各自的溫度,設試樣和參比物(包括容器、溫差電偶等)的熱容量cs、cr不隨溫度而變.在0-a區間,δt大體上是一致的,形成dta曲線的基線.隨著溫度的增加,試樣產生了熱效應(例如相轉變),則與參比物間的溫差變大,在dta曲線中表現為峰.顯然,溫差越大,峰也越大,試樣發生變化的次數多,峰的數目也多,所以各種吸熱和放熱峰的個數、形狀和位置與相應的溫度可用來定性地鑒定所研究的物質,而峰面積與熱量的變化有關.

⑵ 什麼是 TG-DSC

TG指的是熱重分析(Thermogravimetric Analysis的簡稱)
熱重分析是指在程序控制溫度下測量待測樣品的質量與溫度變化關系的一種熱分析技術,用來研究材料的熱穩定性和組份。TGA在研發和質量控制方面都是比較常用的檢測手段。熱重分析在實際的材料分析中經常與其他分析方法連用,進行綜合熱分析(通常用的最多的就是TG-DSC綜合熱分析法),全面准確分析材料。熱重分析指溫度在程序控制時,測量物質質量與溫度之間的關系的技術。這里值得一提的是,定義為質量的變化而不是重量變化是基於在磁場作用下,強磁性材料當達到居里點時,雖然無質量變化,卻有表觀失重。而熱重分析則指觀測試樣在受熱過程中實質上的質量變化。

DSC曲線
在操作中,通過單獨的加熱器補償樣品在加熱過程中發生的熱量變化,以保持樣品和參比物的溫差為零。這種補償能量(即樣品吸收或放出的熱量)所得的曲線稱DSC曲線。是以樣品吸熱或放熱的速率,即熱流量dQ/dt(單位mJ/s)為縱坐標,以時間t或溫度T為橫坐標。曲線離開基線的位移,代表樣品吸熱或放熱的速率;曲線中的峰或谷所包圍的面積,代表熱量的變化。可測定多種熱力學和動力學參數,如比熱容、焓變、反應熱、相圖、反應速率、結晶速率、高聚物結晶度、樣品線度等。

DSC 指的是示差掃描量熱(differential scanning calorimetry的簡稱)
示差掃描量熱法這項技術被廣泛應用於一系列應用,它既是一種例行的質量測試和作為一個研究工具。該設備易於校準,使用熔點低銦例如,是一種快速和可靠的方法熱分析示差掃描量熱法(DSC)是在程序控制溫度下,測量輸給物質和參比物的功率差與溫度關系的一種技術。DSC和DTA儀器裝置相似,所不同的是在試樣和參比物容器下裝有兩組補償加熱絲,當試樣在加熱過程中由於熱效應與參比物之間出現溫差ΔT時,通過差熱放大電路和差動熱量補償放大器,使流入補償電熱絲的電流發生變化,當試樣吸熱時,補償放大器使試樣一邊的電流立即增大;反之,當試樣放熱時則使參比物一邊的電流增大,直到兩邊熱量平衡,溫差ΔT消失為止。換句話說,試樣在熱反應時發生的熱量變化,由於及時輸入電功率而得到補償,所以實際記錄的是試樣和參比物下面兩只電熱補償的熱功率之差隨時間t的變化關系。如果升溫速率恆定,記錄的也就是熱功率之差隨溫度T的變化關系。

DSC曲線
在操作中,通過單獨的加熱器補償樣品在加熱過程中發生的熱量變化,以保持樣品和參比物的溫差為零。這種補償能量(即樣品吸收或放出的熱量)所得的曲線稱DSC曲線。是以樣品吸熱或放熱的速率,即熱流量dQ/dt(單位mJ/s)為縱坐標,以時間t或溫度T為橫坐標。曲線離開基線的位移,代表樣品吸熱或放熱的速率;曲線中的峰或谷所包圍的面積,代表熱量的變化。可測定多種熱力學和動力學參數,如比熱容、焓變、反應熱、相圖、反應速率、結晶速率、高聚物結晶度、樣品線度等。

⑶ DSC原理的差示掃描量熱儀(DSC)的基本原理

DSC原理的差示掃描量熱儀(DSC)的基本原理是試樣在熱反應時發生的熱量變化,由於及時輸入電功率而得到補償,所以記錄試樣和參比物下面兩只電熱補償的熱功率之差隨時間t的變化關系。

差示掃描量熱法有補償式和熱流式兩種。在差示掃描量熱中,為使試樣和參比物的溫差保持為零在單位時間所必需施加的熱量與溫度的關系曲線為DSC曲線。

曲線的縱軸為單位時間所加熱量,橫軸為溫度或時間。曲線的面積正比於熱焓的變化。DSC與DTA原理相同,但性能優於DTA,測定熱量比DTA准確,而且解析度和重現性也比DTA好。它可以用來研究生物膜結構和功能、蛋白質和核酸構象變化等。

(3)dsc實驗裝置圖擴展閱讀

差示掃描量熱儀 (Differential Scanning Calorimeter),測量的是與材料內部熱轉變相關的溫度、熱流的關系,應用范圍非常廣,特別是材料的研發、性能檢測與質量控制。

材料的特性,如玻璃化轉變溫度、冷結晶、相轉變、熔融、結晶、產品穩定性、固化/交聯、氧化誘導期等,都是差示掃描量熱儀的研究領域。

差示掃描量熱儀應用范圍:高分子材料的固化反應溫度和熱效應、物質相變溫度及其熱效應測定、高聚物材料的結晶、熔融溫度及其熱效應測定、高聚物材料的玻璃化轉變溫度。

主要特點:

1、全新的爐體結構,更好的解析度和解析度以及更好的基線穩定性。

2、數字式氣體質量流量計,精確控制吹掃氣體流量,數據直接記錄在資料庫中。

3、儀器可採用雙向控制(主機控制、軟體控制),界面友好,操作簡便。

⑷ DSC測試材料結晶度的原理是什麼

DSC測定結晶度原理:

結晶聚合物熔融時會放熱,聚合物熔融熱和其結晶度成正比,結晶度越高,熔融熱越大。因此DSC測定其結晶熔融時,得到的熔融峰曲線和基線所包圍的面積即為聚合物內結晶部分的熔融焓ΔHf。結晶度按下面公式計算:

⑸ DSC 差式掃描量熱分析 麻煩您幫我分析一下下面這兩個圖的凝固點分別是多少,融化點是多少,圖有點亂,謝

先討論第二個譜圖,因為它的後兩個峰明確:升溫階段,約500度是某熱效應,第二個強峰-吸熱峰-向下,我初步認為是結晶峰、或晶型轉變峰或晶相轉變峰。接下來那個第三個峰-吸熱峰-向下,就是熔融峰。再高就是熔融態(流變態)了。
下半部分是從熔融態降溫過程中的熱焓曲線。從熔融態降溫,先出現凝固峰-放熱峰-向上,再出現結晶放熱峰-放熱峰-向上。500度的峰又出現了。升溫階段和降溫階段的這兩者的溫度有所差別是有理論依據的、與升溫速率、降溫速率有關。

熱效應(凝固點、融化點)溫度的確定方法:不論是吸熱峰還是放熱峰, ICTA標准化委員會推薦,峰前基線延長線與峰的前沿曲線最大斜率處的切線的交點所對應的溫度,就是該熱效應溫度點,又稱為外推溫度T(ex)。峰前基線就是指,在熱效應峰之前的接近水平的基線,劃它的延長線,與熱效應峰頂前沿曲線變化斜率最大那一點所做的曲線斜率線的交點所對應的溫度才是這個熱效應的出峰溫度。注意降溫中的曲線前半部是右側的那半邊。有的人覺得自己曲線的這個點不好求,加上熱效應峰非常尖銳,就使用峰頂溫度,也不是不可以的。只要在自己整個實驗過程中前後統一就可以,前提是峰非常尖銳,T(ex)和峰頂溫度差別較小。也有使用其它方法確定的溫度的。

由於你的譜刻度大,我這樣做,不如你來做來得方便、准確,還是你來做吧。
第二個樣品的融化點約605度;凝固點是約608度。

第一個譜圖,熔融峰是一個台階,依照同樣的方法也可以求出其外推溫度作為熔融點。降溫時也是如此;可以求得凝固點。第一個樣品的融化點約605度;凝固點是約606度。

⑹ 什麼是dsc測試

dsc測試指的是現代熱分析是指在程序控溫下,測量物質的物理性質隨溫度變化的一類技術。

人們通過檢測樣品本身的熱物理性質隨溫度或時間的變化,來研究物質的分子結構、聚集態結構、分子運動的變化等。

應用最多的熱分析儀器是功率補償型DSC、熱流型DSC、差熱式DTA、熱重TG等。 DSC是研究在溫度程序控制下物質隨溫度的變化其物理量(ΔQ和ΔH)的變化,即通過程序控制溫度的變化,在溫度變化的同時,測量試樣和參比物的功率差(熱流率)與溫度的關系。

將有物相變化的樣品和在所測定溫度范圍內不發生相變且沒有任何熱效應產生的參比物,在相同的條件下進行等溫加熱或冷卻,當樣品發生相變時,在樣品和參比物之間就產生一個溫度差。

放置於它們下面的一組差示熱電偶即產生溫差電勢UΔT,經差熱放大器放大後送入功率補償放大器,功率補償放大器自動調節補償加熱絲的電流,使樣品和參比物之間溫差趨於零,兩者溫度始終維持相同。此補償熱量即為樣品的熱效應,以電功率形式顯示於記錄儀上。

(6)dsc實驗裝置圖擴展閱讀:

有dH/dt的不連續變化,因此在熱譜圖上出現基線的偏移。從分子運動觀點來看,玻璃化轉變與非晶聚合物或結晶聚合物的非晶部分中分子鏈段的微布朗運動有關,在玻璃化溫度以下,運動基本凍結,到達Tg後,運動活波熱容量變大,基線向吸熱一側移動。

玻璃化轉變溫度的確定是基於在DSC曲線上基線的偏移,出現一個台階,一般用曲線前沿切線與基線的交點來確定Tg。

影響Tg的因素有化學結構、相對分子量、結晶度、交聯固化、樣品歷史效應(熱歷史、應力歷史、退火歷史、形態歷史)等。

具有僵硬的主鏈或帶有大的側基的聚合物將具有較高的Tg;鏈間具有較強吸引力的高分子,不易膨脹,有較高的Tg;在分子鏈上掛有鬆散的側基,使分子結構變得鬆散,即增加了自由體積,而使Tg降低。

⑺ 什麼是差示掃描量熱儀DSC和差熱分析儀DTA並有什麼區別

DSC:差示掃描量熱計;DTA:差熱分析.我認為DSC(差示掃描量熱法)比較好,可以測定物質的熔點、比熱容、玻璃化轉變溫度、純度、結晶度等差熱掃描量熱儀——測量的結果是溫度差差示掃描量熱儀——測量的結果是熱流,定量性較好差熱分析 (DTA)是在程序控制溫度條件下,測量樣品與參比物之間的溫度差與溫度關系的一種熱分析方法.差示掃描量熱法 (DSC)是在程序控制溫度條件下,測量輸入給樣品與參比物的功率差與溫度關系的一種熱分析方法.兩種方法的物理含義不一樣,DTA僅可以測試相變溫度等溫度特徵點,DSC不僅可以測相變溫度點,而且可以測相變時的熱量變化.DTA曲線上的放熱峰和吸熱峰無確定物理含義,而DSC曲線上的放熱峰和吸熱峰分別代表放出熱量和吸收熱量.DTA與DSC區別的分析DTA:差熱分析DSC:差示掃描量熱分析.兩者的原理基本相同,都是比較待測物質與參比物質隨溫度變化導致的熱性能的差別,同樣的材料可以得到形狀基本相同的曲線,反應材料相同的信息,但是實驗中兩者記錄的信息並不一樣.DTA記錄的是以相同的速率加熱和冷卻過程中,待測物質因相變引起的熱熔變化導致的與參比物質溫度差別的變化.通常得到以溫度(時間)為橫坐標,溫差為縱坐標的曲線.DSC實驗中同樣需要參比物質和待測物質以相同的速率進行加熱和冷卻,但是記錄的信息是保持兩種樣品的溫度相同時,兩者之間的熱量之差.因此得到的曲線是溫度(時間)為橫坐標,熱量差為縱坐標的曲線.比較之下,因為DSC在實驗過程中,參比物質和待測物質始終保持溫度相等,所以兩者之間沒有熱傳遞,在定量計算時精度比較高.而DTA只有在使用合適的參比物的情況下,峰面積才可以被轉換成熱量.再者,DSC適合低溫測量(低於700℃),而DTA適合高溫測量(高於700℃).差熱分析法(DTA) DTA的基本原理 差熱分析是在程序控制溫度下,測量物質與參比物之間的溫度差與溫度關系的一種技術.差熱分析曲線是描述樣品與參比物之間的溫差(ΔT)隨溫度或時間的變化關系.在DAT試驗中,樣品溫度的變化是由於相轉變或反應的吸熱或放熱效應引起的.如:相轉變,熔化,結晶結構的轉變,沸騰,升華,蒸發,脫氫反應,斷裂或分解反應,氧化或還原反應,晶格結構的破壞和其它化學反應.一般說來,相轉變、脫氫還原和一些分解反應產生吸熱效應;而結晶、氧化和一些分解反應產生放熱效應.差熱分析的原理.將試樣和參比物分別放入坩堝,置於爐中以一定速率 進行程序升溫,以 表示各自的溫度,設試樣和參比物(包括容器、溫差電偶等)的熱容量Cs、Cr不隨溫度而變.在0-a區間,ΔT大體上是一致的,形成DTA曲線的基線.隨著溫度的增加,試樣產生了熱效應(例如相轉變),則與參比物間的溫差變大,在DTA曲線中表現為峰.顯然,溫差越大,峰也越大,試樣發生變化的次數多,峰的數目也多,所以各種吸熱和放熱峰的個數、形狀和位置與相應的溫度可用來定性地鑒定所研究的物質,而峰面積與熱量的變化有關.

⑻ DSC怎麼看圖

DSC以溫度T或時間t為橫坐標,可以測定多種熱力學和動力學參數,例如比熱容、反應熱、轉變熱、相圖、反應速率、結晶速率、高聚物結晶度、樣品純度等。

而且在GMDSS的地面通信系統中,初始遇險通信是由DSC來完成的。DSC提供近距離(VHF)、中距離(MF)和遠距離(HF)遇險報警。在遇險呼叫時,自動將發信機轉換到設定的遇險頻率上,按設定的報警方式進行報警。


主要優勢:

在程回序升溫的條件下,測量試樣與參比物之間的能量差隨溫度變化的一種分析方法。差示掃描量熱法有補償式和熱流式兩種。在差示掃描量熱中,為使試樣和參比物的溫差保持為零在單位時間所必需施加的熱量與溫度的關系曲線為DSC曲線。


⑼ 從DTA、DSC、TG圖譜中能讀到哪些信息

TG:在程序控溫下,測量樣品的質量(m)隨溫度的變化。如果你需要知道,樣品在升溫或者降溫過程中,樣品質量的變化(比如吸附、脫附、分解等),請選擇TG。比如工業催化劑中常會有積碳現象,通過TG表徵可以確定積碳量。

DTA:在程序控制溫度下,測量參比物和樣品溫差(△T)隨溫度(T)的變化。DTA與TG的區別在於測量值從質量變為溫差。之所選擇測試溫差,是因為升溫過程中發生的很多物理化學變化(比如融化、相變、結晶等)並不產生質量的變化,而是表現為熱量的釋放或吸收,從而導致樣品與參比物之間產生溫差。DTA能夠發現樣品的熔點、晶型轉變溫度、玻璃化溫度等等信息。

DSC:在程序控制溫度下,測量給於參比物和給予樣品的能量之差(△Q)隨溫度(T)的變化。在整個測試過程中,樣品和參比物溫差控制在極小的范圍內。當樣品發生物理或者化學變化時,控溫裝置將輸入一定功率能量,以保持溫度平衡。可以簡單的將DSC看成是DTA的升級版。DSC也確實是從DTA發展而來。傳統的DTA儀器因為樣品池材質的關系,只能測溫差,無法准備測量熱和焓的變化。後期通過改變材質和結構,使得從溫差轉變為能量差成為可能(熱流型)。最後又出現一種直接測量輸入熱量差的DSC(功率補償型)。DSC的優點在於靈敏度高、可以定量測量焓、比熱容等物理量。

⑽ 誰知道DSC曲線怎麼分析啊

以樣品吸熱或放熱的速率,即熱流率dH/dt(單位毫焦/秒)為縱坐標,以溫度T或時間t為橫坐標,可以測定多種熱力學和動力學參數,例如比熱容、反應熱、轉變熱、相圖、反應速率、結晶速率、高聚物結晶度、樣品純度等。

該法使用溫度范圍寬(-175~725℃)、解析度高、試樣用量少。適用於無機物、有機化合物及葯物分析。



(10)dsc實驗裝置圖擴展閱讀

DSC原理

將有物相變化的樣品和在所測定溫度范圍內不發生相變且沒有任何熱效應產生的參比物,在相同的條件下進行等溫加熱或冷卻,當樣品發生相變時,在樣品和參比物之間就產生一個溫度差。

放置於它們下面的一組差示熱電偶即產生溫差電勢UΔT,經差熱放大器放大後送入功率補償放大器,功率補償放大器自動調節補償加熱絲的電流,使樣品和參比物之間溫差趨於零,兩者溫度始終維持相同。此補償熱量即為樣品的熱效應,以電功率形式顯示於記錄儀上。

功率補償型的DSC為內加熱式,裝樣品和參比物的支持器是各自獨立的元件,在樣品和參比物的底部各有一個加熱用的鉑熱電阻和一個測溫用的鉑感測器。採用動態零位平衡原理,即要求樣品與參比物溫度,無論樣品吸熱還是放熱時都要維持動態零位平衡狀態,也就是要保持樣品和參比物溫度差趨向於零。

DSC測定的是維持樣品和參比物處於相同溫度所需要的能量差(ΔW=dH/dt),反映了樣品焓的變化。

熱流型DSC為外加熱式,採取外加熱的方式使均溫塊受熱然後通過空氣和康銅做的熱墊片兩個途徑把熱傳遞給試樣杯和參比杯,試樣杯的溫度由鎳鉻絲和鎳鋁絲組成的高靈敏度熱電偶檢測,參比杯的溫度由鎳鉻絲和康銅組成的熱電偶加以檢測。由此可知,檢測的是溫差ΔT,它是試樣熱量變化的反映。

閱讀全文

與dsc實驗裝置圖相關的資料

熱點內容
踏板車後輪軸承墊片怎麼取下來 瀏覽:213
機床結構示意圖怎麼畫 瀏覽:380
暖氣片閥門兒向左是開向右是開 瀏覽:527
無錫軍青機械製造有限公司怎麼樣 瀏覽:776
儀表如何隔離 瀏覽:618
對開門冷藏櫃不製冷怎麼辦 瀏覽:282
根據圖1實驗裝置圖回答 瀏覽:349
銅與濃硝酸反應實驗裝置 瀏覽:564
滾子軸承兩個軸怎麼接 瀏覽:129
玉器雕刻用什麼機械設備 瀏覽:311
小丸工具箱提取字幕 瀏覽:860
機床各部分靜剛度曲線怎麼繪制 瀏覽:482
淋浴閥門有點漏水怎麼辦 瀏覽:638
倉庫小五金件的擺放要求 瀏覽:48
消防管道閥門用明桿閥門 瀏覽:917
檢查閥門不正確的方法是什麼意思 瀏覽:429
佛山祥盛五金製品有限公司招聘 瀏覽:423
高中化學課本實驗裝置圖 瀏覽:369
半液晶儀表怎麼實現地圖顯示 瀏覽:100
蒸發用的器材有什麼 瀏覽:286