Ⅰ 純水,超純水與雙蒸水,六蒸水有什麼區別,是同一種水的不同叫法嗎
1、純水,超純水與雙蒸水,六蒸水(蒸餾水)組分不同
純水和超純水,又稱高純水,是指電阻率達到18 MΩ*cm(25℃)的水。這種水中除了水分子外,幾乎沒有什麼雜質,更沒有細菌、病毒、含氯二惡英等有機物,當然也沒有人體所需的礦物質微量元素,也就是幾乎去除氧和氫以外所有原子的水。
雙蒸水,六蒸水(蒸餾水)通過蒸餾冷凝製得的水,所以裡面的無機鹽會含的很少。如果只是經過一次蒸餾得到的水,裡面雖然那些不揮發的組分(鹽類)被除去,但水中揮發的組分(氨、二氧化碳、有機物)還是會進入蒸餾水中。
2、純水,超純水與雙蒸水,六蒸水(蒸餾水)離子作用不同
純水和超純水可以在以下領域使用:電子、電力、電鍍、照明電器、實驗室、食品、造紙、日化、建材、造漆、蓄電池、化驗、生物、制葯、石油、化工、鋼鐵、玻璃等領域。
單晶硅、半導體晶片切割製造、半導體晶元、半導體封裝 、引線櫃架、集成電路、液晶顯示器、導電玻璃、顯像管、線路板、光通信、電腦元件 、電容器潔凈產品及各種元器件等生產工藝。
雙蒸水,六蒸水(蒸餾水)在醫葯行業,蒸餾水的作用是因為低滲作用。用蒸餾水沖洗手術傷口,使創面可能殘留的腫瘤細胞吸水膨脹,破裂,壞死,失去活性,避免腫瘤在創面種植生長。
學校里的化學實驗,有些需要用蒸餾水,利用的就是蒸餾水無電解質,沒有游離離子,或是沒有雜質。你需要具體問題具體分析,看看是利用它不導電的性質,還是低滲作用,還是沒有其他離子,不會發生化學反應的作用。
(1)電容去離子實驗裝置擴展閱讀
超純水制備:
在原子光譜、高效液相色譜、超純物質分析、痕量物質等的某些實驗中,需要用超純水,超純水的制備如下:
(1)加入少量高錳酸鉀的水源,用玻璃蒸餾裝置進行二次蒸餾,再以全石英蒸餾器進行蒸餾,收集於石英容器中,可得超純水。
(2)使用強酸型陽離子和強鹼型陰離子交換樹脂柱的混合床或串聯柱。可充分除去水中的陽、陰離子,其電阻率達10 Q·cm的水,俗稱去離子水,再用全石英蒸餾器進行蒸餾,收集可得超純水。
Ⅱ 實驗室儀器設備的日常維護,保養規則有哪些
實驗室設備日常保養與維護方法
實驗儀器的保養與維護是實驗室管理工作的重要組成部分,搞好儀器的保養與維護,關繫到儀器的完好率、使用率和實驗教學的開出率,關繫到實驗成功率。因此,作為實驗教師應懂得教學儀器保養與維護的一般知識,掌握保養與維護的基本技能。
儀器一旦吸附灰塵、污垢,不僅影響儀器的性能,縮短使用壽命,直接影響實驗效果,而且影響美觀和實驗者的身心健康。儀器在使用或貯藏中都會沾上灰塵和污垢,做到以防塵防污為主,經常地除塵清洗是搞好儀器保養與維護的重要環節。
(一)除塵
灰塵多為帶有微量靜電的微小塵粒,常飄浮於空氣中,隨氣流而動,遇物便附著其上,幾乎無孔不入。灰塵附著在模型標本上會影響其色澤,運動部件上有灰塵會增大磨損,電器上有灰塵,嚴重者會造成短路、漏電,貴重精密儀器上有灰塵,嚴重者會使儀器報廢。
清除灰塵的方法很多,主要應依灰塵附著表面的狀況及其灰塵附著的程度而定。在乾燥的空氣中,若灰塵較少或灰塵尚未受潮結成塊斑,可用干布拭擦,毛巾撣刷,軟毛刷刷等方法,清除一般儀器上的灰塵;對儀器內部的灰塵可用皮唧、洗耳球式打氣筒吹氣除塵,也可用吸塵器吸塵;對角、縫中的灰塵可將上述幾種方法結合起來除塵。不過對貴重精密儀器,如光學儀器、儀表表頭等,用上述方法除塵也會損壞儀器,此時應採用特殊除塵工具除塵,如用鏡頭紙拭擦,沾有酒精的棉球拭擦等。
在空氣潮濕,灰塵已結成垢塊時,除塵應採用濕布拭擦,對角、縫中的灰垢可先用削尖的軟大條剔除,再用濕布試擦,但是對掉色表面、電器不宜用濕布拭擦。若灰垢不易拭擦乾凈,可用沾有酒精的棉球進行拭擦,或進行清洗。
(二)清洗
儀器在使用中會沾上油膩、膠液、汗漬等污垢,在貯藏保管不慎時會產生銹蝕、霉斑,這些污垢對儀器的壽命、性能會產生極其不良的影響。清洗的目的就在於除去儀器上的污垢。通常儀器的清洗有兩類方法,一是機械清洗方法,即用鏟、刮、刷等方法清洗;二是化學清洗方法,即用各種化學去污溶劑清洗。具體的清洗方法要依污垢附著表面的狀況以及污垢的性質決定。下面介紹幾種常見儀器和不同材料部件的清洗方法。
1. 玻璃器皿的清洗
附著玻璃器皿上的污垢大致有兩類,一類是用水即可清洗干凈的,另一類則是必須使用清洗劑或特殊洗滌劑才能清洗干凈的。在實驗中,無論附在玻璃器皿上的污垢屬哪一類,用過的器皿都應立即清洗。
盛過糖、鹽、澱粉、泥砂、酒精等物質的玻璃器皿,用水沖洗即可達到清洗目的。應注意,若附著污物已干硬,可將器皿在水中浸泡一段時間,再用毛刷邊沖邊刷,直至洗凈。
玻璃器皿沾有油污或盛過動植物油,可用洗衣粉、去污粉、洗潔精等與配製成的洗滌劑進行清洗。清洗時要用毛刷刷洗,用此洗滌劑也可清洗附有機油的玻璃器皿。玻璃器皿用洗滌劑清洗後,還應用清水沖凈。
對附有焦油、瀝青或其他高分子有機物的玻璃器皿,應採用有機溶劑,如汽油、苯等進行清洗。若還難以洗凈,可將玻璃器皿放入鹼性洗滌劑中浸泡一段時間,再用濃度為5%以上的碳酸鈉、碳酸氫鈉、氫氧化鈉或磷酸鈉等溶液清洗,甚至可以加熱清洗。
在化學反應中,往往玻璃器皿壁上附有金屬、氧化物、酸、鹼等污物。清洗時,應根據污垢的特點,用強酸、強鹼清洗或動用中和化學反應的方法除垢,然後再用水沖洗干凈。使用酸鹼清洗時,應特別注意安全,操作者應帶橡膠手套防護鏡;操作時要使用鑷子,夾子等工具,不能用手取放器皿。
此外,洗凈的玻璃器皿,最後應用毛巾將其上沾附的水擦乾。
2. 光學玻璃的清洗
光學玻璃用於儀器的鏡頭、鏡片、棱鏡、玻片等,在製造和使用中容易沾上油污、水濕性污物、指紋等,影響成像及透光率。清洗光學玻璃,應根據污垢的特點、不同結構,選用不同的清洗劑,使用不同的清洗工具,選用不同的清洗方法。
清洗鍍有增透膜的鏡頭,如照相機、幻燈機、顯微鏡的鏡頭,可用20%左右的酒精配製清洗劑進行清洗。清洗時應用軟毛刷或棉球沾有少量清洗劑,從鏡頭中心向外作圓運動。切忌把這類鏡頭浸泡在清洗劑中清洗;清洗鏡頭不得用力拭擦,否則會劃傷增透膜,損壞鏡頭。
清洗棱鏡、平面鏡的方法,可依照清洗鏡頭的方法進行。
光學玻璃表面發霉,是一種常見現象。當光學玻璃生霉後,光線在其表面發生散射,使成像模糊不清,嚴重者將使儀器報廢。光學玻璃生霉的原因多是因其表面附有微生物孢子,在溫度、濕度適宜,又有所需″營養物″時,便會快速生長,形成霉斑。對光學玻璃做好防霉防污尤為重要,一旦產生霉斑應立即清洗。
消除霉斑,清洗黴菌可用0.1~0.5%的乙基含氫二氯硅烷與無水酒精配製的清洗劑清洗,或用環氧丙烷、稀氨水等清洗。
使用上述清洗劑也能清洗光學玻璃上的油脂性霧、水濕性霧和油水混合性霧,其清洗方法與清洗鏡頭的方法相仿。
3. 橡膠件的清洗
實驗儀器中用橡膠製成的零部件很多,橡膠作為一種高分子有機物,在沾有油膩或有機溶劑後會老化,使零部件產生形變,發軟變粘;用橡膠製成的傳動帶,若沾有油污會使摩擦系數減小,產生打滑現象。
清洗橡膠件上的油污,可用酒精、四氯化碳等作為清洗劑,而不能使用有機溶劑作為清洗劑。清洗時,先用棉球或絲布蘸清洗劑拭擦,待清洗劑自然揮發干凈後即可。應注意,四氯化碳具有毒性,對人體有害,清洗時應在較好通風條件下進行,注意安全。
4. 塑料件的清洗
塑料的種類很多,有聚苯乙烯、聚氯乙烯、尼龍、有機玻璃等。塑料件一般對有機溶劑很敏感,清洗污垢時,不能使用如汽油、甲苯、丙酮等有機溶劑作為清潔劑。清洗塑料件用水、肥皂水或洗衣粉配製的洗滌劑洗擦為宜。
5. 鋼鐵零部件除銹
鋼鐵零部件極易銹蝕,為防止銹蝕,教學儀器產品中的鋼鐵件常塗有油層、油漆等防護層,但即使如此,銹蝕仍常發生。清除鋼鐵零部件的銹蝕,應根據銹蝕的程度以及零部件的特點採用不同的方法。
對尺寸較大,精密程度不高或用機械方法除銹不易除凈鋼鐵零部件,可採用化學方法除銹,如用濃度為2~25%的磷酸浸泡欲除銹的部件,浸泡時加溫至40~80℃為宜,待銹蝕除凈後,其表層會形成一層防護膜,再將部件取出浸泡在濃度為0.5~2%的磷酸溶液中約一小時,最後取出烘乾即可。
在實驗室使用這類化學方法除銹中若操作稍有不當,反會損壞零部件,特別是精密零部件。因此在實驗室,除銹不宜多用化學方法,而應採用機械除銹方法,即先用鏟、剔、刮等方式將零部件上的銹蝕層塊除去,再用砂紙砂磨、打光,最後塗上保護層。
對於有色金屬及其合金材料構成的零部件,其除銹方法可參照鋼鐵零部件的除銹方法進行。但應注意兩點,其一,採用化學方法除銹時,應根據零部件材料的化學特性配製和使用不同的化學除銹劑;其二,除去有色金屬及其合金構成的零部件的銹蝕,一般採用機械除銹方法為宜。
Ⅲ 正負極都是電沉積物質怎麼組裝超級電容器
循環伏安法沉積石墨基PbO2電極及其超級電容器應用
發布日期:2012-04-25
二氧化鉛作為電極材料具有廣泛的工業用途,如能源轉換裝備、有機合成以及污水處理等,其中二氧化鉛作為鉛酸蓄電池陽極活性物質被大量使用。鉛酸蓄電池的比能量在30~40Wh/kg范圍,然而比功率較小(約200~300W /kg),循環壽命差(300~500次)。採用活性碳(AC)為電極材料的超級電容具有比功率高(>1 kW /kg),循環壽命長(>100 000次)等優點[1],因此將兩者結合組成復合超級電容,如PbO2/H2SO4/AC體系,成為研究熱點[2]。與工業制備鉛膏的鉛酸電池正極相比,電化學法沉積的二氧化鉛能提高陽極活性物質的利用率[3-4],且具有以下優點: (ⅰ)通過調整電化學參數可以准確地控制膜的厚度和表面形貌[5], (ⅱ)能在形狀復雜的基體形成相對均一的膜, (ⅲ)有較高的沉積率。
當前文獻報道[6-7],在PbO2電沉積過程中,有可溶性的反應中間體的存在,它們有可能是Pb(3價)或Pb(4價)的復雜含氧基團,Velichenko[8]等研究在硝酸溶液中電沉積PbO2發現, PbO2的電沉積過程受電子轉移或Pb2+擴散限制,反應機理如下:
第一步形成可被吸附的含氧基團如OH,隨後該含氧基團與Pb發生化學反應形成可溶性的反應中間體,可能含有Pb(3價),而後進一步被氧化形成PbO2。
作為復合超級電容體系的正極材料,循環伏安法沉積的石墨基PbO2具有電極厚度薄,石墨集流體在硫酸中抗腐蝕等優點,能夠與活性碳負極很好匹配。本文重點研究用循環伏安法在石墨板基底上沉積PbO2薄膜電極,並與活性碳負極組裝成混合超級電容器,並運用恆流充放電、循環壽命、交流阻抗等電化學方法來研究其電化學性能。
1·實驗部分
1.1正負電極的制備
選用石墨板作為正極PbO2沉積的基體,將厚度為1. 055 mm,面積為1×1 cm2的石墨板用去離子水清洗干凈,再在2. 5 mol·L-1NaOH中進行電化學除油(陽極電流300 mA·cm-2,時間為30min),再於1. 5 mol·L-1HNO3中浸泡10 min,去離子水洗凈,烘乾。採用三電極體系進行循環伏安電沉積石墨基PbO2薄膜電極,所有電化學操作均在德國ZAHNER-IM6型電化學工作站上進行。PbO2電極制備的實驗裝置為三電極體系(圖1),處理後的石墨板作為工作電極,選用鉑片電極作為對電極,飽和甘汞電極(SCE)作為參比電極。本文所有電勢都是相對飽和甘汞電極而言,實驗操作均在(25±1)℃下進行。電鍍液的組成為0. 5 mol Pb(NO3)2+1 molHNO3,循環伏安電沉積的電勢掃描范圍(0. 4~2. 0 )V,掃描速率為20 mV/s,循環周期分別採用50個和100個。
負極活性碳電極的制備工藝如(圖2)所示。將活性碳、導電劑(乙炔黑)和添加劑進行均勻混合,添加一定量粘結劑聚四氟乙烯(PVDF),活性炭與乙炔黑、聚四氟乙烯按質量比為0. 85:0. 10:0. 05,加入適量無水乙醇攪拌均勻,進行和漿處理,塗布在鈦箔集流體上製成預成型件。然後,真空乾燥,在一定壓力下進行壓製成型,即製得一定尺寸的負極電極片。
1.2電極材料測試
為了考察電極表面PbO2顆粒的表面形貌,用日立公司4800型掃描電子顯微鏡(SEM)分析了PbO2電極表面的形態和粒徑。為了研究實驗制備的PbO2電極的材料晶型,採用日本Rigaku D/Max-ШA型X射線衍射儀對所得樣品進行XRD分析,使用Cu-Kα射線(λ=1.540 56 A)管壓40 kV,管流300MV,掃描速度8°min-1,2θ掃描范圍20~70°。
1.3超級電容器的組裝與測試
用循環伏安法沉積制備的石墨基PbO2電極作正極,活性碳電極作負極,電解液採用1. 28 g·cm-3H2SO4溶液,多孔碳纖維紙作為隔膜,組裝成混合超級電容器。並研究了其恆流充放電、循環壽命、交流阻抗等電化學特性。循環伏安(CV)測試是在德國ZAHNER ELECKTRIC公司的IM6e電化學工作站上進行的。循環壽命測試是在LAND 2000充放電測試儀上測試的。交流阻抗測試是在德國ZAHNER ELECKTRIC公司的IM6e電化學工作站上進行,在工作電極上施加一個小幅值交流信號(5mV)通過檢測所得的電流信號得到復數阻抗,分析阻抗圖譜可以得到我們需要的體系的信息。
2·結果與討論
目前應用較多的電化學沉積方法通常有恆電流法、恆電壓法、循環伏安法等[5, 9-11]。電化學方法沉積PbO2的過程中電極的表面形貌和結構主要受到傳質過程的影響。恆電流沉積可以通過調節沉積電流大小和電鍍液中活性物的濃度,減小傳質限制,進而達到控制PbO2的結構[12];而恆電壓沉積是通過調節沉積電壓大小來控制PbO2的結構[5]。在電沉積過程中,電流密度是影響電極表面電化學反應的決定性因素,因此理論上恆電流沉積能更有效地控制沉積過程和沉積速率[13],恆電流法和恆電壓法制備的PbO2電極性能進行對比,結果發現恆電流法制備的PbO2電極性能要優於恆電壓法[5]。而循環伏安法沉積主要應用於制備導電聚合物,用於合成氧化物的報道非常少,可能是因為氧化物的導電性一般較差,電沉積形成一層膜後表面電阻增大,阻止了電沉積的進一步進行[14];而PbO2具有良好的導電性,能夠持續發生電沉積反應,可用循環伏安法進行電沉積;但在循環伏安法制備過程中,由於電流和電壓都是變化的,所以過程更為復雜。
2.1PbO2電極的電沉積過程
循環伏安法沉積石墨基PbO2薄膜電極,在三電極體系下,在電鍍液中通過恆電流/恆電位儀產生循環伏安電位差,從而使鉛化物發生氧化還原變化,沉積在作為工作電極的石墨板基體上。PbO2薄膜電極的循環伏安法制備中,對工作電極來說,根據電鍍液中鉛化物發生反應的電極電勢范圍加上循環伏安電壓後,在一定電壓范圍內,對於工作電極來說,電流為負,此時石墨板基體為陰極,電鍍液中的鉛化物先驅體首先發生陰極電沉積。當電壓變化到使電流反向變正時,石墨板基體變為陽極,沉積的鉛化物先驅體被陽極氧化到較高的氧化態。當電流再次變為負時,沉積反應又發生,如此循環, PbO2便層層沉積到石墨板基體上。石墨板基底電極在0. 5 molPb(NO3)2+1 molHNO3電鍍液中,電勢掃描范圍為(0. 4~2. 0)V,掃描速率為20 mV/s,循環周期分別採用50個和100個,圖3是石墨基底電極在電鍍液中的循環伏安電沉積圖。由圖可知: PbO2的沉積和溶解過程都是很迅速的,在氧化和還原峰時有大的電流突躍,在正向掃描過程中,當電勢達到1. 7 V時,PbO2開始凝結成核,隨著電勢的增加PbO2鍍層不斷增長,直到反向掃描電勢達到1. 55 V結束。在1.5 V左右開始發生還原反應,反向掃描一直到1. 0左右才結束,呈現一個較寬的PbO2還原蜂,說明PbO2完全被還原仍然是個比較慢的過程,所以最終在石墨板基底電極上沉積的PbO2量要大於溶解的PbO2量,經過50個和100個循環周期都能形成比較好的PbO2薄膜電極。
2.2掃描電子顯微鏡(SEM)分析
採用循環伏安法在石墨基底上沉積PbO2塗層, 50個和100個循環周期所制備的PbO2電極掃描電子顯微鏡(SEM)測試照片(圖4), (a)為50個周期所制備的PbO2電極, (b)為100個周期所制備的PbO2電極。不同周期沉積的膜的形貌是不同的,由圖可知:50個循環周期時的沉積物顆粒大小不規則,形貌開裂,易剝落。隨沉積周期的增加,到l00個循環後電極表面的裂縫不再可見,表面呈凝膠狀。
由凝膠可知電極表面可能既有二氧化鉛晶體,又有二氧化鉛結構水合物,其分子式為PbO(OH)2,形成1個晶體一凝膠體系。由於
平衡反應的進行,整個體系的凝膠密度能維持在臨界值之上,從而電子導電率和質子導電率均較高。在此結構上,質子和電子放電機理為[15]:
即等量的電子和質子進入二氧化鉛(包括未水化的晶體及水化的無定形相),因此結構水合物電極的反應速率以及電化學活性由電子和質子在其中的輸送速率控制,結構水合物在一定程度上能提高電極的放電性能。
2.3X-射線衍射(XRD)分析
為了進一步確定電極表面的晶相組成,實驗還對電極進行了XRD測試,結果(圖5)所示。採用循環伏安法制備的電極衍射譜圖相對比較復雜。由圖可知: 100個循環周期所制備的電極中同時存在PbO2、石墨(graphite)和Pb(NO3)2,譜圖中有一個graphite很強的特徵衍射峰,這應該是由於石墨板(graphite substrate)作為PbO2電極的集流體, PbO2沉積其上而活性物質之間又有間隙,所以在測試時會出現集流體石墨板的衍射峰;譜圖中有幾個Pb(NO3)2的特徵衍射峰但衍射峰的強度不大,可知其在電極中含量不大,這是由於電沉積過程是發生在Pb(NO3)2的電鍍液中,而且PbO2電極表面因吸附質子帶正電荷,電荷平衡原理使得NO-3極易吸附在電極表面,大量的蒸餾水清洗電極表面也不可能全部除去表面的負電荷,因此PbO2電極的內部結構中存在少量的Pb(NO3)2。譜圖中有較多四方結構的β- PbO2的特徵衍射峰,可知其是電極的主要成分。而對比發現50個循環周期所制備的電極中的主要成分也是β- PbO2,和100個循環周期所制備的電極主要成分相差不大,說明100個循環周期所制備電極表面的二氧化鉛結構水合物凝膠並不能產生相應的特徵衍射峰。恆電流法沉積制備的電極材料是α- PbO2和β- PbO2的混合物,α- PbO2的含量隨著沉積電流的減小而減小,當電流密度減小為1 mA·cm-1時, PbO2電極中僅含有β-PbO2[12];恆電壓法沉積得到的電極也是α- PbO2和β- PbO2的混合物[5];循環伏安法沉積是一個很復雜的過程,而就電化學性能而言,α-PbO2在結構方面比β-PbO2更加緊密,在樣品中起到使顆粒之間更好的電子接觸傳遞作用,但是正是這樣的緊密結構使得α-PbO2在放電性能方面遠不如β-PbO2,β-PbO2在PbO2/AC混合超級電容器中比α-PbO2具有更好的電化學活性[12, 16],所以通過循環伏安法沉積可以得到電化學活性較好的電極材料。
2.4PbO2/活性碳混合超級電容器的性能研究
2. 4. 1恆流充放電性能研究將採用50個和100個循環周期所分別制備的PbO2薄膜電極作正極,活性碳電極作負極, 1. 28 g·cm-3H2SO4溶液作電解液組裝成混合超級電容器,在250 mA·g-1電流密度下, 0. 8~1. 86 V電位區間內進行恆流充放電性能測試,圖6為這兩種電極分別組成的電容器的充放電曲線對比。由圖可知: 50個和100個循環周期所制備的PbO2電極組成電容器的充放電性能都較好,但50個周期的PbO2電極組成電容器的放電IR降較大,這可能是因為電極表面所存在的裂縫導致其導電性不好,所以內阻較大;而100個周期的PbO2電極組成電容器的放電IR降較小,放電時間更長,說明其電極沉積物與石墨集流體的接觸緊密且導電性好。IR降是放電曲線陡然下降的部分,是由電容器歐姆內阻導致的。根據公式:
Cm為比電容值,△t為時間差,△V為電壓差,m為活性物質質量值,可以計算出活性物質的比容量。由公式計算得出100個循環周期所制備的PbO2電極組成電容器的比容量為112. 8 F·g-1, 50個循環周期所制備的PbO2電極組成電容器的比容量為80.3 F·g-1。所以, 100個循環周期條件下所制備PbO2電極的放電性能要優於50個循環周期條件,與SEM中得出結構水合物在一定程度上能提高電極的放電性能的結論相吻合。
2. 4. 2循環壽命測試圖7為用100個循環周期
所制備的PbO2電極作正極與活性碳負極組裝成混合超級電容器,在1. 28 g·cm-3H2SO4溶液中的循環壽命圖,電流密度為500 mA·g-1,充放電電壓區間為0. 8~1. 86 V,由圖可知混合電容的最高比容量可達96. 8 F·g-1,而且經過2 000多次的深循環比容量仍能達到89. 2 F·g-1,容量保持率高達92%以上且有較好的穩定性。由圖中可知電容的庫侖效率開始並不高,隨著充放電循環的進行有一個比較大的上升過程,經過大概200多次循環能達一個比較高的效率,之後上升變緩慢;這是因為正極活性物質二氧化鉛有一個被激活的過程,隨著充放電循環的進行,電解液硫酸逐漸進入到二氧化鉛中與之反應,電極深處的活性物質才被充分利用起來。由於負極活性碳電極為雙電層電容性能穩定,而混合超級電容的性能主要決定於正極二氧化鉛的電化學性能,所以庫侖效率有一個穩定上升的過程,庫侖效率總體比較高,能達85%以上[12, 17]。
2. 4. 3交流阻抗法測試圖8是用100個循環周期所制備的PbO2電極作正極與活性碳負極組裝成混合超級電容器在開路電位時的交流阻抗復平面圖,加一個5 mV的正弦激發波,頻率范圍為10-2~10+5Hz。曲線由一小半圓和一非垂直於實部的直線組成,高頻區的阻抗代表電解質/氧化物電極界面的電荷傳輸反應所引起的阻抗Rc,t其數值通常由半圓直徑表達出來,低頻區的直線則是溶液中離子在氧化物電極界面擴散所引起的Warburg阻抗[18]。由圖可知混合電容器表現的並非純電容特性,在電極表面存在氧化還原反應,電荷遷移產生法拉第准電容,並且擴散過程式控制制電荷遷移反應。從高頻曲線與實軸的交點,可以得知,該混合超級電容器的溶液電阻(Warburg)大約為0. 86Ω,小半圓的半徑大小可知反應中電荷遷移電阻(Rct)大約為2. 74Ω。
3·結論
石墨板具有優良的導電性和很強的搞腐蝕能力,在濃硫酸中是一種很好的集流體材料。本文利用循環伏安法在石墨板基底上沉積PbO2薄膜電極,分別採用50和100個循環周期制備PbO2電極,通過SEM和XRD研究了電極的表面形貌和結構特性。發現電極的表面有明顯的區別,前者表面出現裂縫,而後者表面結構緻密;沉積的PbO2顆粒主要成分均是β- PbO2。用這兩種不同循環周期所制備的PbO2電極與活性碳電極匹配組裝成混合超級電容器,恆流充放電對比曲線說明了100個循環周期所制備PbO2電極的放電性能要優於50個循環周期的,這與SEM中得出的結論相吻合。循環壽命測試表明混合電容器在500 mA·g-1電流密度下比容量可達96. 8 F·g-1, 2000多次深循環後容量保持率高達92%以上;交流阻抗顯示電容器的歐姆內阻很小,說明石墨板與活性物質PbO2接觸很緊密且導電性好。採用循環伏安法制備的石墨基PbO2電極在超級電容中具有很好的電化學性能,在超級電容器領域之中有著潛在的應用價值,如何進一步提高電容器活性物質的比容量成為繼續研究的重點。
Ⅳ 如何做好實驗室儀器設備的維護保養工作
隨著科學技術的發展,教學現代化程度的提高,高校的科研、教學對儀器設備的專要求越來越屬高。儀器設備是實驗室的重要資源之一,是實驗室出具報告(證書)的保證。為了確保檢測數據的准確可靠,除了對儀器設備按周期檢定、校準、期間核查外,還要做好儀器設備的日常維護和保養工作。1、加強儀器設備管理,做到合理安全存放儀器設備存放要合理,做到光學儀器、精密儀器和普通儀器分開存放,科研設備和學生操作儀器分開放,實驗葯品和儀器分開放,此外,儀器設備的擺放還要科學合理、整齊美觀、陳列有序、取用方便。危險品按其易燃、易爆、腐蝕、毒害等特性分櫃隔離存放在危險品室內,要避免因混放(氧化劑和易燃物混放)而誘發的火災事故;強氧化劑(如氯酸鉀、高氯酸)和某些混合物(如氯酸鉀和紅磷的混合物)易發生爆炸,保存或使用這些葯品時應注意安全;銀氨溶液久置後也易發生爆炸,用後不能保存,應傾入水槽中;易燃、易揮發的有機溶劑(乙醇、乙醚、苯、丙酮等)要密封保存在陰涼的地方而且遠離火源。輻射類物品必須有鉛皮等包裹;精密控溫水銀柱要豎直放置防止水銀斷柱發生斷路。
Ⅳ 電容去離子技術方向的博士有錢途嗎
電去離子技術(EDI,electrodeionization),是將離子交換樹脂填充在電滲析器的淡水室中從而將離子交換與電滲析進行有機結合,在直流電場作用下同時實現離子的深度脫除與濃縮,以及樹脂連續電再生的新型復合分離過程。該方法既保留了電滲析連續除鹽和離子交換樹脂深度除鹽的優點,又克服了電滲析濃差極化所造成的不良影響,且避免了離子交換樹脂酸鹼再生所造成的環境污染。所以,無論從技術角度還是運行成本來看,EDI都比電滲析或離子交換更高效。但同時處理過程中也不同程度存在膜堆適用性差,過程運行不夠穩定,易形成金屬氫氧化物沉澱等問題。隨著研究的不斷深入,上述問題將逐步解決,EDI也將成為一種很有發展潛力的重金屬廢水處理技術。
Ⅵ 航母用的飛輪儲能裝置經過模擬船舶搖擺試驗嗎
電磁彈射器的結構美軍研發的電磁彈射器由三大主要部件構成,分別是線性同步電動機、盤式交流發電機和大功率數字循環變頻器。線性同步電動機是電磁彈射器的主體,它是20世紀80年代末期研究的電磁線圈炮的放大版。20世紀80年代,美國太空總署(NASA)桑地亞中心一直在進行電磁線圈炮的概念性研發工作,他們曾嘗試修建一個長700米、仰角30度、口徑500毫米、採用12級、每級3000個電磁線圈的巨炮,可以將2噸重的火箭加速到4000~5000米/秒,推送到200千米以上的高度。NASA預計使用這個系統發射小型衛星或者為未來興建大型近地空間站提供廉價的物資運送方式,其發射成本只有火箭的1/2000。在早期概念性研究階段,NASA發展了一系列解決瞬間能源的技術方案,這些都成為電磁彈射的技術基礎。美國EMALS中的線性同步電動機採用了單機驅動的方式,只是用一台直線電機直接驅動,和以前的雙氣缸蒸汽彈射並聯輸出不同。線性電動機長95.36米,末段有7.6米的減速緩沖區,整個彈射器長103米。彈射器中心的動子滑動組,由190塊環形的第三代超級稀土釹鐵硼永磁體構成,每一塊永磁體間有細密的鈦合金製造的承力骨架和散熱器管路,中心布置有強力散熱器。雖然滑組在工作中其本身只有電感渦流和磁渦流效益產生不多的熱量,但是其位置處於中心地帶,散熱條件不好,且永磁體對溫度敏感,高過一定溫度就會失效。滑組和定子線圈間保持均勻的6.35毫米間隙,相互間不發生摩擦,依靠滑車和滑車軌道之間的滑輪保持這個間隙不變。滑動組上因為沒有需要使用電的裝置,所以結構比較簡單,且無摩擦設備,需要檢修和維修的工作量極少。彈射中,每一塊定子磁體將只承受2.7千克/平方厘米的應力。由於滑動組採用了固定的高磁永磁體,所以定子被設計成電磁,形狀為馬鞍形,左右將滑動組包圍,上部有和標准蒸汽彈射器相同大小的35.6毫米的開縫。定子採用模塊化設計,共有298個模塊,分為左右兩組,每個模塊由寬640毫米、高686毫米、厚76毫米的片狀子模塊構成。一個模塊上有24個槽,每個槽用3相6線圈重疊繞制而成,這樣每一個模塊就有8個極,磁極距為80毫米。槽間採用高絕緣的G10材料製成,每個槽都用環氧樹脂澆鑄,將其粘接成一個無槽的整體模塊。通過數字化定位的霍爾元件,定子模塊感應滑車上的磁強度信號,當滑車接近時,模塊被充電,離開後斷開,這樣不需要對整個路徑上的線圈充電,可以大大節省能源。每一個模塊的阻抗很小,只有0.67毫歐,它的設計效率為70%,一次彈射中消耗在定子中的能量有13.3兆瓦,銅線圈的溫度會被迅速加熱到118.2℃,加之受環境溫度影響,這一溫度可能會高達155℃。這將超過滑車永磁體的極限推辭溫度,因此需要強製冷卻,目前的冷卻方案是定子模塊間採用鋁製冷卻板,板上有細小的不銹鋼冷卻管,可以在彈射器循環彈射的45秒重復時間內將線圈溫度從155℃降低到75℃。新設計的盤式交流發電機重約8.7噸,如果不算附加的安全殼體設備,其重量只有6.9噸。盤式交流發電機的轉子繞水平軸旋轉,重約5177千克,使用鎳鉻鐵的鑄件經熱處理而成,上面用鎳鎘鈦合金箍固定2對扇形軸心磁場的釹鐵硼永磁體。鎳鎘鈦合金箍具有很大的彈性預應力,可確保固定高速旋轉中的磁體。轉子旋轉速度為6400轉/分,一個轉子可存儲121兆焦的能量,儲能密度比蒸汽彈射器的儲氣罐高一倍多。一部彈射器由4台盤式交流發電機供電,安裝時一般採用成對布置,轉子反向旋轉,可減少因高速旋轉飛輪帶來的陀螺效應和單項扭矩。彈射一次僅使用每台發電機所儲備能量的22.5%,飛輪轉盤的轉動速度從6400轉/分下降到5200轉/分,能量消耗可以在彈射循環的45秒間歇中從主動力輸出中獲得補充。四蓄能發電機結構允許彈射器在其中一台發電機沒有工作的情況下正常使用。由於航母裝備4部彈射器,每兩部彈射器的動力組會安裝到一起,集中管理並允許其動力交聯,因而出現6台以上發動機故障而影響彈射的事故每300年才會重復一次。盤式交流發電機採用雙定子設計,分別處於盤的兩側,每一個定子由280個線圈繞組的放射性槽構成,槽間是支撐結構和液體冷卻板。採用雙定子結構,每台發電機的輸出電源是6相的,最大輸出電壓1700伏,峰值電流高達6400安,輸出的匹配載荷為8.16萬千瓦,輸出為2133~1735赫茲的變頻交流電。盤式儲能交流發電機的設計效率為89.3%,這已經通過縮比模型進行了驗證,也就是說每一次彈射將會有127千瓦的能量以熱量形式消耗掉。發電機定子線圈的電阻僅有8.6毫歐,這么大的功率會迅速將定子線圈加溫數網路,所以設計了定子強製冷卻。冷卻板布置在定子的外側,鑄鋁板上安裝不銹鋼管,內充WEG混和液,採用流量為151升/分的泵強制散熱。根據1/2模型測試可知,上述設計可以保證45秒循環內銅芯溫度穩定在84℃,冷卻板表面溫度61℃。真正最為關鍵、技術難度最大的部件是高功率循環變頻器。這個技術是電磁彈射器的真正技術瓶頸。EMALS現在正處於關鍵性部件工程驗證階段,循環變頻器僅僅是完成了計算機模擬,還沒有開始發展工程樣機。從設計上看,循環變頻器是通過串聯或者並聯多路橋式電路來獲得疊加和控制功率輸出的,它不使用開關和串聯電容器,省略了電流分享電抗器,實現了完全數字化管理的無電弧電能源變頻管理輸出。其每一相的輸出能力為0~1520伏,峰值電流6400安,可變化頻率為0~4.644赫茲。循環變頻器設計非常復雜,它不僅需要將4台交流發電機的24相輸入電能准確地將正確的相位輸入到正確的模塊埠,還必須准確的管理298個直線電機的電磁模塊,在滑塊組運行到來前0.35秒內讓電磁體充電,而在滑組經過後0.2秒之內停止送電並將電能輸送到下一個模塊。循環變頻器工作時間雖然不長,每次彈射僅需工作10~15秒,但熱耗散非常大,一組循環變頻器需要528千瓦的冷卻功率,冷卻劑是去離子水,流量高達1363升/分,注入溫度35℃的情況下可確保系統溫度低於84℃。目前,美國對這一核心部件的保密工作非常重視,除了基本原理外,幾乎沒有任何的模型結構、工程圖片披露。2003年,美國海軍和通用電氣公司簽訂合同,要求花費7年時間完成這一部件的實體工作。到目前為止,美國在海軍航母電磁彈射器上花費了28年的時間和32億美金的經費,預計將在2014年服役的CVN-78航母上正式使用這一設備。從設計和工程實現的關鍵性部件的性能來看,成功地按時間表投入使用的可能性非常大。目前的主要技術問題出在線形同步電機上,18米所必模型所顯示的效率僅為58%,而50米1/2模型顯示的效率僅有63.2%,這證明能量利用率還不足,功率也成倍增加,以目前的設計是不能完成散熱需求的。另外一個問題在於軍用系統的防火要求,永磁體對溫度比較敏感,存在退磁臨界溫度,一般在100~200℃之間,航母的火工品較多,火災事故並不罕見,如何保證磁體的磁強度不受大的影響還是一個很棘手的問題。電磁彈射器功率巨大,其磁場強度也非常可怕,現代戰斗機上復雜的電磁設備都非常敏感,容易受到干擾,因此需要特別加強電磁彈射系統的磁屏蔽工作。由於彈射器的磁體是開槽形的,和蒸汽彈射器的蒸汽泄露一樣會有很強的磁泄露,所以目前設計了復雜的磁封閉條,在離飛行甲板15厘米的高度就能將磁場強度降低到正常環境的水準。相關的電磁干擾和兼容性問題將在2012年進行專門的適應性試驗。美國預期電磁彈射器達到如下指標:起飛速度:28~103米/秒;最大牽引力和平均牽引力之比:1.07;最大彈射能量:122兆焦;最短起飛循環時間:45秒;重量:225噸;體積:425立方米;補充能源需求:6350千瓦。
Ⅶ 海水淡化的方法
蒸餾法:蒸餾淡化進程的實質就是水蒸氣的構成進程,其原理好像海水受熱蒸騰構成雲,雲在必定條件下遇冷構成雨,而雨是不帶鹹味的.根據所用動力、設備、流程不一樣首要可分設備蒸餾法、蒸汽緊縮蒸餾法、多級閃急蒸餾法等.
冷凍法:冷凍法,即冷凍海水使之結冰,在液態淡水成為固態冰的一起鹽被別離出去.冷凍法與蒸餾法都有難以克服的壞處,其間蒸餾法會耗費很多的動力並在儀器里發生很多的鍋垢,而所得到的淡水卻並不多;而冷凍法一樣要耗費很多動力。
太陽能法:人類前期運用太陽能進行海水淡化,首要是運用太陽能進行蒸餾,所以前期的太陽能海水淡化設備通常都稱為太陽能蒸餾器.餾體系被動式太陽能蒸餾體系的比如就是盤式太陽能蒸餾器,太陽能具有安全、環保等利益,將太陽能收集與脫鹽技能兩個體系聯系是一種可繼續打開的海水淡化技能。
電滲析淡化法是使用一種特別製造的薄膜實現的。在電力作用下,海水中鹽類的正離子穿過陽膜跑向陰極方向,不能穿過陰膜而留下來;負離子穿過陰膜跑向陽極方向,不能穿過陽膜而留下來。這樣,鹽類離子被交換走的管道中的海水就成了淡水,而鹽類離子留下來的管道里的海水就成了被濃縮了的鹵水。 反滲透淡化法更加絕妙。它使用的薄膜叫「半透膜」。半透膜的性能是只讓淡水通過,不讓鹽分通過。
網路--海水淡化
Ⅷ 電容去離子是個神馬
超級電容是通過物理原理做的電池,而二次電池多是用化學原理做的化學電池。所以兩者本質上就是兩回事,一個是物理上的電荷轉移,一個是把化學能轉變成電能。 使用上,超級電容內阻更小,所以瞬間放出的電流可以更大。
Ⅸ 超純水水質標准
超純水是為了研製超純材料(半導體原件材料、納米精細陶瓷材料等)應用蒸餾、去離子化、反滲透技術或其它適當的超臨界精細技術生產出來的水,其電阻率大於18 MΩ*cm,或接近18.3 MΩ*cm極限值(25℃)。簡單得說就是幾乎去除氧和氫以外所有原子的水。這樣的水是一般工藝很難達到的程度,理論上可以採用二級反滲透再經過串聯的混合型交換樹脂柱對二次反滲水進行處理,但是交換樹脂的再生不便,質量難以保證。
制備
在原子光譜、高效液相色譜、超純物質分析、痕量物質等的某些實驗中,需要用超純水,超純水的制備如下:
(1)加入少量高錳酸鉀的水源,用玻璃蒸餾裝置進行二次蒸餾,再以全石英蒸餾器進行蒸餾,收集於石英容器中,可得超純水。
(2)使用強酸型陽離子和強鹼型陰離子交換樹脂柱的混合床或串聯柱。可充分除去水中的陽、陰離子,其電阻率達10 Q·cm的水,俗稱去離子水,再用全石英蒸餾器進行蒸餾,收集可得超純水。
應用
超純水可以在以下領域使用:
(1)電子、電力、電鍍、照明電器、實驗室、食品、造紙、日化、建材、造漆、蓄電池、化驗、生物、制葯、石油、化工、鋼鐵、玻璃等領域。
(2)化工工藝用水、化學葯劑、化妝品等。
(3)單晶硅、半導體晶片切割製造、半導體晶元、半導體封裝 、引線櫃架、集成電路、液晶顯示器、導電玻璃、顯像管、線路板、光通信、電腦元件 、電容器潔凈產品及各種元器件等生產工藝。
(4)高壓變電器的清洗等