⑴ 半導體製冷片是有的半導體材料是什麼是不是如何半導體材料都可以使用並達到相同效果
半導體致冷材料:不僅需要N型和P型半導體特性,還要根據摻入的雜質改變半導體的溫差電動勢率導電率和導熱率使這種特殊半導體能滿足致冷的材料。目前國內常用材料是以碳化軌為基體的三元固溶體合金,其中P型是因2丁e3-SbZ丁e3,N型是mZTe3-BiZSe3採用垂直區熔法提取晶體材料。並非所以的半導體材料都可以用,有的材料適合,有的就不行。。。
半導體材料的規格是當然有限制的。現在不能代替(可能以後可以)
測試製冷片的所能承受的最大電流和電壓,一般量尺寸(就知道大概型號),就知道最大電壓,再用數字電橋測試電阻,電流自然就知道了。。。
歡迎交流,我是做半導體製冷片的。 QQ:127220188
⑵ 大師,勞駕:半導體致冷晶棒是什麼東西,作用是什麼,怎麼用,主要用途是什麼
半導體製冷器(TE)也叫熱電製冷器,是一種熱泵,它的優點是沒有滑動部件,應用在一些空間受到限制,可靠性要求高,無致冷劑污染的場合。
半導體製冷器的工作運轉是用直流電流,它既可致冷又可加熱,通過改變直流電流的極性來決定在同一製冷器上實現致冷或加熱,這個效果的產生就是通過熱電的原理,它由兩片陶瓷片組成,其中間有N型和P型的半導體材料(碲化鉍),這個半導體元件在電路上是用串聯形式連結組成。
半導體致冷法的原理以及結構:半導體致冷器是由半導體所組成的一種冷卻裝置,於1960左右才出現,然而其理論基礎Peltier effect可追溯到19世紀。如圖是由X及Y兩種不同的金屬導線所組成的封閉線路。通上電源之後,冷端的熱量被移到熱端,導致冷端溫度降低,熱端溫度升高,這就是著名的Peltier effect。這現象最早是在1821年,由一位德國科學家Thomas Seeback首先發現,不過他當時做了錯誤的推論,並沒有領悟到背後真正的科學原理。到了1834年,一位法國表匠,同時也是兼職研究這現象的物理學家Jean Peltier,才發現背後真正的原因,這個現象直到近代隨著半導體的發展才有了實際的應用,也就是[致冷器]的發明(注意,這種叫致冷器,還不叫半導體致冷器)
它是由許多N型和P型半導體之顆粒互相排列而成,而N P之間以一般的導體相連接而成一完整線路,通常是銅、鋁或其他金屬導體,最後由兩片陶瓷片像夾心餅乾一樣夾起來,陶瓷片必須絕緣且導熱良好.N型半導體,任何物質都是由原子組成,原子是由原子核和電子組成。電子以高速度繞原子核轉動,受到原子核吸引,因為受到一定的限制,所以電子只能在有限的軌道上運轉,不能任意離開,而各層軌道上的電子具有不同的能量(電子勢能)。離原子核最遠軌道上的電子,經常可以脫離原子核吸引,而在原子之間運動,叫導體。如果電子不能脫離軌道形成自由電子,故不能參加導電,叫絕緣體。半導體導電能力介於導體與絕緣體之間,叫半導體。半導體重要的特性是在一定數量的某種雜質滲入半導體之後,不但能大大加大導電能力,而且可以根據摻入雜質的種類和數量製造出不同性質、不同用途的半導體。將一種雜質摻入半導體後,會放出自由電子,這種半導體稱為N型半導體。P型半導體,是靠「空穴」來導電。在外電場作用下「空穴」流動方向和電子流動方向相反,即「空穴」由正板流向負極,這是P型半導體原理。載流子現象:N型半導體中的自由電子,P型半導體中的「空穴」,他們都是參與導電,統稱為「載流子」,它是半導體所特有,是由於摻入雜質的結果。
半導體製冷材料:不僅需要N型和P型半導體特性,還要根據摻入的雜質改變半導體的溫差電動勢率,導電率和導熱率使這種特殊半導體能滿足製冷的材料。目前國內常用材料是以碲化鉍為基體的三元固溶體合金,其中P型是Bi2Te3—Sb2Te3,N型是Bi2Te3—Bi2Se3,採用垂直區熔法提取晶體材料。
⑶ 用什麼當做半導體製冷用什麼材料可以製作半導體材料在什麼電器里有
你好:
——★1、利用半導體 PN 結的 「帕爾貼」 效應,就可以做半導體製冷的。例如:汽車冷暖保溫箱(半導體製冷塊改變電源極性,就可以達到冷熱轉換的)。
——★2、市售的 半導體製冷塊 ,就是利用半導體 PN 結的 帕爾貼 效應製冷的。你可以到網上搜索,產品還是很好買到的。
⑷ 半導體製冷片 中的N/P型半導體材料是什麼 能自製嗎
常用材料是以碲化鉍為基體的三元固溶體合金,其中P型是Bi2Te3—Sb2Te3,N型是Bi2Te3—Bi2Se3。
⑸ 請問,半導體製冷是什麼原理
半導體製冷器件的工作原理是基於帕爾帖原理,該效應是在1834年由J.A.C帕爾帖首先發現的,即利用當兩種不同的導體A和B組成的電路且通有直流電時,在接頭處除焦耳熱以外還會釋放出某種其它的熱量,而另一個接頭處則吸收熱量,且帕爾帖效應所引起的這種現象是可逆的,改變電流方向時,放熱和吸熱的接頭也隨之改變,吸收和放出的熱量與電流強度I[A]成正比,且與兩種導體的性質及熱端的溫度有關,即:
Qab=Iπabπab稱做導體A和B之間的相對帕爾帖系數
,單位為[V],
πab為正值時,表示吸熱,反之為放熱,由於吸放熱是可逆的,所以πab=-πab帕爾帖系數的大小取決於構成閉合迴路的材料的性質和接點溫度,其數值可以由賽貝克系數αab[V.K-1]和接頭處的絕對溫度T[K]得出πab=αabT與塞貝克效應相,帕爾帖系也具有加和性,即:Qac=Qab+Qbc=(πab+πbc)I因此絕對帕爾帖系數有πab=πa-
πb金屬材料的帕爾帖效應比較微弱,而半導體材料則要強得多,因而得到實際應用的溫差電製冷器件都是由半導體材料製成的。製冷材料AVIoffe和AFIoffe指出,在同族元素或同種類型的化合物質間,晶格熱導率Kp隨著平均原子量A的增長呈下降趨勢。RWKeyes通過實驗推斷出,KpT近似於Tm3/2ρ2/3A-7/6成比例,即近似與原子量A成正比,因此通常應選取由重元素組成的化合物作為半導體製冷材料。半導體製冷材料的另一個巨大發展是1956年由AFIoffe等提出的固溶體理論,即利用同晶化合物形成類質同晶的固溶體。固溶體中摻入同晶化合物引入的等價置換原子產生的短程畸變,使得聲子散射增加,從而降低了晶格導熱率,而對載流子遷移率的影響卻很小,因此使得優值系數增大。例如50%Bi2Te3-50%Bi2Se3固溶體與Bi2Te3相比較,其熱導率降低33%,而遷移率僅稍有增加,因而優值系數將提高50%到一倍。Ag(1-x)Cu(x)Ti
Te、Bi-Sb合金和YBaCuO超導材料等曾經成為半導體製冷學者的研究對象,並通過實驗證明可以成為較好的低溫製冷材料。下面將分別介紹這幾種熱電性能較好的半導體製冷材料。二元固溶體,無論是P型還是N型,晶格熱導率均比Bi2Te3有較大降低,但N型材料的優值系數卻提高很小,這可能是因為在Bi2Te3中引入Bi2Se3時,隨著Bi2Se3摩爾含量的不同呈現出兩種不同的導電特性,勢必會使兩種特性都不會很強,通過合適的摻雜雖可以增強材料的導電特性,提高材料的優值系數,但歸根結底還是應該在本題物質上有所突破。
⑹ 半導體製冷器由什麼構成
半導體製冷器由兩根不同半導體圓柱構成,用一塊金屬導電板將兩根圓柱連起來,圓柱空著的兩端分別接通直流電源的正負極。這樣,半導體製冷器就可以工作了。圖中「P型柱」是P型半導體材料,也叫空穴型半導體;「N型柱」是N型半導體材料,也叫電子型半導體。以碲化鉍(Bi2Te3)合金為基礎,在其中摻上不同的雜質,就可以製成P型和N型製冷元件。
⑺ 半導體製冷原理
半導體製冷原理
半導體製冷又稱電子製冷,或者溫差電製冷,是從50年代發展起來的一門介於製冷技術和半導體技術邊緣的學科,它利用特種半導體材料構成的P-N結,形成熱電偶對,產生珀爾帖效應,即通過直流電製冷的一種新型製冷方法,與壓縮式製冷和吸收式製冷並稱為世界三大製冷方式。
半導體製冷器特點
半導體製冷器具有無雜訊、無振動、不需製冷劑、體積小、重量輕等特點,且工作可靠,操作簡便,易於進行冷量調節。但它的製冷系數較小,電耗量相對較大,故它主要用於耗冷量小和佔地空間小的場合,如電子設備和無線電通信設備中某些元件的冷卻。
有的也用於家用冰箱,但不經濟。半導體製冷片是一個熱傳遞的工具。當一塊N型半導體材料和一塊P型半導體材料聯結成的熱電偶對中有電流通過時,兩端之間就會產生熱量轉移,熱量就會從一端轉移到另一端,從而產生溫差形成冷熱端。
⑻ 半導體製冷的工作原理是怎樣的
半導體製冷又稱溫差電製冷、或熱電製冷。是未來電冰箱製冷技術發展的一個方向。半導體製冷是利用特種半導體材料,製成製冷器件,通電後直接製冷,因此得名半導體製冷。
用兩種不同金屬組成一對熱電偶,當在熱電偶中通以直流電流時,將在電偶的不同結點處,產生吸熱和放熱現象,這種現象稱為珀爾帖效應。
利用珀爾帖效應製成的半導體製冷器的電偶,是由一種特製的N型和P型半導體組成的。N型半導體是靠電子導電的,而P型半導體是靠所謂「空穴」來導電的。
不論N型半導體中的自由電子,還是P型半導體中的空穴,它們都參與導電,統稱為「載流子」,由「載流子」導電的現象,是半導體所特有的。
半導體製冷原理是把一個P型半導體和一個N型半導體,用銅連接片焊接而成電偶對,如圖2-7所示。當直流電流從N型半導體流向P型半導體時,則在2、3端的銅連接片上產生吸熱現象,此端稱為冷端;而在1、4端的銅連接片上產生放熱現象,此端稱為熱端。如果電流方向反過來,則冷、熱端將互換。
圖2-8 半導體製冷器的熱電堆
我國目前應用的製冷半導體材料,多數是以碲化鉍為基體的三元固熔體合金,其中P型材料是Bi2Te3-Sb2Te3;N型材料是Bi2Te3-Bi2Se3。由於半導體材料性能的限制,目前半導體製冷的效率比一般壓縮式要低,耗電量約大1倍。但在幾十瓦小能量的情況下,由於半導體製冷器的效率與能量大小無關,故對微小型製冷裝置,反而比壓縮式經濟。此外由於半導體製冷器必需使用直流電源,價格貴,使它的應用受到一定的限制。
⑼ 半導體製冷片原理及其技術運用
半導體製冷片(TE)也叫熱電製冷片,是一種熱泵,它的優點是沒有滑動部件,應用在一些空間受到限制,可靠性要求高,無製冷劑污染的場合。
半導體製冷片的工作運轉是用直流電流,它既可製冷又可加熱,通過改變直流電流的極性來決定在同一製冷片上實現製冷或加熱,這個效果的產生就是通過熱電的原理,以下的圖就是一個單片的製冷片,它由兩片陶瓷片組成,其中間有N型和P型的半導體材料(碲化鉍),這個半導體元件在電路上是用串聯形式連結組成。
半導體製冷片的工作原理
當一塊N型半導體材料和一塊P型半導體材料聯結成電偶對時,在這個電路中接通直流電流後,就能產生能量的轉移,電流由N型元件流向P型元件的接頭吸收熱量,成為冷端由P型元件流向N型元件的接頭釋放熱量,成為熱端。吸熱和放熱的大小是通過電流的大小以及半導體材料N、P的元件對數來決定,以下三點是熱電製冷的溫差電效應。
1、塞貝克效應(SEEBECKEFFECT)
一八二二年德國人塞貝克發現當兩種不同的導體相連接時,如兩個連接點保持不同的溫差,則在導體中產生一個溫差電動勢:ES=S.△T
式中:ES為溫差電動勢
S(?)為溫差電動勢率(塞貝克系數)
△T為接點之間的溫差
2、珀爾帖效應(PELTIEREFFECT)
一八三四年法國人珀爾帖發現了與塞貝克效應的效應,即當電流流經兩個不同導體形成的接點時,接點處會產生放熱和吸熱現象,放熱或吸熱大小由電流的大小來決定。
Qл=л.Iл=aTc
式中:Qπ為放熱或吸熱功率
π為比例系數,稱為珀爾帖系數
I為工作電流
a為溫差電動勢率
Tc為冷接點溫度
3、湯姆遜效應(THOMSONEFFECT)
當電流流經存在溫度梯度的導體時,除了由導體電阻產生的焦耳熱之外,導體還要放出或吸收熱量,在溫差為△T的導體兩點之間,其放熱量或吸熱量為:
Qτ=τ.I.△T
Qτ為放熱或吸熱功率
τ為湯姆遜系數
I為工作電流
△T為溫度梯度
以上的理論直到本世紀五十年代,蘇聯科學院半導體研究所約飛院士對半導體進行了大量研究,於一九五四年發表了研究成果,表明碲化鉍化合物固溶體有良好的製冷效果,這是最早的也是最重要的熱電半導體材料,至今還是溫差製冷中半導體材料的一種主要成份。
約飛的理論得到實踐應用後,有眾多的學者進行研究到六十年代半導體製冷材料的優值系數,才達到相當水平,得到大規模的應用,也就是我們現在的半導體製冷片件。
中國在半導體製冷技術開始於50年代末60年代初,當時在國際上也是比較早的研究單位之一,60年代中期,半導體材料的性能達到了國際水平,60年代末至80年代初是我國半導體製冷片技術發展的一個台階。在此期間,一方面半導體製冷材料的優值系數提高,另一方面拓寬其應用領域。中國科學院半導體研究所投入了大量的人力和物力,獲得了半導體製冷片,因而才有了現在的半導體製冷片的生產及其兩次產品的開發和應用。
製冷片的技術應用
半導體製冷片作為特種冷源,在技術應用上具有以下的優點和特點:
1、不需要任何製冷劑,可連續工作,沒有污染源沒有旋轉部件,不會產生回轉效應,沒有滑動部件是一種固體片件,工作時沒有震動、噪音、壽命長,安裝容易。
2、半導體製冷片具有兩種功能,既能製冷,又能加熱,製冷效率一般不高,但制熱效率很高,永遠大於1。因此使用一個片件就可以代替分立的加熱系統和製冷系統。
3、半導體製冷片是電流換能型片件,通過輸入電流的控制,可實現高精度的溫度控制,再加上溫度檢測和控制手段,很容易實現遙控、程式控制、計算機控制,便於組成自動控制系統。
4、半導體製冷片熱慣性非常小,製冷制熱時間很快,在熱端散熱良好冷端空載的情況下,通電不到一分鍾,製冷片就能達到最大溫差。
5、半導體製冷片的反向使用就是溫差發電,半導體製冷片一般適用於中低溫區發電。
6、半導體製冷片的單個製冷元件對的功率很小,但組合成電堆,用同類型的電堆串、並聯的方法組合成製冷系統的話,功率就可以做的很大,因此製冷功率可以做到幾毫瓦到上萬瓦的范圍。
7、半導體製冷片的溫差范圍,從正溫到負溫度都可以實現。
通過以上分析,半導體溫差電片件應用范圍有:製冷、加熱、發電,製冷和加熱應用比較普遍,有以下幾個方面:
1、軍事方面:導彈、雷達、潛艇等方面的紅外線探測、導行系統。
2、醫療方面;冷力、冷合、白內障摘除片、血液分析儀等。
3、實驗室裝置方面:冷阱、冷箱、冷槽、電子低溫測試裝置、各種恆溫、高低溫實驗儀片。
4、專用裝置方面:石油產品低溫測試儀、生化產品低溫測試儀、細菌培養箱、恆溫顯影槽、電腦等。
5、日常生活方面:空調、冷熱兩用箱、飲水機、電子信箱等。此外,還有其它方面的應用,這里就不一一提了。
半導體製冷片的散熱方式
半導體製冷片件的散熱是一門專業技術,也是半導體製冷片件能否長期運行的基礎。良好的散熱才能獲得最低冷端溫度的先決條件。以下就是半導體製冷片的幾種散熱方式:
1、自然散熱。
採用導熱較好的材料,紫銅鋁材料做成各種散熱片,在靜止的空氣中自由的散發熱量,使用方便,缺點是體積太大。
2、充液散熱。
用較好的散熱材料做成水箱,用通液體或通水的方法降溫。缺點是用水不方便,浪廢太大,優點是體積小,散熱效果最好。
3、強迫風冷散熱。
工作氣氛為流動空氣,散熱片所用的材料和自然散熱片相同,使用方便,體積比自然冷卻的小,缺點是增加一個風機出現噪音。
4、真空潛熱散熱。
最常用的就是「熱管」散熱片,它是利用蒸發潛熱快速傳遞熱容量。